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THE STECHKIN INEQUALITY FOR FOURIER

MULTIPLIERS ON VARIABLE LEBESGUE SPACES

ALEXEI YU. KARLOVICH

(Communicated by Z. Ditzian)

Abstract. We prove the Stechkin inequality for Fourier multipliers on variable Lebesgue spaces
under some natural assumptions on variable exponents.

1. Introduction

Let p : R → [1,∞] be a measurable a.e. finite function. By Lp(·)(R) we denote the
set of all complex-valued functions f on R such that

Ip(·)( f/λ ) :=
∫

R

| f (x)/λ |p(x)dx < ∞

for some λ > 0. This set becomes a Banach function space when equipped with the
norm

‖ f‖p(·) := inf
{

λ > 0 : Ip(·)( f/λ ) � 1
}
.

It is easy to see that if p is constant, then Lp(·)(R) is nothing but the standard Lebesgue
space Lp(R) . The space Lp(·)(R) is referred to as a variable Lebesgue space.

We will always suppose that

1 < p− := ess inf
x∈R

p(x), esssup
x∈R

p(x) =: p+ < ∞. (1)

Under these conditions, the space Lp(·)(R) is separable and reflexive, and the set L∞
0 (R)

of all bounded compactly supported functions is dense Lp(·)(R) (see, e.g., [3, Chap. 2]
or [5, Chap. 3]). We will denote by L (Lp(·)) the Banach algebra of all bounded linear
operators on Lp(·)(R) .

Let F : L2(R) → L2(R) denote the Fourier transform,

(F f )(x) :=
∫

R

f (t)eitx dt, x ∈ R,
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and let F−1 : L2(R) → L2(R) be the inverse of F ,

(F−1g)(t) =
1
2π

∫
R

g(x)e−itx dx, t ∈ R.

A function a ∈ L∞(R) is called a Fourier multiplier on Lp(·)(R) if the map

f �→ F−1aF f

maps L2(R)∩Lp(·)(R) into itself and extends to a bounded operator on Lp(·)(R) (notice
that L2(R)∩ Lp(·)(R) is dense in Lp(·)(R)). The latter operator is then denoted by
W 0(a) .

Let a be a complex-valued function of bounded total variation V (a) on R where

V (a) := sup

{
n

∑
k=1

|a(xk)−a(xk−1)| : −∞ < x0 < x1 < .. . < xn < +∞,n ∈ N

}
.

Hence at every point x ∈ Ṙ := R∪{∞} the one-sided limits

a(x±0) = lim
t→x±

a(t)

exist, where a(±∞) = a(∞∓0) , and the set of discontinuities of a is at most countable
(see, e.g., [17, Chap. VIII, Sections 3 and 9]).

For f ∈ L1
loc(R) , let S be the Cauchy singular integral operator given by

(S f )(x) :=
1
π i

∫
R

f (t)
t − x

, x ∈ R,

where the integral is understood in the principal value sense. By the Marcel Riesz
theorem, it is bounded on every standard Lebesgue space Lp(R) , 1 < p < ∞ , moreover,
its norm is known (see, e.g., [10, Chap. 13, Theorem 1.3]):

‖S‖L (Lp) = cot

(
π

2max(p,q)

)
, where q :=

p
p−1

.

The following theorem provides a simple sufficient condition for the boundedness
of the operator W 0(a) on standard Lebesgue spaces.

THEOREM 1. (Stechkin, 1950) Let 1 < p < ∞ . If a has a finite total variation
V (a) , then the convolution operator W 0(a) is bounded on the standard Lebesgue space
Lp(R) and

‖W 0(a)‖L (Lp) � ‖S‖L (Lp)(‖a‖∞ +V(a)). (2)

The discrete version of this theorem was obtained by Stechkin [18]. Its proof is
also contained in [6, Theorem 20.7]. Another proof was suggested by Matsaev and
published in [8, Chap. XIV, Theorem 1.2] (see also [9, Chap. 5, Theorem 2.2] and
[2, Theorem 1.2]). The proof of Theorem 1, in the form stated here, is contained in



THE STECHKIN INEQUALITY 1475

Duduchava’s book [7, Theorem 2.11]. For its generalization to the case of standard
Lebesgue spaces with Muckenhoupt weights, see [1, Theorem 17.1].

