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EMBEDDING OF CLASSES OF FUNCTIONS WITH Λϕ –BOUNDED

VARIATION INTO GENERALIZED LIPSCHITZ CLASSES

HEPING WANG

(Communicated by J. Pečarić)

Abstract. In this note, we obtain the sufficient and necessary condition for the embedding of the
classes ΛϕBV of functions with Λϕ -bounded variation into the generalized Lipschitz classes
Hω

q , 1 � q < ∞ .

1. Introduction and main results

Let ϕ be a strictly increasing convex continuous function on [0,∞) with ϕ(0) = 0,

and let Λ =: {λk} be an increasing sequence of positive numbers such that
∞
∑

k=1

1
λk

=

+∞ . We say that a real valued function f on [a,b] is of Λϕ -bounded variation and
denoted by f ∈ Λϕ BV if

VΛϕ ( f ) := sup
I

∞

∑
k=1

ϕ(| f (Ik)|)
λk

:= sup
I

∞

∑
k=1

ϕ(| f (bk)− f (ak)|)
λk

< ∞,

where the supremum is taken over all sequences I = {Ik}= {[ak,bk]} of non-overlap-
ping intervals in [a,b] , f (Ik) = f (bk)− f (ak) . The class Λϕ BV is introduced in
Schramm and Waterman’s paper [11] (see also [7]). In the paper, we suppose that
[a,b] = [0,1] , and functions in Λϕ BV are 1-periodic.

In the case ϕ(x) = xp (p � 1) , f is said to be of bounded p -Λ-variation variation.
The corresponding class ΛBV(p) was introduced in 1980 by Shiba in [12] and called
by the Waterman-Shiba class. If p = 1, f is said to be of Λ-bounded variation, and we
denote f ∈ ΛBV. The corresponding class is the well-known Waterman class ΛBV.

In the case Λ = {1} , we get the class BVϕ of ϕ -bounded variation, which was
introduced by Young (see [21]). More specifically, when ϕ(x) = xp (p � 1) , we get
the class BVp which is called the Wiener class. The class BV1 is the well known class
of bounded variation BV.

It is easily seen from the definition that ΛϕBV functions are bounded, and the
discontinuities of a ΛϕBV function are simple and, therefore, at most denumerable.
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The class ΛϕBV had been studied mainly because of their applicability to the theory of
Fourier series and some good approximative properties (see [20, 21, 17, 18, 19, 10, 13]).

Let ω(t) be a modulus of continuity, i.e., a continuous, subadditive, and increasing

function on [0,+∞) satisfying ω(0) = 0. For 1 � q � ∞ , denote by Hω
q ≡ Hω(t)

q the

class of 1-periodic functions for which ‖ f‖Hω
q

:= ‖ f‖q + sup
t>0

ω( f ;t)q
ω(t) < ∞ , where

ω( f ; t)q :=

{
sup0�h�t

{∫ 1
0 | f (x+h)− f (x)|qdx

} 1
q
, 1 � q < ∞,

sup0�h�t supx∈[0,1] | f (x+h)− f (x)|, q = ∞

is the Lq modulus of continuity of f . If ω(t)= tα , α ∈ (0,1] , then Hω
q ≡Hα

q coincides
with the Lipschitz class Lip(α,q) .

In recent years, much attention is drawn on the relationship of the class ΛϕBV
and the Lipschitz class Hω

q . For q = ∞ , Medvedeva and Leindler gave sufficient and
necessary conditions for the embeddings Hω

∞ ⊂ ΛBV and Hω
∞ ⊂ ΛϕBV in [9] and [7].

For 1 < q < ∞ and α ∈ (0,1) , the present author and Lind obtained sufficient and
necessary conditions for the embeddings Hα

q ⊂ {nβ}BV (0 < β � 1) and Hα
q ⊂ ΛBV

in [13] and [8]. Finally, the present author obtained a sufficient and necessary condition
for the embeddings Hω

q ⊂ ΛBV in [14] under some weak restriction on ω .
On the other hand, the reverse embedding is also investigated. Sharp estimates of

the Lq -modulus of continuity (1 � q < ∞) of a function in terms of its Λϕ -variation
were obtained in [16], [5], [6], and [15]. Furthermore, Goginava, Hormozi, etc. gave
the necessary and sufficient conditions in [1], [4], and [3] for the inclusion of the class
ΛBV(p) in the class Hω

q (1 � p,q < ∞) .
This note is devoted to investigating the embedding ΛϕBV⊂Hω

q , 1 � q < ∞ . Our
main result can be formulated as follows.

