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Abstract. Decay rates for the sequence of eigenvalues of positive and compact integral operators
have been largely investigated for a long time in the literature. In this paper, the focus will
be on positive integral operators acting on square integrable functions on the unit sphere and
generated by a kernel satisfying a Hölder type assumption defined by average operators. In
the approach to be presented here, the decay rate will be reached from convenient estimations
on the eigenvalues of the operator themselves, with the help of specific properties of a generic
approximation operator defined through the so-called generalized Jackson kernels. The decay
rate has the same structure of those known to hold in the cases in which the Hölder condition is
the classical one. Therefore, within the spherical setting, the abstract approach to be introduced
here extends some classical results on the topic.

1. Introduction

The present paper provides a concise approach to obtain decay rates for the eigen-
value sequence of positive integral operators acting on square integrable functions on
the sphere, in the case when the generating kernel of the operator satisfies an abstract
Hölder condition. Recent results on this same topic can be found in [1, 3, 8] and other
references mentioned there. However, the scope here is different, since the differentia-
bility of the generating kernel of the operators will not be an explicit requirement. This
section begins with a description of some known results, mainly those which pertain to
the scope of this paper.

A brief feedback about this subject cannot omit results obtained in the late 80’s
by several authors. We start with a function K in L2([0,1]× [0,1]) and consider the
compact operator LK : L2([0,1]) → L2([0,1]) generated by it

LK( f )(x) =
∫ 1

0
K(x,y) f (y)dy, f ∈ L2([0,1]), x ∈ [0,1].
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In this case, and also in others in which the interval is replaced with a more general
space, we simply call K the kernel and LK the operator. The introduction of the sym-
metry assumption

K(x,y) = K(y,x), (x,y) ∈ [0,1]× [0,1],

makes the operator LK self-adjoint and, therefore, its eigenvalue sequence {λn} can
be ordered in a decreasing manner

|λ1| � |λ2| � |λ3| � · · · , .
taking into account multiplicities. In particular, {λn} approaches zero as n→∞ . By the
way, the equality above and some others in the paper need to be interpreted as equalities
a. e..

A classical result of Weyl states that

λn = o(n−k−1/2), (n → ∞),

whenever K ∈ Ck([0,1]× [0,1]) . After the introduction of a positivity assumption,
Reade ([22]) established the faster decay rate

λn = o(n−k−1), (n → ∞).

The positivity mentioned above refers to the property

∫ 1

0

∫ 1

0
K(x,y) f (x) f (y)dxdy � 0, f ∈ L2([0,1]),

which, in the most important cases, corresponds to the usual positive definiteness of the
kernel K .

Later on, still keeping the positiveness in the setting, the same author deduced the
decay rate ([23])

λn = O(n−1−r), (n → ∞),

under the following Hölder assumption on the generating kernel K :

|K(x,y)−K(z,w)| � C(|x− z|r + |y−w|r), x,y,z,w ∈ [0,1], r ∈ (0,1).

A few years later, an outstanding generalization of the results above appeared in
[16] with the replacement of [0,1] with a compact C∞ manifold. If the manifold is
the usual m-dimensional unit sphere Sm endowed with its surface measure σm , the
compact operator LK now acts on L2(Sm) := L2(Sm,σm) , that is,

LK( f )(x) =
∫

Sm
K(x,y) f (y)dσm(y), f ∈ L2(Sm), x ∈ Sm,

in which K ∈ L2(Sm × Sm) := L2(Sm × Sm,σm ×σm) . If K is continuous and satisfies
the standard Hölder condition

|K(x,w)−K(y,w)| � B(w)dm(x,y)β , x,y,w ∈ Sm,
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for some B ∈ L1(Sm) and β ∈ [0,1) , the main result in [16] produced the decay

λn = O(n−1−β/m), (n → ∞),

for the eigenvalue sequence {λn} of LK . As for integral operators generated by kernels
on metric spaces satisfying a similar condition, it is also logical and fair to mention the
important references [4, 12, 15] where the role of the dimension is replaced by metric
entropy.

The papers mentioned above included examples of integral operators for which the
decay of the eigenvalue sequence matches exactly the decay obtained. In other words,
in all cases above, the decay rates are best possible within each setting.

The setting in the present paper will be the spherical one and the focus will be on
integral operators generated by (not necessarily continuous) kernels satisfying a Hölder
type assumption defined by average operators. Below we stress a few points the reader
should consider before and during the reading of this paper. They provide a reason why
we have written the paper in the format it is:

(i) The spherical setting allows different approaches to the problem and that per-
mits variations in the assumptions;

(ii) The approach adopted here is comparable to others found in the literature,
however, it has its own characteristics;

(iii) The approach permits the consideration of slightly weaker general assump-
tions still reaching the same decay rates found in the literature;

(iv) All the results to be proved can be considered in other settings, as long as they
have a background structure similar to that available in the spherical setting (two-point
homogeneous spaces for example);

(v) The spherical setting has practical relevancy in other areas, for instance, in
Geo-mathematics and meteorological sciences in general ([10]).