Inequality (2) is usually called the Stechkin inequality. The aim of this note is to
extend Theorem 1 to the setting of variable Lebesgue spaces. To formulate our result,
we will need the class of variable exponents BM(R) related to the Hardy-Littlewood
maximal operator.

Given f ∈ L1
loc(R) , the Hardy-Littlewood maximal operator is defined by

(M f )(x) := sup
J	x

1
|J|
∫

J
| f (t)|dt, x ∈ R,

where the supremum is taken over all finite intervals J containing x . Here |J| denotes
the length of the interval J ⊂ R .

By BM(R) denote the set of all measurable functions p : R → [1,∞] such that (1)
holds and the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue
space Lp(·)(R) . To provide a simple sufficient conditions guaranteeing that p∈BM(R) ,
we need the following definition. Given a function r : R→R , one says that r is locally
log-Hölder continuous if there exists a constant C0 > 0 such that

|r(x)− r(y)| � C0

− log |x− y|

for all x,y ∈ R such that |x− y|< 1/2. One says that r : R → R is log-Hölder contin-
uous at infinity if there exist constants C∞ and r∞ such that for all x ∈ R ,

|r(x)− r∞| � C∞

log(e+ |x|) .

The class of functions r : R →R that are simultaneously locally log-Hölder continuous
and log-Hölder continuous at infinity is denoted by LH(R) . From [3, Proposition 2.3
and Theorem 3.16] we obtain that if p ∈ LH(R) satisfies (1), then p ∈ BM(R) . Al-
though the latter result provides a nice sufficient condition for the boundedness of the
Hardy-Littlewood maximal operator on the variable Lebesgue space Lp(·)(R) , it is not
necessary. Notice that all functions in LH(R) are continuous and have limits at infinity.
Lerner [16] (see also [3, Example 4.68]) proved that if p0 > 1 and μ ∈R is sufficiently
close to zero, then the following variable exponent

p(x) = p0 + μ sin(log log(1+max{|x|,1/|x|})), x �= 0,

belongs to BM(R) . It is clear that the function p does not have limits at zero or
infinity. We refer to the recent monographs [3, 5] for further discussions concerning the
fascinating and still mysterious class BM(R) .

Since the Cauchy singular integral operator S is a Calderón-Zygmund operator,
from [3, Theorem 5.39] or [5, Corollary 6.3.10] we obtain that if p ∈ BM(R) , then S
is bounded on Lp(·)(R) . Moreover, if S is bounded on Lp(·)(R) , then (1) is fulfilled, as
it is shown in [3, Theorem 5.42].
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THEOREM 2. (Main result) Let p ∈ BM(R) . If a has a finite total variation
V (a) , then the convolution operator W 0(a) is bounded on the variable Lebesgue space
Lp(·)(R) and

‖W 0(a)‖L (Lp(·)) � ‖S‖L (Lp(·))(‖a‖∞ +V (a)). (3)

Notice that if we do not require that the constant on the right hand side of (3) is
equal to the norm of the operator S on Lp(·)(R) , then a version of the above result (with
a different constant) can be obtained from [11, Corollary 5.6]. However, the proofs in
[11] involve deep results related to the celebrated Carleson-Hunt theorem, which can
be avoided in the much simpler proof presented below.

We also refer to [4, Section 2.5] and [14, Theorems 5.1–5.3], [15, Theorems 4.5–
4.11] for other results on Fourier multipliers on variable Lebesgue spaces.

