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ON CRITICAL CONDITION FOR A WEIGHTED

INTEGRAL SYSTEM WITH NEGATIVE EXPONENTS

LILI HUANG

(Communicated by I. Perić)

Abstract. This paper is concerned with the integral system⎧⎨
⎩

u(x) =
∫
Rn |x|α |y|β |x− y|svq(y)dy, u > 0 in Rn,

v(x) =
∫
Rn |x|β |y|α |x− y|sup(y)dy, v > 0 in Rn,

where n � 1 , α ,β ,s > 0 and p,q < 0 . Such an integral system appears in the study of the
conformal geometry and the weighted Hardy-Littlewood-Sobolev inequality. We obtain that

1
p+1

+
1

q+1
= −α +β + s

n
,

is a necessary condition for the existence of the C1 positive entire solutions, which is also the
necessary and sufficient condition for the invariant of the system and some energy functionals
under the scaling transformation.

1. Introduction

In 1958, Stein and Weiss [15] proved the weighted Hardy-Littlewood-Sobolev
(WHLS) inequality∣∣∣∣

∫
Rn

∫
Rn

f (x)g(y)
|x|α |x− y|λ |y|β dxdy

∣∣∣∣ � Cα ,β ,s,λ ,n‖ f‖r‖g‖s, (1.1)

where 1 < r,s < ∞ , 0 < λ < n , α + β � 0, α + β + λ � n , and

1− 1
r
− λ

n
<

α
n

< 1− 1
r

and
1
r

+
1
s

+
λ + α + β

n
= 2. (1.2)

In order to obtain the best constant in the WHLS inequality (1.1), Lieb [13] maximized
the functional

J( f ,g) =
∫

Rn

∫
Rn

f (x)g(y)
|x|α |x− y|λ |y|β dxdy
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under the constraints ‖ f‖r = ‖g‖s = 1. The corresponding Euler-Lagrange equation is
the following integral system:⎧⎪⎪⎨

⎪⎪⎩
λ1r f (x)r−1 =

1
|x|α

∫
Rn

g(y)
|y|β |x− y|λ dy

λ2sg(x)s−1 =
1

|x|β
∫

Rn

f (y)
|y|α |x− y|λ dy

(1.3)

where f ,g � 0, x ∈ Rn and λ1r = λ2s = J( f ,g) . Set u = c1 f r−1 , v = c2gs−1 , 1
p+1 =

1− 1
r , 1

q+1 = 1− 1
s with pq �= 1. By a proper choice of constants c1 and c2 , (1.3)

becomes ⎧⎪⎪⎨
⎪⎪⎩

u(x) =
1

|x|α
∫

Rn

v(y)q

|y|β |x− y|λ dy

v(x) =
1

|x|β
∫

Rn

u(y)p

|y|α |x− y|λ dy
(1.4)

where α + β + λ � n , and{
u,v � 0, 0 < p,q < ∞, 0 < λ < n, α + β � 0,

α
n < 1

p+1 < λ+α
n , 1

p+1 + 1
q+1 = λ+α+β

n .
(1.5)

When α = β = 0 in (1.4), we get the Hardy-Littlewood-Sobolev (HLS) type integral
system ⎧⎪⎪⎨

⎪⎪⎩
u(x) =

∫
Rn

v(y)q

|x− y|λ dy

v(x) =
∫

Rn

u(y)p

|x− y|λ dy
(1.6)

which is related to the study of extremal functions of the HLS inequality. When p =
q = (2n−λ )/λ , it was proved u = v in [2]. Then (1.6) is reduced to a single equation

u(x) =
∫

Rn

up(y)
|x− y|λ dy. (1.7)

Lieb [13] pointed out that (1.7) is a typical example with conformal property and ob-
tained the explicit extremal function of the HLS inequality with p = q and assumed the
form

u(x) = c

(
t

t2 + |x− x0|2
)λ/2

with c, t > 0 and x0 ∈ Rn . Meanwhile, he also posed how to classify the positive
solutions of the Euler-Lagrange equation (1.7). Twenty years later, Chen, Li, Ou [3]
and Li [12] solved this open problem respectively. They proved that every positive
solution of (1.7) is radially symmetric and decreasing about some point x0 , and hence
obtained the classification result.

For systems (1.4) and (1.6), it seems difficult to obtain the explicit solutions. We
can only find the qualitative properties which imply the shape of the positive solutions.
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Jin and Li ([4] and [5]) proved the radial symmetry and obtained the optimal integrabil-
ity of the positive solutions. Based on these properties, the fast decay rates were given
in [8], [10] and [11]. Other related results with p,q > 0 can be seen in [1], [9], [14]
and [17].