An outline of the paper is as follows. In Section 2, we introduce the abstract setting
along with an abstract Hölder condition defined by the spherical convolution operator
on which the main results of the paper will be based upon. We also include two moti-
vational examples that may justify why we consider a general and abstract setting. In
Section 3, we define the so called approximation operators, here manufactured with the
help of the generalized Jackson kernels. At the end of the section, we show the approx-
imation operator has finite rank when the setting is either one in the two motivational
examples. Section 4 begins with the notion of positive integral operator that pertains to
this work. It is followed by a technical inequality for integrals involving the general-
ized Jackson kernels and inequalities involved in the estimation of the approximations
numbers of the square root of the positive integral operator. An estimation for the ap-
proximation numbers of the integral operator itself, under the assumption that the rank
of the attached approximation operator is finite, comes after that. Finally, the section is
closed with the main result in the paper. Section 5 is reserved for relevant remarks and
the pointing of some open questions.
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2. A Hölder condition based on spherical convolutions

Let us begin with the basic structure to be used in the paper. In addition to the
spaces L2(Sm) , we will stick to the usual spaces Lp(Sm) , p = 1,∞ . The norm in all of
them will be written ‖ · ‖p , p = 1,2,∞ . Finally, we want to emphasize from the outset
that, throughout the whole paper, the dimension m will be fixed.

We will consider a Hölder assumption based upon a fixed family of nonnegative
functions {Z m

t : t ∈ (0,π)} belonging to L1([−1,1],dωm) , in which

dωm(u) = (1−u2)(m−2)/2du, u ∈ [−1,1].

If τm is the surface measure of Sm , then the norm in this space is

‖φ‖1,m :=
τm−1

τm

∫ 1

−1
|φ(u)|dωm(u), φ ∈ L1([−1,1],dωm),

and the formula
Zm

t (x,y) := Z m
t (x · y), x,y ∈ Sm,

in which · is the usual inner product of Rm+1 , defines an associated family {Zm
t : t ∈

(0,π)} of isotropic kernels on Sm . As usual, isotropy of a kernel refers to its invariance
with respect to orthogonal transformations of the space where Sm sits. The setting to
be undertaken here demands two assumptions:

A1 – The family {Z m
t : t ∈ (0,π)} is uniformly bounded in L1([−1,1],dωm) .

A2 – If Vm(t) is the surface area of the support of Zm
t (x, ·) in Sm , then there exists

a positive integer α(m) and positive constants cm and Cm so that

Vm(t) � Cmtα(m), t ∈ (0,π),

and
cmtα(m) � Vm(t), t ∈ (0,π/2).

The surface area of the support of Zm
t (x, ·) in Sm mentioned in A2 does not depend

upon x ∈ Sm . Indeed, fix x1,x2 ∈ Sm and for each i ∈ {1,2} , write Sm
i (t) to denote the

support of Zm
t (xi, ·) , and put

Vm(t,xi) :=
∫

Sm
i (t)

dσm(z).

Since each Zm
t is not necessarily continuous, we have that

Sm
i (t) = Sm −∪{A : A is open in Sm and σm({x ∈ A : Zm

t (xi,x) �= 0}) = 0}, i = 1,2.

Using the isotropy of Zm
t and some straightforward computations, it is easily seen that

O(Sm
1 (t)) = Sm

2 (t) , whenever O is an orthogonal transformation of Rm+1 satisfying
O(x1) = x2 . It is now clear that

Vm(t,x2) =
∫

O(Sm
1 (t))

dσm(z) =
∫

Sm
1 (t)

dσm(z) = Vm(t,x1).
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Under the setting introduced above, we define

Tt( f ) := Zm
t ∗ f , f ∈ Lp(Sm), t ∈ (0,π),

in which

(Zm
t ∗ f )(x) =

1
τm

∫
Sm

Z m
t (x · y) f (y)dσm(y), x ∈ Sm, f ∈ Lp(Sm),

is the spherical convolution of Zm
t and f in Sm . Every Tt is a well-defined bounded

linear operator from Lp(Sm) into itself with ‖Tt‖ � ‖Z m
t ‖1,m . If β ∈ (0,2] and B is a

nonnegative function from L∞(Sm) , then a kernel K on Sm is (Tt ,B,β )-Hölder if

|Tt(K(y, ·))(x)−K(y,x)| � B(y)tβ , x,y ∈ Sm, t ∈ (0,π).

Below, we discuss two particular cases which served as motivation for the abstract
setting introduced above and also for the consideration of the Hölder condition just
defined.

