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EMBEDDING OF CLASSES OF FUNCTIONS WITH A,-BOUNDED
VARIATION INTO GENERALIZED LIPSCHITZ CLASSES

HEPING WANG

(Communicated by J. Pecari¢)

Abstract. In this note, we obtain the sufficient and necessary condition for the embedding of the
classes ApBV of functions with A, -bounded variation into the generalized Lipschitz classes
HY, 1< g<eo.

1. Introduction and main results

Let ¢ be a strictly increasing convex continuous function on [0,e0) with ¢(0) =0,

and let A =: {4} be an increasing sequence of positive numbers such that 3 7%/( =
k=1
+oo. We say that a real valued function f on [a,b] is of A@-bounded variation and

denoted by f € ApBV if

< oo,

e OUSED) o @S (Br) — flax)))
Va, (f) ~—s§p]§1 B '_Sfapk; =

where the supremum is taken over all sequences . = {I} = {[ax,b]} of non-overlap-
ping intervals in [a,b], f(Ix) = f(bx) — f(ax). The class A@BV is introduced in
Schramm and Waterman’s paper [11] (see also [7]). In the paper, we suppose that
[a,b] = [0, 1], and functions in AQBV are 1-periodic.

In the case @(x) =x” (p > 1), f is said to be of bounded p- A-variation variation.
The corresponding class ABV() was introduced in 1980 by Shiba in [12] and called
by the Waterman-Shiba class. If p =1, f is said to be of A-bounded variation, and we
denote f € ABV. The corresponding class is the well-known Waterman class ABV.

In the case A = {1}, we get the class BV, of ¢-bounded variation, which was
introduced by Young (see [21]). More specifically, when @(x) =x? (p > 1), we get
the class BV, which is called the Wiener class. The class BV is the well known class
of bounded variation BV..

It is easily seen from the definition that A@BV functions are bounded, and the
discontinuities of a A@BV function are simple and, therefore, at most denumerable.
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The class A@BV had been studied mainly because of their applicability to the theory of
Fourier series and some good approximative properties (see [20, 21, 17, 18, 19, 10, 13]).

Let o(¢) be a modulus of continuity, i.e., a continuous, subadditive, and increasing
function on [0, +°) satisfying @(0) = 0. For 1 < g < e, denote by H’ = w(t) the

class of 1-periodic functions for which || f||e = [ fllq + sup C(O( ))q < oo, where

N,

o)y = { suPocrc {Jo |Ft )~ f@de} 1< g <,
SUPo<h<s SUPxe(0,1] |f(x+h) = f(x)], q=°°

is the L, modulus of continuity of f. If () =t%, o € (0,1], then H’ = H; coincides
with the Lipschitz class Lip(ot,q).

In recent years, much attention is drawn on the relationship of the class A,BV
and the Lipschitz class H;’. For g = oo, Medvedeva and Leindler gave sufficient and
necessary conditions for the embeddings H® C ABV and H? C ApBV in [9] and [7].
For 1 < g <o and a € (0,1), the present author and Lind obtained sufficient and
necessary conditions for the embeddings H;' C {nP}BV (0 < B < 1) and Hg C ABV
in [13] and [8]. Finally, the present author obtained a sufficient and necessary condition
for the embeddings H;’ C ABV in [14] under some weak restriction on @.

On the other hand, the reverse embedding is also investigated. Sharp estimates of
the L,-modulus of continuity (1 < ¢ < o) of a function in terms of its A, -variation
were obtained in [16], [5], [6], and [15]. Furthermore, Goginava, Hormozi, etc. gave
the necessary and sufficient conditions in [1], [4], and [3] for the inclusion of the class
ABV () in the class HY (1< p,q<).

This note is devoted to investigating the embedding A,BV C Hq‘,"7 1 < g <eoo.Our
main result can be formulated as follows.

THEOREM 1. Suppose that 1 < q < oo, and  is the inverse function of the func-
tion @. Then the embedding AyBV C H;’ holds if and only if

1/q oo
r}ﬂnl/‘lw(l/n) 1131?<Xnk vl gl/l ' -1y

REMARK 1. When ¢(1) =17, 1 < p < e, Theorem 1 recedes to Theorem 2.2 in
[3]. For the proof of necessity we use the method in [3].

2. Upper estimates for L, modulus of continuity of functions in A,BV

This section is devoted to investigating the upper estimates for the L, modulus of
continuity of functions in Ay,BV in terms of its Ay -variation. Our main result of this
section can be formulated as follows.