In 2004, Li [12] studied integral equation (1.7) with p < 0, and posed whether
or not does (1.7) admit any positive (regular) solutions for all n � 1, λ < 0 and p <
(2n−λ )/λ . Xu [16] studied this problem and obtained the following results.

(R1) Let λ < 0. Eq. (1.7) has a C1 positive solution if and only if 2n−λ = pλ .
Now, u is given by

u(x) = a(b2 + |x− x0|2)−λ/2 (1.8)

with a,b > 0 and x0 ∈ Rn .
(R2) If λ ∈ (0,n) , then (1.7) has no C1 positive solution.
Afterwards, Lei [6] studied system (1.6) with negative exponents and obtained

some existence results. In particular, the critical condition 1
1+p + 1

1+q = λ
n is a neces-

sary condition for existence of C1 -solutions. In this paper, we study (1.4) with negative
exponents and also give an analogous conclusion by using the ideas in [7].

For convenience, we write (1.4) with negative exponents as the following

⎧⎪⎨
⎪⎩

u(x) =
∫

Rn
|x|α |y|β |x− y|svq(y)dy, u > 0 in Rn,

v(x) =
∫

Rn
|x|β |y|α |x− y|sup(y)dy, v > 0 in Rn,

(1.9)

where α,β ,s > 0, and p < 0,q < 0.
For λ ,θ1,θ2 �= 0, set the scaling of u,v

uλ (x) = λ θ1u(λx), vλ (x) = λ θ2v(λx).

THEOREM 1. The scaling functions uλ ,vλ still solve (1.9) and satisfy

⎧⎪⎨
⎪⎩

∫
Rn

u1+p
λ (x)dx =

∫
Rn

u1+p(x)dx∫
Rn

v1+q
λ (x)dx =

∫
Rn

v1+q(x)dx
(1.10)

if and only if the following critical condition holds

1
1+ p

+
1

1+q
= −α + β + s

n
. (1.11)

THEOREM 2. If u,v ∈ C1(Rn) are positive solutions of (1.9), then up+1 , vq+1 ∈
L1(Rn) . Furthermore, the critical condition (1.11) must be true.
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2. Proofs of Theorems

Proof of Theorem 1. By (1.9), we have

uλ (x) = λ θ1u(λx) = λ θ1

∫
Rn
|λx|α |y|β |λx− y|svq(y)dy

= λ θ1+α+β+s+n
∫

Rn
|x|α |z|β |x− z|svq(λ z)dz

= λ θ1+α+β+s+n−θ2q
∫

Rn
|x|α |z|β |x− z|svq

λ (z)dz.

Similarly,

vλ (x) = λ θ2+α+β+s+n−θ1p
∫

Rn
|x|β |z|α |x− z|sup

λ (z)dz.

Since uλ ,vλ still solve (1.9), we get that

θ1 + α + β + s+n−θ2q = 0, θ2 + α + β + s+n−θ1p = 0.

Therefore,

θ1 =
(α + β + s+n)(1+q)

pq−1
, θ2 =

(α + β + s+n)(1+ p)
pq−1

. (2.1)

On the other hand,∫
Rn

u1+p
λ (x)dx =

∫
Rn

(λ θ
1 u(λx))1+pdx = λ θ1(1+p)

∫
Rn

u1+p(λx)dx

= λ θ1(1+p)−n
∫

Rn
u1+p(y)dy.

This result, together with (1.10), implies θ1(1+ p)− n = 0. By a same argument, we
also get θ2(1+q)−n = 0. Combining with (2.1), we get that

(α + β + s+n)(1+q)
pq−1

=
n

1+ p
.

Noting pq−1 = (p+1)(q+1)− (p+1)− (q+1), we obtain (1.11) finally.
On the contrary, the calculation above also shows that if (1.11) holds, then uλ , vλ

still satisfy (1.9) and (1.10). Thus, we complete the proof. �

Proof of Theorem 2. Assume u > 0, v > 0 are C1 -solutions of (1.9).
Step 1. We claim that up+1 , vq+1 ∈ L1(Rn) .
To see this, first we observe the fact that |y−e|� |y|−1 � |y|/2 when |y|> R� 1.

Thus,

∞ > u(e) =
∫

Rn
|y|β |y− e|svq(y)dy � C

∫
Rn\BR(0)

|y|β+svq(y)dy

� C
∫

Rn\BR(0)
|y|β vq(y)dy.
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Clearly, |y|β vq(y) , |y|β+svq(y) ∈ L1(B1(0)) . Therefore,

|y|β vq(y), |y|β+svq(y) ∈ L1(Rn).