EXAMPLE 1. For t ∈ [0,π ] , let Cm(t) be the total volume of the cap

Cx
t = {y ∈ Sm : x · y � cost}

of Sm defined by t and “the pole” x . Clearly,

Cm(t) = τm−1

∫ t

0
(sinh)m−1dh, t ∈ (0,π),

a quantity that does not depend upon x . The formula

Z m
n,t(x · y) =

{
τmCm(t)−1(x · y− cost)n−1(1− cost)−(n−1), if cost � x · y � 1

0, otherwise

defines families {Z m
n,t : t ∈ (0,π)} of locally supported kernels on Sm . A construction

of such kernels by iteration with spherical convolutions can be found in [17, 25]. Since

‖Z m
n,t‖1,m =

τm−1

τm

∫ 1

−1
Z m

n,t(u)dωm(u) � τm−1

Cm(t)

∫ 1

cost
(1−u2)(m−2)/2du = 1,

each family {Z m
n,t : t ∈ (0,π)} is uniformly bounded in L1([−1,1],dωm) . On the other

hand, it is easily seen that the surface area Vm(t) of the support of Zm
n,t(x, ·) in Sm is

precisely Cm(t) (there is no dependence on n ) while direct computation yields

τm−1

m

(
2
π

)m−1

tm � Vm(t) � τm−1t
m, t ∈ (0,π).

Thus, both assumptions A1 and A2 hold in this case. The particular case n = 1 recovers
the usual average operators Mt on Sm ([2]), that is,

Mt( f )(x) = (Z m
1,t ∗ f )(x) =

1
Cm(t)

∫
Cx

t

f (w)dr(w), x ∈ Sm, t ∈ (0,π),
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and the abstract (Tt ,B,β )-Hölder condition turns itself into the averaged Hölder con-
dition

|Mt(K(y, ·))(x)−K(y,x)| � B(y)tβ , x,y ∈ Sm, t ∈ (0,π).

EXAMPLE 2. Here we will consider the Stekelov-type mean operator introduced
and discussed in [7]. If Rm(t) := τm−1(sin t)m−1 , t ∈ (0,π) , then it has the form

Et( f )(x) =
1

Dm(t)

∫ t

0

Cm(s)
Rm(s)

Ms( f )(x)ds, x ∈ Sm, t ∈ (0,π),

the normalizing constant Dm(t) being chosen so that Et(1) = 1. In order to see that the
operators Et fit into the convolution structure we are using, it suffices to consider the
family of locally supported kernels

Wm
t (x,y) := W m

t (x · y) :=

⎧⎨
⎩

∫ t

0

1
Rm(s)

Z m
1,s(x · y)ds, if cost � x · y � 1

0, otherwise,

where Z m
1,s are the kernels described in the previous example. Clearly,

‖W m
t ‖1,m =

τm−1

τm

∫ 1

−1
W m

t (u)dωm(u)

� τm−1

τmDm(t)

∫ 1

cost

[∫ t

0

Cm(s)
Rm(s)

|Z m
1,s(u)|ds

]
(1−u2)(m−2)/2du

=
1

Dm(t)

∫ t

0

Cm(s)
Rm(s)

[
τm−1

τm

∫ 1

cost
|Z m

1,s(u)(1−u2)(m−2)/2du

]
ds

=
1

Dm(t)

∫ t

0

Cm(s)
Rm(s)

ds.

The normalization we have chosen for Dm(t) provides the uniform boundedness for the
family {W m

t : t ∈ (0,π)} in L1([−1,1],dωm) . The support of Wm
t (x, ·) is Cm(t) and

A2 holds as in the first example. Since the kernel W m
t is isotropic, we have

Et( f )(x) = (Wm
t ∗ f )(x), f ∈ L2(Sm), t ∈ (0,π).

In this case, the abstract (Tt ,B,β )-Hölder condition turns itself into the Stekelov-mean
Hölder condition

|Et(K(y, ·))(x)−K(y,x)| � B(y)tβ , x,y ∈ Sm, t ∈ (0,π).

Before closing the section, let us return to the standard Hölder condition intro-
duced in Section 1, now considering B ∈ L∞(Sm) . It is straightforward to verify that a
kernel K satisfying the usual Hölder condition also satisfies an averaged Hölder con-
dition (with the same index β but not necessarily the same B). Likewise, a kernel
satisfying an averaged Hölder condition also satisfies an Stekelov-mean Hölder condi-
tion (with the same index β but not necessarily the same B). Thus, we have a chain
of conditions from the stronger usual Hölder condition to the weaker Stekelov-mean
Hölder condition.
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3. The approximating operators

In this section, we introduce the approximation operators we intend to use in some
critical arguments in the paper where we need to estimate the approximation numbers
of our operators. They will depend on the setting introduced in Section 2 and on the
generalized Jackson kernels. The use of these kernels were influenced by the paper [6]
wherein standard Jackson kernels were used to obtain decay rates for the sequence of
eigenvalues of the integral operator on L2([0,1]) in the case K is differentiable in [0,1]2

up to a certain order. On the other hand, it is well known that the generalized Jackson
kernels imply optimal results in many problems in analysis and approximation theory.