The proof of Theorem 2 is based on three main ingredients collected in Section 2:
the approximation of an arbitrary function of finite total variation a by a sequence
{an}∞

n=1 of piecewise constant functions in the norm of L∞(R) ; the interpolation the-
orem of Riesz-Thorin type for variable Lebesgue spaces; and a remarkable fact due to
Diening saying that each exponent p ∈ BM(R) can be written in the form

1
p(x)

=
θ
p0

+
1−θ
p1(x)

, x ∈ R,

for some constants p0 ∈ (1,∞) , θ ∈ (0,1) , and another variable exponent p1 ∈BM(R) .
Theorem 2 will be proved in Section 3 following the main lines of the proof of

[1, Theorem 17.1]. For piecewise constant functions an , the proof of inequality (3) is
straightforward. The proof in the general case is developed by passing to the limit. The
nontrivial step consists in proving that {W0(an)}∞

n=1 is a Cauchy sequence in L (Lp(·)) .
This is done by applying the interpolation theorem two times: first with Lp(·)(R) as
the interpolation space between Lp0(R) and Lp1(·)(R) and then with Lp0(R) as the
interpolation space between L2(R) and some standard Lebesgue space Lq(R) . This
trick will reduce the problem to the proof of that {W 0(an)}∞

n=1 is a Cauchy sequence
in L (L2) , but the latter is granted because the norm of W 0(an)−W 0(am) on L2(R)
coincides with the norm of an−am in L∞(R) .

2. Preliminaries

2.1. Approximation by piecewise constant functions

LEMMA 3. ([7, Lemma 2.10]) If a has a finite total variation V (a) , then there
exists a sequence of piecewise constant functions an of finite total variation V (an)
such that

lim
n→∞

‖an−a‖∞ = 0, sup
n∈N

V (an) � V (a). (4)
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2.2. Interpolation

We will need the following interpolation theorem for variable Lebesgue spaces.

THEOREM 4. ([5, Corollary 7.1.4]) Let p j : R → [1,∞] , j = 0,1 , be a.e. finite
measurable functions, and let pθ : R → [1,∞] be defined for θ ∈ [0,1] by

1
pθ (x)

=
θ

p0(x)
+

1−θ
p1(x)

, x ∈ R.

Suppose A is a linear operator defined on Lp0(·)(R)+Lp1(·)(R) . If A ∈ L (Lpj(·)(R))
for j = 0,1 , then A ∈ L (Lpθ (·)(R)) for all θ ∈ [0,1] and

‖A‖
L (Lpθ (·)) � 4‖A‖θ

L (Lp0(·))‖A‖
1−θ
L (Lp1(·))

. (5)

If p j , j = 1,2, are constant, then the above result is the classical Riesz-Thorin
interpolation theorem, and inequality (5) holds with the interpolation constant 1 in the
place of 4.

2.3. A property of exponents in BM(R)

The following property of the class BM(R) was communicated to the authors of
[12] by Diening.

THEOREM 5. ([12, Theorem 4.1]) If p ∈ BM(R) , then there exist two constants
p0 ∈ (1,∞) , θ ∈ (0,1) , and a variable exponent p1 ∈ BM(R) such that

1
p(x)

=
θ
p0

+
1−θ
p1(x)

, x ∈ R. (6)

3. Proof of the main result

3.1. Two lemmas on the operator S

As usual, we denote by I the identity operator. From [13, Theorem 3.8(a)] and [5,
Theorem 5.7.2] we extract the following.

LEMMA 6. If p ∈ BM(R) , then S2 = I on Lp(·)(R) .

The next statement explains why convolution operators and the operator S are
closely related. Let χJ denote the characteristic function of an interval J ⊂ R . For
λ ,x ∈ R , put eλ (x) := eiλ x .

LEMMA 7. Let p ∈ BM(R) . If λ ∈ R , then

W 0(χ(λ ,∞)) = (I− e−λSeλ I)/2 (7)

on Lp(·)(R) and
‖W0(χ(λ ,∞))‖L (Lp(·)) � ‖S‖L (Lp(·)). (8)
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Proof. Let a(x) = χ(λ ,∞)(x) = (1 + sgn(x− λ ))/2 for x ∈ R . By [1, Exam-
ple 1.18], for every f ∈ L2(R) ,

W 0(a) f = ( f − e−λSeλ f )/2.