THEOREM 2. Let y be the inverse function of the function ¢ and f € AyBV.
Then
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(1) for g =1, we have

o(f;1/n) < w((i%k)flm(ﬁ) = max @w((kil %k)flm(ﬁ); @.1)

i—1 1<m<n n

(2) for 1 < g < oo, we have
k
. -1/q 1/q Nl
O3/ < 160719 s K13 1/20) 7 Vi (1), 22)

REMARK 2. Inthe case g =1, Theorem 2 is essentially given in [15, Theorem 2]
in a slightly different form. The authors also showed in [15] that the upper estimate for
Ly modulus of continuity of functions in Ay,BV is sharp in the sense of order.

Let f € ApBV and 1 < g < oo. We have

o(fmi= sup [ [fxth)— f@)]dx

O<h§l/n
g k=14
= sup 2|f +—+h) flx4+—)|"dx.
0<h<1/n’/0 n

For h < 1/n and fixed x € [0,1/n], the intervals I := [x+ =L x+ 5L 4+ p], k =
1,...,n, are non-overlapping intervals. We set x; = |f(I;)|. We reorder xk such that

X12x2...2x,20.

Since f € ApBV, we get

2 <Va, (f)-
k=1

We put

Lig(f —sup{<2|xk|’1) 2 VA(p f)andx1>x2>...>xn20}.
k=1
It follows that
1/n 1/
o(f:1/n), < sup (/ Iw(f)qu) T <n Vg, (f). 2.3)
0<h<1/n 0

Let v be the inverse function of ¢ and let y; = @(x;). Then y is a strictly increasing
concave function on [0,e0) with y(0) =

ViZyZ...2y =20, =y, L<k<n,

and
Lng(f) —SUP{(ZIWyk |’1> Zi— Vo (f andy1>yz>...>yn>o}.

Now we estimate I, 4(f) for 1 < g < eo. We have
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LEMMA 1. Let y be a strictly increasing concave function on [0,0) with y(0) =
0,and q=1. Then

In,l(f):nu/((kil i)ilvf\w(fv _1glﬁ)<(nmw(( l

) Vel) e

I M§

Proof. Let {y;}}j_, satisfy y; = y2 > ... 2y, >0 and X}_; 3£ < Vi, (f). Using
Tchebychef’s inequality (see [2, (2.17.1)]), we get

(LEDCE ) <1500

n= A

It follows from the above inequality and the concavity of y that

éw(y (i

k

»
Il
-

\_/
M=
>>/\

—

s
<mw((X 7

which implies

half) < nw((ki1 %k)’lvA(p(f)).

On the other hand, for 1 <m < n welet yy =... =y, = (I}, %k)flVA(p (f) and
Ym+1=...=yn = 0. Then Zk 1 7 <V, (f) and

I > s )7y > 1Yy,

NMUE lgggnmw((% ;TJ w(0)Zv((Z 7)) Va):

This completes the proof of Lemma 1. [J

LEMMA 2. Let ¥ be a strictly increasing concave function on [0,0) with y(0) =
0,and 1 < g <oo. Then

L (f) < 16 max k/9y(( 21//1 )W, (). (2.5)

1<k<n -1

REMARK 3. We conjecture that

Lig(f) = max KM9y(( ZI/A “Wa, ()

1<k<n
i=1

However, we cannot prove it. This conjecture is true in the case y(r) =¢'/7 for 1 <
p < o (see [3, Corollary 2.4]).
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Proof. Without loss of generality we may assume that A; = 1. We set

V =V, (f) and M= max k"/%y(( Zl/?t )"V, (1)

1<k<n
i=1
Let {y;};_, satisfy yj >y >... >y, >0 and 3}_, 3£ <V. We set

={1< Dy =27V, vsz#(Gs), and u; = #(o; \ 0,—1),

where #A denotes the number of elements of the finite set A. Then o\ 0,1 = {1 <
J<n 27V <y; <277V}, We have

- Yk Vi
V= 2 Fri 2 Y 3
k=1 s=0 EO-A\O-Y 1 J

R 1

22 vy =

JEO-A\O-Y '

=Y o2 ly ,

Z /gy_s A’

where in the last equality we used the Abel transform X" | ayby =X | (ax —ax+1) (b1 +
..+ by) with b, 1 =0 and m € N. Let s be such that vy, > 0 and vso—1 = 0. It

follows that
s—1
5oy

§=50

Let 51 satisfy 251+l hy %k < 25112 For S0 < s < sp, there exists a my, 1 <my < n
such that

el +2
28T < — <25
Z‘ Ak
This means that 27572 < (3%, /lk) < 27571, Since y is an increasing concave
function and y(0) =0, we get that y/(8 ) < 8y(r) forany r > 0. Then we have