THEOREM 1. Suppose that 1 � q < ∞ , and ψ is the inverse function of the func-
tion ϕ . Then the embedding ΛϕBV ⊂ Hω

q holds if and only if

lim
n→∞

1

n1/qω(1/n)
max

1�k�n
k1/qψ((

k

∑
i=1

1/λi)−1) < ∞. (1.1)

REMARK 1. When ϕ(t) = t p, 1 � p < ∞ , Theorem 1 recedes to Theorem 2.2 in
[3]. For the proof of necessity we use the method in [3].

2. Upper estimates for Lq modulus of continuity of functions in ΛϕBV

This section is devoted to investigating the upper estimates for the Lq modulus of
continuity of functions in ΛϕBV in terms of its Λϕ -variation. Our main result of this
section can be formulated as follows.

THEOREM 2. Let ψ be the inverse function of the function ϕ and f ∈ ΛϕBV .
Then
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(1) for q = 1 , we have

ω( f ;1/n)1 � ψ
(( n

∑
k=1

1
λk

)−1
VΛϕ ( f )

)
= max

1�m�n

m
n

ψ
(( m

∑
k=1

1
λk

)−1
VΛϕ ( f )

)
; (2.1)

(2) for 1 < q < ∞ , we have

ω( f ;1/n)q � 16n−1/q max
1�k�n

k1/qψ((
k

∑
i=1

1/λi)−1VΛϕ ( f )). (2.2)

REMARK 2. In the case q = 1, Theorem 2 is essentially given in [15, Theorem 2]
in a slightly different form. The authors also showed in [15] that the upper estimate for
L1 modulus of continuity of functions in ΛϕBV is sharp in the sense of order.

Let f ∈ ΛϕBV and 1 � q < ∞ . We have

ω( f ;1/n)q
q = sup

0<h�1/n

∫ 1

0
| f (x+h)− f (x)|q dx

= sup
0<h�1/n

∫ 1/n

0

n

∑
k=1

∣∣ f (x+
k−1

n
+h)− f (x+

k−1
n

)
∣∣q dx.

For h � 1/n and fixed x ∈ [0,1/n] , the intervals Ik := [x + k−1
n ,x + k−1

n + h], k =
1, . . . ,n, are non-overlapping intervals. We set xk = | f (Ik)| . We reorder xk such that

x1 � x2 � . . . � xn � 0.

Since f ∈ ΛϕBV, we get
n

∑
k=1

ϕ(xk)
λk

� VΛϕ ( f ).

We put

In,q( f ) = sup
{( n

∑
k=1

|xk|q
)1/q

:
n

∑
k=1

ϕ(xk)
λk

� VΛϕ ( f ) and x1 � x2 � . . . � xn � 0
}
.

It follows that

ω( f ;1/n)q � sup
0<h�1/n

(∫ 1/n

0
In,q( f )q dx

)1/q
� n−1/qIn,q( f ). (2.3)

Let ψ be the inverse function of ϕ and let yk = ϕ(xk) . Then ψ is a strictly increasing
concave function on [0,∞) with ψ(0) = 0,

y1 � y2 � . . . � yn � 0, xk = ψ(yk), 1 � k � n,

and

In,q( f ) = sup
{( n

∑
k=1

|ψ(yk)|q
)1/q

:
n

∑
k=1

yk

λk
� VΛϕ ( f ) and y1 � y2 � . . . � yn � 0

}
.