Since L2(R)∩Lp(·)(R) is dense in Lp(·)(R) and the operators S and e±λ I of multipli-
cation by e±λ are bounded on Lp(·)(R) , from the above identity we get (7). Obviously,
‖e±λ I‖L (Lp(·)) = 1. From Lemma 6 we deduce that 1 � ‖S‖L (Lp(·)) . Thus, from (7)
we obtain ‖W (a)‖L (Lp(·)) � (1+‖S‖L (Lp(·)))/2 � ‖S‖L (Lp(·)) , that is, (8) holds. �

3.2. The Stechkin inequality for piecewise constant functions

LEMMA 8. Let p ∈BM(R) . If a is a piecewise constant function, then (3) holds.

Proof. Let a be the piecewise constant function. Then there exist a partition

−∞ = λ0 < λ1 < .. . < λn < λn+1 = +∞

and constants α0, . . . ,αn ∈ C such that

a =
n

∑
k=0

αkχ(λk,λk+1).

Since χ(λ0,λ1) = 1− χ(λ1,∞) , χ(λn,λn+1) = χ(λn,∞) , and

χ(λk−1,λk) = χ(λk−1,∞) − χ(λk,∞), k ∈ {1, . . . ,n−1},
we can rewrite a as follows:

a = α0 +
n

∑
k=1

(αk −αk−1)χ(λk,∞).

By Lemma 7,

‖W0(a)‖L (Lp(·)) � |α0|+
n

∑
k=1

|αk −αk−1|‖S‖L (Lp(·))

�
(
|α0|+

n

∑
k=1

|αk −αk−1|
)
‖S‖L (Lp(·))

� (‖a‖∞ +V(a))‖S‖L (Lp(·))

because 1 � ‖S‖L (Lp(·)) in view of Lemma 6, |α0| � ‖a‖∞ , and

n

∑
k=1

|αk −αk−1| � V (a).

Thus, (3) holds. �
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3.3. Proof of Theorem 2

Let a ∈ L∞(R) be an arbitrary function such that V (a) < ∞ . Then, by Lemma 3,
there exists a sequence {an}∞

n=1 of piecewise constant functions such that (4) is ful-
filled. Let us show that {W 0(an)}∞

n=1 is a Cauchy sequence in L (Lp(·)) .
From Theorem 5 it follows that there exist two constants p0 ∈ (1,∞) , θ ∈ (0,1) ,

and a variable exponent p1 ∈ BM(R) such that (6) holds. If 2 � p0 < ∞ , then take
q ∈ (p0,∞) . If 1 < p0 < 2, then take q ∈ (1, p0) . In both cases choose η such that

1
p0

=
η
2

+
1−η

q
. (9)

Then, as it is easily seen, in both cases

η =
2p0−2q
2p0− p0q

∈ (0,1].

Since p1,q ∈ BM(R) , by Lemma 8,

‖W 0(an−am)‖L (Lp1(·)) � ‖S‖L (Lp1(·))
(‖an−am‖∞ +V(an−am)

)
, (10)

‖W 0(an−am)‖L (Lq) � ‖S‖L (Lq)
(‖an−am‖∞ +V(an −am)

)
. (11)

On the other hand, it is well known that

‖W 0(an−am)‖L (L2) = ‖an−am‖∞. (12)

Thus, the operator W 0(an − am) is bounded on the spaces Lp1(·)(R) , Lq(R) , and
L2(R) . By the Riesz-Thorin interpolation theorem, taking into account (9) and (12),
we obtain

‖W0(an−am)‖L (Lp0 ) � ‖an−am‖η
∞‖W 0(an−am)‖1−η

L (Lq). (13)

On the other hand, from equality (6) and Theorem 4 it follows that

‖W0(an−am)‖L (Lp(·)) � 4‖W0(an−am)‖θ
L (Lp0 )‖W0(an−am)‖1−θ

L (Lp1(·))
. (14)

Combining (13)–(14) with (10)–(11), we arrive at

‖W0(an−am)‖L (Lp(·)) �4
(
‖an−am‖η

∞‖W 0(an−am)‖1−η
L (Lq)