We will assume that the setting at the beginning of Section 2 has been fixed here.
For positive integers l and μ � 2, tied to each other via the formula ν = l(μ −1) , the
generalized Jackson kernel is given by

Jν,k(t) :=
1

cν,k

[
sin(μt/2)
sin(t/2)

]2l

, t ∈ (0,π), k ∈ Z+,

with the normalization constant cν,k computed through the formula

cν,k =
∫ π

0

[
sin(μt/2)
sin(t/2)

]2l

Vm(t)(sin t)k dt.

Here, the constant Vm is that one introduced in A2. Clearly, the constants cν,k depend
upon m too, but that will be not enforced in the notation adopted. On the other hand, it
is easily seen that the normalization corresponds to

∫ π

0
Jν,k(t)Vm(t)(sin t)k dt = 1.

The (integral) approximating operators themselves can now be defined through the
family {Tt : t ∈ (0,π)} of convolution operators.

PROPOSITION 1. For each ν and k , the formula

Φν,k( f )(x) =
∫ π

0
Jν,k(t)Tt( f )(x)Vm(t)(sin t)kdt, f ∈ L2(Sm), x ∈ Sm,

defines a bounded linear operator Φν,k from L2(Sm) into itself.

Proof. Minkowski’s inequality for integrals ([9, p. 194]) implies that

‖Φν,k(g)‖2 �
∫ π

0
Jν,k(t)‖Tt(g)‖2Vm(t)(sin t)k dt, g ∈ L2(Sm).

Since Tt is a convolution operator, it follows that

‖Φν,k(g)‖2 � ‖g‖2

∫ π

0
‖Z m

t ‖1,mJν,k(t)Vm(t)(sin t)k dt � M‖g‖2, g ∈ L2(Sm),
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in which M is a uniform bound for the family {Z m
t : t ∈ (0,π)} . �

In many cases, the formula

an(LK) = min{‖LK −U‖ : ρ(U) � n−1},

in which ρ(U) is the rank of U , is a useful tool in either the exact computation or
the estimation of the n -th approximation number an(LK) of the operator of LK . As
a matter of fact, an(LK) coincides with the n -th eigenvalue of the operator in those
situations. So, if ρ(Φν,k) < ∞ , it is clear that the composition U = Φν,k ◦LK is eligible
to be used in the estimation of some of approximation numbers. Since Jν,k is an even
trigonometric polynomial of degree ν ([18]), it is reasonable to expect that ρ(Φν,k) <
∞ for some special choices of Tt . The results that close this section will ratify that in
the examples presented in the second half of Section 2.

We will write H m
k to denote the space of all spherical harmonics of degree k in

m+1 variables and will denote its dimension by N(m,k) . It is worthwhile to mention
that ([5, p. 3])

N(m,k) 	 km−1, (n → ∞).

The orthogonal decomposition L2(Sm)=⊕∞
k=0H

m
k is well-known while the orthogonal

projection of L2(Sm) over H m
k is given by the formula

Yk(g)(x) =
N(m,k)

τmP(m−1)/2
k (1)

∫
Sm

P(m−1)/2
k (x · y)g(y)dσm(y), g ∈ L2(Sm), x ∈ Sm,

in which P(m−1)/2
k is the usual Gegenbauer polynomial of degree k associated to the

dimension m . The additional formula

Yk(Mt(g)) =
τm−1

Cm(t)P(m−1)/2
k (1)

(∫ t

0
P(m−1)/2

k (cosh)(sinh)m−1dh

)
Yk(g), g∈ L2(Sm),

for the projections of the elements in the range of Mt was derived in [2]. A nice ref-
erence for the results on the analysis on the sphere mentioned above and others to be
mentioned ahead is [5].

The propositions below provide estimates for the rank of the operator in Proposi-
tion 1, in the cases in which Tt is either the average operator Mt or the Stekelov-type
mean operator Et .

PROPOSITION 2. The operator

Φν,1( f )(x) =
∫ π

0
Jν,1(t)Mt( f )(x)Cm(t)sin t dt, f ∈ L2(Sm), x ∈ Sm,

has rank at most N(m+1,ν +1) .

Proof. For f ∈ L2(Sm) fixed, we will show that Φν,1( f ) is a spherical polynomial
of degree at most ν +1. That will imply the estimate announced in the statement of the
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proposition due to two facts: the space of all spherical polynomials of degree at most
ν +1 is precisely ⊕ν+1

k=0 H m
k and its dimension is ∑ν+1

k=0 N(m,k) = N(m+1,ν +1) . The
proof will be complete as long as we show that Yk(Φν,1( f )) = 0, k = ν +2,ν +3, . . . .
Direct computation reveals that

Yk(Φν,1( f ))(x) =
∫ π

0
Jν,1(t)Yk(Mt( f ))(x)Cm(t)sin t dt, x ∈ Sm,

while the formula prior to the statement of the theorem leads to

Yk(Φν,1( f ))=
τm−1

P(m−1)/2
k (1)

{∫ π

0
Jν,1(t)

[∫ t

0
P(m−1)/2

k (cosh)(sinh)m−1dh

]
sin t dt

}
Yk( f ).