It follows from system (1.9) that

|x|s+αu

(
x
|x|2

)
=

∫
Rn
|x|s+α

∣∣∣ x
|x|2 − y

∣∣∣s∣∣∣ x
|x|2

∣∣∣α |y|β vq(y)dy

=
∫

Rn
|y|β |x|s

∣∣∣ x
|x|2 − y

∣∣∣svq(y)dy =
∫

Rn
|y|β |y|s

∣∣∣x− y
|y|2

∣∣∣svq(y)dy.

(2.2)
Letting |x| → 0 in (2.2), we have

lim
|x|→0

[
|x|s+αu

(
x
|x|2

)]
=

∫
Rn
|y|β vq(y)dy < ∞.

We should point out that here we can take the limit by using the dominated con-
vergence theorem. To justify this, we only need to notice that when s > 0 and |x| � 1,∣∣∣x− y

|y|2
∣∣∣s � (|x|+1/|y|)s � (1+1/|y|)s,

and notice that |y|β+s(1+1/|y|)svq(y) ∈ L1(Rn) .
By doing variable change, we can see that there are constants R > 0 large and

C > 1 such that
C−1|x|s+α � u(x) � C|x|s+α for |x| � R. (2.3)

Thus, for R � 1,∫
Rn\BR(0)

up+1(x)dx =
∫

Rn\BR(0)
up(x)u(x)dx

� C
∫

Rn\BR(0)
up(x)|x|s+αdx � Cv(e).

By a same argument, we also have∫
Rn\BR(0)

vq+1(x)dx < +∞.

This should be enough to conclude that up+1 , vq+1 ∈ L1(Rn) .

Step 2. We claim that if system (1.9) has C1(Rn) positive solutions for α, β , s > 0,

and p < 0, q < 0, then 1
1+p + 1

1+q = −α+β+s
n .

First, by (1.9) and Fubini’s theorem, we see easily that∫
Rn

up+1(x)dx =
∫

Rn
up(x)

∫
Rn
|x|α |y|β |x− y|svq(y)dydx

=
∫

Rn
vq(y)

∫
Rn

up(x)|x|α |y|β |x− y|sdxdy =
∫

Rn
vq+1(y)dy.

(2.4)
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For λ �= 0, there holds

u(λx) =
∫

Rn
|λx|α |y|β |λx− y|svq(y)dy

= λ α+β+s+n
∫

Rn
|x|α |z|β |x− z|svq(λ z)dz.

Differentiating with respect to λ yields

x ·∇u(λx) = (α + β + s+n)λ α+β+s+n−1
∫

Rn
|x|α |z|β |x− z|svq(λ z)dz

+λ α+β+s+n
∫

Rn
|x|α |z|β |x− z|sz ·∇vq(λ z)dz.

(2.5)

Let λ = 1, then

∇u(x)x = (α + β + s+n)u(x)+
∫
Rn
|x|α |z|β |x− z|sz ·∇vq(z)dz. (2.6)

Multiplying by up(x) on both sides of (2.6) and integrating the resulting equation over
Rn , we obtain

1
p+1

∫
Rn

x∇up+1(x)dx− (α + β + s+n)
∫
Rn

up+1(x)dx

=
∫

Rn

∫
Rn
|x|α |z|β |x− z|sup(x)z ·∇vq(z)dzdx

=
∫

Rn
z ·∇vq(z)dz

∫
Rn
|x|α |z|β |x− z|sup(x)dx

=
∫

Rn
z ·∇vq(z)v(z)dz =

q
q+1

∫
Rn

z ·∇vq+1(z)dz.

(2.7)

Clearly, (2.7) is equivalent to

lim
R→∞

[
1

p+1

∫
BR

x ·∇up+1(x)dx− (α + β + s+n)
∫
BR

up+1(x)dx

]

= lim
R→∞

q
q+1

∫
BR

z ·∇vq+1(z)dz.

Integrating by parts, we get

lim
R→∞

[
1

p+1

∫
∂BR

Rup+1(x)ds− n
p+1

∫
BR

up+1(x)dx−(α+β+s+n)
∫

Rn
up+1(x)dx

]

= lim
R→∞

[
q

q+1

∫
∂BR

Rvq+1(x)ds− nq
q+1

∫
BR

vq+1(x)dx

]
.

(2.8)
Due to the fact that up+1 , vq+1 ∈ L1(Rn) , we can find Rj → ∞ such that

lim
Rj→∞

Rj

∫
∂BRj

up+1(x)ds = 0, lim
Rj→∞

Rj

∫
∂BRj

vq+1(x)ds = 0.
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Thus, from (2.4) and (2.8) with R = Rj , we deduce that[
(α + β + s+n)−n

(
q

q+1
− 1

p+1

)]∫
Rn

up+1(x)dx = 0,

which implies
1

1+ p
+

1
1+q

= −α + β + s
n

. �
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