Now we estimate In,q( f ) for 1 � q < ∞ . We have
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LEMMA 1. Let ψ be a strictly increasing concave function on [0,∞) with ψ(0) =
0 , and q = 1 . Then

In,1( f ) = nψ
(( n

∑
k=1

1
λk

)−1
VΛϕ ( f )

)
= max

1�m�n
mψ

(( m

∑
k=1

1
λk

)−1
VΛϕ ( f )

)
. (2.4)

Proof. Let {yk}n
k=1 satisfy y1 � y2 � . . . � yn � 0 and ∑n

k=1
yk
λk

� VΛϕ ( f ) . Using
Tchebychef’s inequality (see [2, (2.17.1)]), we get(1

n

n

∑
k=1

1
λk

)(1
n

n

∑
k=1

|ψ(yk)|
)

� 1
n

n

∑
k=1

|ψ(yk)|
λk

.

It follows from the above inequality and the concavity of ψ that

n

∑
k=1

|ψ(yk)| � n
( n

∑
k=1

1
λk

)−1
n

∑
k=1

|ψ(yk)|
λk

� nψ
(( n

∑
k=1

1
λk

)−1
n

∑
k=1

yk

λk

)

� nψ
(( n

∑
k=1

1
λk

)−1
VΛϕ ( f )

)
,

which implies

In,1( f ) � nψ
(( n

∑
k=1

1
λk

)−1
VΛϕ ( f )

)
.

On the other hand, for 1 � m � n we let y1 = . . . = ym =
(

∑m
k=1

1
λk

)−1
VΛϕ ( f ) and

ym+1 = . . . = yn = 0. Then ∑n
k=1

yk
λk

� VΛϕ ( f ) and

In,1( f ) � max
1�m�n

mψ
(( m

∑
k=1

1
λk

)−1
VΛϕ ( f )

)
� nψ

(( n

∑
k=1

1
λk

)−1
VΛϕ ( f )

)
.

This completes the proof of Lemma 1. �

LEMMA 2. Let ψ be a strictly increasing concave function on [0,∞) with ψ(0) =
0 , and 1 < q < ∞ . Then

In,q( f ) � 16 max
1�k�n

k1/qψ((
k

∑
i=1

1/λi)−1VΛϕ ( f )). (2.5)

REMARK 3. We conjecture that

In,q( f ) = max
1�k�n

k1/qψ((
k

∑
i=1

1/λi)−1VΛϕ ( f )).

However, we cannot prove it. This conjecture is true in the case ψ(t) = t1/p for 1 <
p < ∞ (see [3, Corollary 2.4]).
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Proof. Without loss of generality we may assume that λ1 = 1. We set

V = VΛϕ ( f ) and M = max
1�k�n

k1/qψ((
k

∑
i=1

1/λi)−1VΛϕ ( f )).

Let {yk}n
k=1 satisfy y1 � y2 � . . . � yn � 0 and ∑n

k=1
yk
λk

� V . We set

σs = {1 � j � n : y j � 2−sV}, vs = #(σs), and us = #(σs \σs−1),

where #A denotes the number of elements of the finite set A . Then σs \σs−1 = {1 �
j � n : 2−sV � y j < 2−s+1V} . We have

V �
n

∑
k=1

yk

λk
=

∞

∑
s=0

∑
j∈σs\σs−1

y j

λ j

�
∞

∑
s=0

2−sV ∑
j∈σs\σs−1

1
λ j

=
∞

∑
s=0

2−s−1V ∑
j∈σs

1
λ j

,

where in the last equality we used the Abel transform ∑m
k=1 akbk = ∑m

k=1(ak−ak+1)(b1+
. . . + bk) with bm+1 = 0 and m ∈ N . Let s0 be such that vs0 > 0 and vs0−1 = 0. It
follows that

∞

∑
s=s0

2−s−1
vs

∑
j=1

1
λ j

� 1.

Let s1 satisfy 2s1+1 < ∑n
k=1

1
λk

� 2s1+2 . For s0 � s � s1 , there exists a ms, 1 � ms � n
such that

2s+1 <
ms

∑
k=1

1
λk

� 2s+2.