The inner integral can be put into the form
∫ t

0
P(m−1)/2

k (cosh)(sinh)m−1dh = −
∫ cost

1
P(m−1)/2

k (u)(1−u2)(m−2)/2du.

Invoking the classical equality ([26, p. 81–82])

d
du

[
− m−1

k(k+m−1)
(1−u2)m/2P(m+1)/2

k−1 (u)
]

= (1−u2)(m−2)/2P(m−1)/2
k (u),

we deduce that∫ t

0
P(m−1)/2

k (cosh)(sinh)m−1dh =
m−1

k(k+m−1)
(sin t)mP(m+1)/2

k−1 (cost).

Consequently,

Yk(Φν,1( f ))=
τm−1

P(m−1)/2
k (1)

m−1
k(k+m−1)

[∫ π

0
Jν,1(t)P

(m+1)/2
k−1 (cost)(sin t)m+1dt

]
Yk( f ).

Since Jν,1(t) is a polynomial of degree ν with respect to cost , it is easily seen that we
can write it in the form

Jν,1(cost) =
ν

∑
j=0

a jP
(m+1)/2
j (cost), a1,a2, . . . ,aν ∈ R.

In particular, the well-known orthogonality relation ([19, p. 98])
∫ π

0
P(m+1)/2

k (cost)P(m+1)/2
l (cost)(sin t)m+1dt = 0, k �= l,

implies that
∫ π

0
Jν,1(t)P

(m+1)/2
k−1 (cost)(sin t)m+1dt = 0, k−1 � ν +1.

It is now clear that

Yk(Φν,1( f )) = 0, k = ν +2,ν +3, . . . ,

and the result follows. �
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PROPOSITION 3. The operator

Φν,m( f )(x) =
∫ π

0
Jν,m(t)Et( f )(x)Dm(t)(sin t)mdt, f ∈ L2(Sm), x ∈ Sm,

has rank at most N(m+1,ν +1) .

Proof. Since it is analogous to the proof of the previous proposition, the details
will be not included. �

4. Decay rates via the generalized Jackson kernels

The attention in this section will be directed to integral operators LK of the form

LK( f )(x) =
∫

Sm
K(x,y) f (y)dσm(y), x ∈ Sm, f ∈ L2(Sm).

that possess the features below:
– it is generated by an element K of L2(Sm ×Sm) (so, it is a linear operator from

L2(Sm) into itself);
– the kernel K is L2(Sm)-positive definite in the sense that

∫
Sm

LK( f )(x) f (x)dσm(x)〉 � 0, f ∈ L2(Sm);

– the square root L
1/2
K of LK is an integral operator on L2(Sm) generated by a

hermitian kernel K1/2 : Sm×Sm → C ;
– there is a recovery formula for K from K1/2 , that is,

∫
Sm

K1/2(x,y)K1/2(w,x)dσm(x) = K(w,y), y,w ∈ Sm.

A usual concrete setting in which all the conditions above hold is described in [24].
An operator as above will be called a positive integral operator from now on. The

category of positive integral operators includes those integral operators generated by a
continuous and positive definite kernel in the usual sense, as one can ratify in [8]. A
positive integral operator has countably many nonnegative eigenvalues which can be
ordered as

λ1(LK) � λ2(LK) � · · · � 0,

repetitions being included in accordance with algebraic multiplicities. After we order

the eigenvalues of L
1/2
K in the same way, it holds

λn(L
1/2
K ) = (λn(LK))1/2 = an(LK))1/2, n = 1,2, . . . . (1)

and
‖LK‖ � a1(LK) � a2(LK) � · · · � 0.

For a general treatment on approximation numbers of operators, we refer the reader to
[20] while a treatment in a setting similar to the one used here can be found in [11].
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4.1. The essential inequalities

This subsection contains preliminary estimates for the norm of the operators

L
1/2
K −Φν,k(L

1/2
K ) : L2(Sm) → L∞(Sm)

when LK is a positive integral operator generated by a (Tt ,B,β )-Hölder kernel K . In
particular, we remind the reader that the setting described in Section 2 needs to hold
here, including the assumptions A1 and A2.

Two reasons justify why we will estimate an(L
1/2
K ) instead of an(LK) : formula

(1) is available in the most important cases and the applications on decay rates for

eigenvalues we seek demand the approximation numbers of L
1/2
K .

In the three lemmata below, we will use the generalized Jackson kernel Jν,k . We
remind the reader that ν is defined via two positive integers l and μ � 2, through
the formula ν = l(μ −1) . The integer k is supposed to be a fixed nonnegative integer
throughout the subsection. We begin with an estimation for certain integrals involving
the generalized Jackson kernels.

LEMMA 1. Let γ be a positive real number. If 2l > γ + α(m)+ k+1 , then

∫ π

0
Jν,k(t)tγVm(t)(sin t)k dt � dm,γ,l

μγ ,

where dm,γ,l is a constant depending of m, γ , l and the constant α(m) from A2 .