)θ

×‖W0(an−am)‖1−θ
L (Lp1(·))

�C‖an−am‖ϕ
∞
(‖an−am‖∞ +V(an −am)

)ψ
(15)

with

C := 4‖S‖θ(1−η)
L (Lq) ‖S‖1−θ

L (Lp1(·))
, ϕ := θη ∈ (0,1), ψ := θ (1−η)+ (1−θ )∈ (0,1).
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From (4) it follows that

V (an−am) � V (an)+V(am) � 2V (a) (16)

and that {an}∞
n=1 is a Cauchy sequence in L∞(R) . From (15)–(16) we obtain

‖W 0(an)−W0(am)‖L (Lp(·)) � C‖an−am‖ϕ
∞
(‖an−am‖∞ +2V(a)

)ψ
,

whence {W 0(an)}∞
n=1 is a Cauchy sequence in L (Lp(·)) .

Thus, the sequence {W 0(an)}∞
n=1 has a limit A in L (Lp(·)) . Since

‖W 0(an)−W0(a)‖L (L2) = ‖an−a‖∞ = o(1) as n → ∞,

we see that W 0(a) f = A f for all f ∈ L2(R)∩Lp(·)(R) . The set L2(R)∩Lp(·)(R) is
dense in Lp(·)(R) , whence W 0(a) = A on the space Lp(·)(R) and

lim
n→∞

‖W 0(a)−W0(an)‖L (Lp(·)) = 0. (17)

From (4) and Lemma 8 it follows that

lim
n→∞

‖an‖∞ = ‖a‖∞. (18)

and

‖W0(an)‖L (Lp(·)) � ‖S‖L (Lp(·))(‖an‖∞ +V(an)) � ‖S‖L (Lp(·))(‖an‖∞ +V(a)),

whence

‖W0(a)‖L (Lp(·)) � ‖W 0(an)‖L (Lp(·)) +‖W0(a)−W0(an)‖L (Lp(·))

� ‖S‖L (Lp(·))(‖an‖∞ +V(a))+‖W0(a)−W0(an)‖L (Lp(·)).

Passing to the limit in the above inequality as n→ ∞ and taking into account (17)–(18),
we arrive at (3). �
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[11] A. YU. KARLOVICH, Maximally modulated singular integral operators and their applications to
pseudodifferential operators on Banach function spaces, Contemporary Mathematics 645, in “Func-
tion Spaces in Analysis”, 2015, 165–178.

[12] A. YU. KARLOVICH AND I. M. SPITKOVSKY, Pseudodifferential operators on variable Lebesgue
spaces, Operator Theory: Advances and Applications 228, in: “Operator Theory, Pseudo-Differential
Equations, and Mathematical Physics. The Vladimir Rabinovich Anniversary Volume”, 2013, 173–
183.

[13] A. YU. KARLOVICH A. YU. AND I. M. SPITKOVSKY, The Cauchy singular integral operator on
weighted variable Lebesgue spaces, Operator Theory: Advances and Applications 236, in: “Concrete
Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation”, 2014, 275–291.

[14] V. M. KOKILASHVILI AND S. G. SAMKO, Singular operators and Fourier multipliers in weighted
Lebesgue spaces with variable index, Vestn. St. Petersbg. Univ., Math. 41 (2), 2008, 134–144.

[15] V. M. KOKILASHVILI AND S. G. SAMKO, Operators of harmonic analysis in weighted spaces with
non-standard growth, J. Math. Anal. Appl. 352 (1), 2009, 15–34.

[16] A. K. LERNER, Some remarks on the Hardy-Littlewood maximal function on variable Lp spaces,
Math. Z. 251 (3), 2005, 509–521.

[17] I. P. NATANSON, Theory of Functions of a Real Variable, Frederick Ungar Publishing Co., New York,
1955.

[18] S. B. STECHKIN, On bilinear forms, Dokl. Akad. Nauk SSSR 71 (2), 1950, 237–240 (in Russian).

(Received November 6, 2014) Alexei Yu. Karlovich
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