This means that 2−s−2 � (∑ms
k=1

1
λk

)−1 � 2−s−1 . Since ψ is an increasing concave
function and ψ(0) = 0, we get that ψ(8t) � 8ψ(t) for any t > 0. Then we have

n

∑
k=1

(ψ(yk))q =
∞

∑
s=s0

∑
j∈σs\σs−1

(ψ(y j))q �
∞

∑
s=s0

∑
j∈σs\σs−1

(ψ(2−s+1V ))q

� 8q
∞

∑
s=s0

(ψ(2−s−2V ))qus

� 8q
( s1

∑
s=s0

(ψ((
ms

∑
k=1

1
λk

)−1V ))qvs +(ψ((
n

∑
k=1

1
λk

)−1V ))q
∞

∑
s=s1+1

us

)

� 8q
( s1

∑
s=s0

(ψ((
ms

∑
k=1

1
λk

)−1V ))qvs +n(ψ((
n

∑
k=1

1
λk

)−1V ))q
)

� 8qMq
(
1+

s1

∑
s=s0

vs

ms

)
,
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where us = #(σs \σs−1), vs = #(σs) and M = max
1�k�n

k1/qψ((∑k
i=1 1/λi)−1V ) . We note

that

1 �
∞

∑
s=s0

2−s−1
vs

∑
j=1

1
λ j

�
s1

∑
s=s0

( ms

∑
i=1

1/λi

)−1( vs

∑
j=1

1
λ j

)
,

and for k � m ,
k
m

�
( m

∑
i=1

1/λi

)−1( k

∑
j=1

1
λ j

)
.

Clearly, vs � ms . We have

s1

∑
s=s0

vs

ms
�

s1

∑
s=s0

( ms

∑
i=1

1/λi

)−1( vs

∑
j=1

1
λ j

)
� 1.

Hence, we obtain that

( n

∑
k=1

(ψ(yk))q
)1/q

� 21/q · (8M) � 16M.

Lemma 2 is proved. �

Proof of Theorem 2. Theorem 2 follows from (2.3), (2.4), and (2.5) immedi-
ately. �

3. Proof of Theorem 1

Proof of Theorem 1.
Sufficiency. Suppose that (1.1) holds. Then there exists a constant C > 0 such that

for any n , we have

max
1�k�n

k1/qψ((
k

∑
i=1

1/λi)−1) � Cn1/qω(1/n).

We shall show that ΛϕBV ⊂ Hω
q . Since ψ is a strictly increasing concave function

with ψ(0) = 0, we get ψ(at) � (1+a)ψ(t) for any a, t > 0. For any f ∈ ΛϕBV, by
(2.1) and (2.2) we have

ω( f ;1/n)q � 16n−1/q max
1�k�n

k1/qψ((
k

∑
i=1

1/λi)−1VΛϕ ( f ))

� 16(1+VΛϕ( f ))n−1/q max
1�k�n

k1/qψ((
k

∑
i=1

1/λi)−1)

� 16C(1+VΛϕ( f ))ω(1/n),

which implies that f ∈ Hω
q . Hence, we have ΛϕBV ⊂ Hω

q .
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Necessity. It suffices to prove that the embedding ΛϕBV ⊂ Hω
q does not hold if

lim
n→∞

1

n1/qω(1/n)
max

1�k�n
k1/qψ((

k

∑
i=1

1/λi)−1) = ∞. (3.1)

Suppose that (3.1) holds. Then there exist sequences nk and mk such that

nk � 2k+2, (3.2)

nk � mk � 1, (3.3)

1

ω( 1
nk

)

(mk

nk

)1/q
ψ((

mk

∑
i=1

1/λi)−1) � 24k, (3.4)

where

max
1� j�nk

j1/qψ((
j

∑
i=1

1/λi)−1) = m1/q
k ψ((

mk

∑
i=1

1/λi)−1).