Proof. The idea of the proof is to detach the normalizing constant cν,k from the
integral, to find a lower bound for it and an upper bound for the resulting integral.
Clearly,

cν,k �
∫ π/2

0

[
sin(μt/2)
sin(t/2)

]2l

Vm(t)(sin t)k dt � 22l+k

πk

∫ π/2

0
tk−2l [sin(μt/2)]2l Vm(t)dt.

From the inequality Vm(t) � cmtα(m) , t ∈ (0,π/2) , we obtain

cν,k � cm
22l+k

πk

∫ π/2

0
tα(m)+k−2l [sin(μt/2)]2l dt.

The change of variables s = μt and the inequality μ � 2 provide the estimate

∫ π/2

0
tα(m)+k−2l [sin(μt/2)]2l dt =

1

μα(m)+k+1−2l

∫ μπ/2

0
sα(m)+k−2l [sin(s/2)]2l ds

� 1

μα(m)+k+1−2l

∫ π

0
sα(m)+k−2l [sin(s/2)]2l ds,

while an additional adjustment leads to

∫ π/2

0
tα(m)+k−2l [sin(μt/2)]2l dt � π−2l

μα(m)+k+1−2l

∫ π

0
sα(m)+kds.
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The final lower estimate for cν,k is

cν,k � cm
22l+k

π2l+k

1

μα(m)+k+1−2l

∫ π

0
sα(m)+kds

=
cm

α(m)+ k+1
22l+k

π2l−α(m)−k−1
μ2l−α(m)−k−1.

Next, we move to an upper bound for the integral

I :=
∫ π

0

[
sin(μt/2)
sin(t/2)

]2l

tγVm(t)(sin t)k dt.

Since Vm(t) � Cmtα(m) , t ∈ (0,π) , it is clear that

I � Cmπ2l
∫ π

0
[sin(μt/2)]2ltγ+α(m)+k−2ldt.

Using the change of variables s = μt/2, we can estimate the integral appearing above
as follows

∫ π

0
tγ+α(m)+k−2l [sin(μt/2)]2l dt =

(
2
μ

)γ+α(m)+k+1−2l ∫ μπ/2

0
sγ+α(m)+k

(
sins
s

)2l

ds

�
(

2
μ

)γ+α(m)+k+1−2l ∫ ∞

0
sγ+α(m)+k

(
sins
s

)2l

ds.

The assumption 2l > γ + α(m) + k + 1 guarantees the convergence of the improper
integral. Proceeding, we have that

I � Cmπ2l
(

2
μ

)γ+α(m)+k+1−2l ∫ ∞

0
sγ+α(m)+k

(
sins
s

)2l

ds.

Combining our findings and making some minor adjustments, it is promptly seen that
the inequality in the statement of the lemma follows. �

LEMMA 2. Let LK be a positive integral operator generated by a (Tt ,B,β )-
Hölder kernel K . If f ∈ L2(Sm) and x ∈ Sm , then

∣∣∣L 1/2
K ( f )(x)−Φν,k(L

1/2
K ( f ))(x)

∣∣∣
� ‖ f‖2

∫ π

0
Jν,k(t)tβ/2[B(x)+Tt(B)(x)]1/2Vm(t)(sin t)k dt.

Proof. Fix f and x and let us write Ix( f ) to denote the difference L
1/2
K ( f )(x)−

Φν,k(L
1/2
K ( f ))(x) . The normalization for the Jackson kernels implies that

Ix( f ) =
∫ π

0
Jν,k(t)

[
L

1/2
K ( f )(x)−Tt(L

1/2
K ( f ))(x)

]
Vm(t)(sin t)k dt.
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Hence,

|Ix( f )| �
∫ π

0
Jν,k(t)|Dt(x)|Vm(t)(sin t)k dt,

where

Dt(x) = L
1/2
K ( f )(x)−Tt(L

1/2
K ( f ))(x), t ∈ (0,π).

The proof will be complete as long as we can reach the estimate

|Dt(x)| � ‖ f‖2t
β/2[B(x)+Tt(B)(x)]1/2, t ∈ (0,π).

Since

L
1/2
K ( f )(x) =

∫
Sm

K1/2(x,y) f (y)dσm(y), f ∈ L2(Sm),

it is easily seen that

Dt(x) =
∫

Sm
K1/2(x,y) f (y)dσm(y)

− 1
τm

∫
Sm

∫
Sm

Z m
t (x ·w)K1/2(w,y) f (y)dσm(w)dσm(y),

while a change in the integration order leads to

Dt(x) =
1

τm

∫
Sm

(
τmK1/2(x,y)−

∫
Sm

Z m
t (x ·w)K1/2(w,y)dσm(w)

)
f (y)dσm(y).

To proceed, we apply Hölder’s inequality to deduce that

|Dt(x)| � 1
τm

‖Itx‖2‖ f‖2, t ∈ (0,π),

in which

Itx(y) = τmK1/2(x,y)−
∫
Sm

Z m
t (x ·w)K1/2(w,y)dσm(w), y ∈ Sm, t ∈ (0,π).