= =3

k=1 S=50 jEOs\Oy—1 5=50 jE0,\Oy_1

oo

<89 Y (y(2 V)

S=50

S n 1 oo
< 89 1V )y + U
(.\'Z\O Z 2’ kgl k S=§+l )
s1 mso n 1
< 8¢ (w(( )~V v+ n(y
(;0 kg’l A kg’l M )

51

<814y ),
m

s=s9 S
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where u; = #(0, \ 05_1), vs = #(0y) and M = max KYay (35 1/4)71V). We note
n

125230 5 (Sm) (3 7)

§=50 j=1

that

and for k < m,

= j=1"
Clearly, vy < mg. We have
$ret(Fun) (55)
s=so ''"S s=so i=1 j=1 A’J

Hence, we obtain that
z Va _
( Z(w(yk))q) <214, (8M) < 16M.
k=1

Lemma 2 is proved. [J

Proof of Theorem 2. Theorem 2 follows from (2.3), (2.4), and (2.5) immedi-
ately. O

3. Proof of Theorem 1

Proof of Theorem 1.
Sufficiency. Suppose that (1.1) holds. Then there exists a constant C > 0 such that
for any n, we have

max kT (( 21//1 Y <en'o(1/n).

1<k<n -1

We shall show that A,BV C H;" Since y is a strictly increasing concave function
with y(0) =0, we get y(ar) < (1+a)y(t) for any a,t > 0. For any f € A,BV, by
(2.1) and (2.2) we have

k
o(f;1/n)y < l6n~ 14 max Ky (X 1/4) 7 Va, (/)
Shsn i=1

<16(1+Va, (f))n "4 max kM 9y(( 21//1

1<k<n -1

<16C(1+Va, (£)o(1/n),

S o ®
which implies that f € H;. Hence, we have A,BV C H’.
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Necessity. It suffices to prove that the embedding A,BV C H,f’ does not hold if

1/q oo
a1 ) 1Y l_zll/x ' G-b

Suppose that (3.1) holds. Then there exist sequences n; and my, such that

ng =282 (3.2)
e >=mg > 1, (3.3)
1 k 1/‘1 4k
1/4) ) >2 3.4
ww(nk) v 2/ : (3.4)
where
my
max !y (( zl/x =m Ty (3 1/2) !
J<nk i—1

We shall construct a 1-periodic function g such that ¢ € A,BV and g ¢ H?, which
contradicts the embedding A,BV C H;’. We set

my

a=vy 21/1 ok k=1,2,.. (3.5)

Consider )

a, yElr+L2 L2 1< <N

gk(y) :{ 2Tk M

0, otherwise,
where "

skzmax{jemzj'gz—iﬂ}, (3.6)
and

Nk = min{mk7sk}. (37)
Hence, applying (3.6), the fact that 2(s; + 1) > k+1,and (3.2), we have

2Sk —1
ng

27kl < <27k (3.8)

which means that the support of the function g is in [27%,27%+1) . Hence, the functions
gr have disjoint support, and correspondingly,

M s

Vap(8) < 2, Va,(8k)- (3.9)

k=1

Since ¢ is convex and @(0) = 0, we get that @(rx) <7¢(x) for # € (0,1] and x > 0,
and hence,

ola) < 2 a1 =253 12!
=1
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It follows from (3.7) that

Va, (8k) Z ola

31 < ! —k+1
ak)zf <20(a) Y, — <274,
j=17
which combining with (3.9), deduces that

oo

Va,(g) < Y 27" <2,
=1

This implies that f € A,BV.
Next we show that g & H. We observe that [g(x+ ﬁ)
[LA 7+ 2N" 1] Then

—g(x)| = a; for x €

ok ny 1 q
//ZLA )g(x—l—nk) —g(x)) dx
2N, — 1
L (3.10)
Ny
If Ny = sy, then by (3.8), (3.3), and (3.5) we have
2N, — 1\ /g _ _ i _
< ;Clk ) a =2 (k+l)/q2 kl//((z l/l,) 1
i=1
and if N, = my, then by (3.5) we get
2N, — 1\ 1/a ok
() a2 (2) v
In both cases, we have
2N, — 1 1/q —(k+1)/qn— “
> q
( " ) Taz2 (2 ) 21/1 (3.11)
It follows from (3.10), (3.11), and (3.4) that
w(é’;ik)q &
n > 2—(k+1)/q2—k 1/2{ )) 1
o(;) < ) Z nk

2 27(/{4’1)/(1271(24/{ 2 2k s Joo

as k — oo,
which shows that g  H.

The proof of Theorem 1 is finished. [
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