We shall construct a 1-periodic function g such that g ∈ ΛϕBV and g �∈ Hω
q , which

contradicts the embedding ΛϕBV ⊂ Hω
q . We set

ak = ψ((
mk

∑
i=1

1/λi)−1)2−k, k = 1,2, . . . . (3.5)

Consider

gk(y) =
{ak, y ∈ [ 1

2k + 2 j−2
nk

, 1
2k + 2 j−1

nk
]; 1 � j � Nk,

0, otherwise,

where
sk = max

{
j ∈ N | 2 j � nk

2k +1
}
, (3.6)

and
Nk = min{mk,sk}. (3.7)

Hence, applying (3.6), the fact that 2(sk +1) > nk
2k +1, and (3.2), we have

2−k−1 <
2sk −1

nk
� 2−k, (3.8)

which means that the support of the function gk is in [2−k,2−k+1) . Hence, the functions
gk have disjoint support, and correspondingly,

VΛϕ (g) �
∞

∑
k=1

VΛϕ (gk). (3.9)

Since ϕ is convex and ϕ(0) = 0, we get that ϕ(tx) � tϕ(x) for t ∈ (0,1] and x > 0,
and hence,

ϕ(ak) � 2−kϕ(ψ((
mk

∑
i=1

1/λi)−1)) = 2−k(
mk

∑
i=1

1/λi)−1.
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It follows from (3.7) that

VΛϕ (gk) �
2Nk

∑
j=1

ϕ(ak)
λ j

� 2ϕ(ak)
Nk

∑
j=1

1
λ j

� 2ϕ(ak)
mk

∑
j=1

1
λ j

� 2−k+1,

which combining with (3.9), deduces that

VΛϕ (g) �
∞

∑
k=1

2−k+1 � 2.

This implies that f ∈ ΛϕBV.
Next we show that g �∈ Hω

q . We observe that |g(x + 1
nk

)− g(x)| = ak for x ∈
[ 1
2k ,

1
2k + 2Nk−1

nk
] . Then

ω(g;
1
nk

)q
q = sup

0<γ� 1
nk

∫ 1

0
|g(x+ γ)−g(x)|qdx

�
∫ 1

0

∣∣∣g(
x+

1
nk

)
−g(x)

∣∣∣q dx

�
∫ 1

2k + 2Nk−1
nk

1
2k

∣∣∣g(
x+

1
nk

)
−g(x)

∣∣∣q dx

=
2Nk −1

nk
aq

k. (3.10)

If Nk = sk , then by (3.8), (3.3), and (3.5) we have(2Nk −1
nk

)1/q
ak � 2−(k+1)/q2−kψ((

mk

∑
i=1

1/λi)−1),

and if Nk = mk , then by (3.5) we get(2Nk −1
nk

)1/q
ak � 2−k

(mk

nk

)1/q
ψ((

mk

∑
i=1

1/λi)−1).

In both cases, we have(2Nk −1
nk

)1/q
ak � 2−(k+1)/q2−k

(mk

nk

)1/q
ψ((

mk

∑
i=1

1/λi)−1). (3.11)

It follows from (3.10), (3.11), and (3.4) that

ω(g; 1
nk

)q

ω( 1
nk

)
� 2−(k+1)/q2−k

(mk

nk

)1/q
ψ((

mk

∑
i=1

1/λi)−1)(ω(
1
nk

))−1

� 2−(k+1)/q2−k24k � 2k → +∞, as k → ∞,

which shows that g �∈ Hω
q .

The proof of Theorem 1 is finished. �
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[4] M. HORMOZI, A. A. LEDARI AND F. PRUS-WIŚNIOWSKI, On p-Λ -bounded variation, Bull. Ira-
nian. Math. Soc., 37, 4 (2011), 35–49.

[5] YU. E. KUPRIKOV, On moduli of continuity of functions in Waterman classes, Moscow Univ. Math.
Bull., 52, 5 (1997), 46–49.

[6] ZHONGKAI LI AND HEPING WANG, Estimates of Lp modulus of continuity of functions of Λ -
bounded variation and applications in Fourier series, Applicable Analysis, 90, 3–4 (2011), 475–482.

[7] L. LEINDLER, A note on embedding of classes Hω , Anal. Math., 27, (2001), 71–76.
[8] M. LIND, On functions of bounded Λ -variation and integral smoothness, to appear in Forum Math..

Also see arXiv.org/math. CA/1212.5402v1 (2012).
[9] M. V. MEDVEDEVA, On embedding of the classes Hôz, Math. Notes, 64, (1998), 616–621.
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