The rest of the proof will consist of a tricky estimation of the quantity ‖Itx‖2 . A simple
calculation leads to

‖Itx‖2
2 =

∫
Sm

τ2
mK1/2(x,y)K1/2(y,x)dσm(y)

+
∫

Sm

[
−τmK1/2(x,y)

∫
Sm

Z m
t (x ·w)K1/2(y,w)dσm(w)

−τmK1/2(y,x)
∫

Sm
Z m

t (x ·w)K1/2(w,y)dσm(w)

+
∫

Sm

∫
Sm

Z m
t (x ·w)Z m

t (x · z)K1/2(w,y)K1/2(y,z)dσm(z)dσm(w)
]
dσm(y).
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Interchanging the order of integration and applying the recovery formula, we deduce
that

‖Itx‖2
2 = τ2

mK(x,x)− τm

∫
Sm

Z m
t (x ·w)K(x,w)dσm(w)

−τm

∫
Sm

Z m
t (x ·w)K(w,x)dσm(w)

+
∫

Sm

∫
Sm

Z m
t (x ·w)Z m

t (x · z)K(w,z)dσm(z)σm(w).

An additional adjustment produces the formula

‖Itx‖2
2 � τ2

m |K(x,x)−Tt(K(x, ·))(x)|
+τm

∫
Sm

Z m
t (x ·w) |K(w,x)−Tt(K(w, ·))(x)|dσm(w).

Now, introducing the inequality defining the Hölder condition, we obtain

‖Itx‖2
2 � τ2

mtβ B(x)+ τmtβ
∫

Sm
Z m

t (x ·w)B(w)dσm(w) = τ2
mtβ [B(x)+Tt(B)(x)],

Combining all these findings lead to the inequality in the statement of the lemma. �

Next, we not only show that the operator L
1/2
K −Φν,k(L

1/2
K ) : L2(Sm) → L∞(Sm)

is well defined but we also bound the elements on its image. Two properties of the
norm ‖ · ‖∞ are used in the arguments: the Minkowski’s inequality for integrals ([9, p.

194]) and the inequality ‖√ f ‖∞ � ‖ f‖1/2
∞ , f ∈ L∞(Sm) , which holds whenever f is a

nonnegative function.

LEMMA 3. Let LK be a positive integral operator generated by a (Tt ,B,β )-
Hölder kernel K . If f ∈ L2(Sm) , then

∥∥∥L
1/2
K ( f )−Φν,k(L

1/2
K ( f ))

∥∥∥
∞

� ‖B‖1/2
∞ (1+M)1/2

[∫ π

0
Jν,k(t)tβ/2Vm(t)(sin t)k dt

]
‖ f‖2,

in which M is a uniform bound for the family {Z m
t : t ∈ (0,π)} in L1([−1,1],dωm) .

Proof. Fix f ∈ L2(Sm) and write

Gν( f )(x) := L
1/2
K ( f )(x)−Φν,k(L

1/2
K ( f ))(x), x ∈ Sm.

Lemma 2 and the remarks preceding the lemma imply that

|Gν( f )(x)| � ‖ f‖2

∫ π

0
Jν,k(t)tβ/2‖B+Tt(B)‖1/2

∞ Vm(t)(sin t)k dt, x ∈ Sm.

If M is a uniform bound for the family {Z m
t : t ∈ (0,π)} in L1([−1,1],dωm) , we have

that
‖Tt(B)‖∞ � ‖Tt‖‖B‖∞ � M‖B‖∞, t ∈ (0,π).
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The inequality in the statement of the lemma follows. �

Since the embedding L∞(Sm) ↪→ L2(Sm) is absolutely 2-summing, the operator

L
1/2
K −Φν,k(L

1/2
K ) : L2(Sm) → L2(Sm) is Hilbert-Schmidt ([20, p. 56–56]). Denoting

the Hilbert-Schmidt norm by ‖ · ‖HS , the following result holds likewise.

LEMMA 4. Let LK be a positive integral operator generated by a (Tt ,B,β )-
Hölder kernel K . Then, there exists a constant C so that

∥∥∥L
1/2
K −Φν,k(L

1/2
K )

∥∥∥
HS

� C

[∫ π

0
Jν,k(t)tβ/2Vm(t)(sin t)k dt

]
.

4.2. Estimates for the approximation numbers of LK

This section contains the main result of the paper.
In the technical lemma below, we deduce a basic inequality for the approximation

numbers of the operator LK generated by a (Tt ,B,β )-Hölder kernel K , under the
assumption that the approximation operator Φν,k has finite rank.

LEMMA 5. Let LK be a positive integral operator generated by a (Tt ,B,β )-
Hölder kernel K . If for a fixed k , the approximation operator Φν,k has finite rank
r , then

ra2r(LK) �
∥∥∥L

1/2
K −Φν,kL

1/2
K

∥∥∥2

HS
.

Proof. Since the rule that assigns to every operator the sequence of its approxima-
tion numbers is an s-scale, it is easily seen that

a j(L
1/2
K ) � a j−r(L

1/2
K −Φν,kL

1/2
K )+ar+1(Φν,kL

1/2
K ), j > r � 0.

However, since ar+1(Φν,kL
1/2
K ) coincides with the (r+1)-th s-number of Φν,kL

1/2
K ,

if Φν,k has finite rank r , then we have that ar+1(Φν,kL
1/2
K ) = 0. This gives

ra2r(LK) = r[a2r(L
1/2
K )]2 �

2r

∑
j=r+1

[a j(L
1/2
K )]2 �

∞

∑
j=1

[a j(L
1/2
K −Φν,kL

1/2
K )]2.

which implies the estimate in the statement of the lemma. �

Under the same assumptions in the lemma, if ρ(Φν,k) � (qν)α(m) for some k ,
then a similar argument leads to

(qν)α(m)a2(qν)α(m)(LK) �
∥∥∥L

1/2
K −Φν,kL

1/2
K

∥∥∥2

HS
.

The main result in this section is this one.



1498 T. JORDÃO AND V. A. MENEGATTO

THEOREM 1. Let LK be a positive integral operator generated by a (Tt ,B,β )-
Hölder kernel K . If for a fixed k , there exists a positive integer q so that ρ(Φν,k) �
(qν)α(m) , ν = 1,2, . . . , then

an(LK) = O(n−1−β/α(m)), (n → ∞).

Proof. Let us assume that ρ(Φν,k) � (qν)α(m) , for some q . An application of
Lemma 5, with the help of Lemma 4, leads to

(qn)α(m)a(qn)α(m)(LK) � C

[∫ π

0
Jn,k(t)tβ/2Vm(t)(sin t)k dt

]2

, n ∈ Z+.

To proceed, choose an integer l in such a way that 2l is at least β + α(m)+ k+ 1. If
n ∈ lZ+ , say, n = l(μ −1) , for some μ , then we can apply Lemma 1 to conclude that

(qn)α(m)a(qn)α(m)(LK) � C
d2

m,β/2,l

μβ � C
lβ d2

m,β/2,l

nβ .

The same procedure can be repeated in order to obtain the same inequality in the cases
in which n ∈ j + lZ+ , j ∈ {1,2, . . . , l−1} . The final conclusion is

(qn)α(m)a(qn)α(m)(LK) � C′

nβ , n ∈ Z+.

in which C′ is a positive constant not depending upon n . However, this inequality
implies that

a(qn)α(m)(LK) � C′′

nβ+α(m) , n ∈ Z+.

An elementary calculation leads to the asymptotic behavior of {an(LK)} described in
the statement of the theorem. �

To end the section, we return to positive integral operators generated by a kernel
satisfying either an averaged Hölder condition or a Stekelov-mean Hölder condition, as
they provide relevant examples for Theorem 1. Indeed, combining Propositions 2 and 3
and the previous theorem leads to the following result.

COROLLARY 1. If LK is a positive integral operator generated by a kernel sat-
isfying either the averaged Hölder condition (Example 1) or the Stekelov-mean Hölder
condition (Example 2), then

an(LK) = O(n−1−β/m), (n → ∞).
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5. Final remarks

Most of the concepts and constructions made in this paper can be recovered when
we replace the unit sphere with a compact symmetric space of rank 1. Indeed, this space
is a Riemannian manifold possessing a harmonic analysis structure very similar to that
available on the spheres. A good source of information on compact symmetric spaces
of rank 1, including concepts and results needed in a possible extension of the results
proved here, is the survey paper [21]. We believe the new arguments needed in the
detailing of such extension would not justify the writing of an additional paper.

The decay presented in Theorem 1 seems to be optimal within the setting con-
sidered. Restricting ourselves to the two motivational examples of Section 2, we tried
for some time to construct a concrete example matching exactly the decay provided by
the corresponding results proved in the paper. Unfortunately, we were unable to either
construct such an example or substantiate optimality.

Recently, we have developed a new technique to deduce sharp decay rates for the
sequence of eigenvalues of positive integral operators based on growth and integrability
of Fourier coefficients ([13, 14]). This technique allows one to work in an even more
general setting, replacing all the arguments involving the usual spherical convolutions
with that of spherical convolutions with measures. In particular, this approach permits
the inclusion of integral operators generated by kernels satisfying Hölder assumptions
defined by families of general multiplier operators.

A final remark concerns the choice B ∈ L∞(Sm) we have made in our definition
for the Hölder assumption. On one hand, the choice is satisfactory because, in relevant
concrete cases the function B is, in fact, constant. On the other, being a restriction,
it may be not. However, a more general assumption on B , such as B ∈ L1(Sm) , only
appears in purely theoretical results.

Acknowledgement. We thank an anonymous referee for pointing out corrections
and some relevant remarks. The actual format of the paper includes an upgrade raised
by him.
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