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POPOVICIU TYPE INEQUALITIES VIA GREEN FUNCTION

AND GENERALIZED MONTGOMERY IDENTITY

SAAD IHSAN BUTT, KHURAM ALI KHAN AND JOSIP PEČARIĆ

(Communicated by I. Franjić)

Abstract. We obtained useful identities via generalized Montgomery identity, by which the in-
equality of Popoviciu for convex functions is generalized for higher order convex functions.
We investigate the bounds for the identities related to the generalization of the Popoviciu in-
equality using inequalities for the Čebyšev functional. Some results relating to the Grüss and
Ostrowski type inequalities are constructed. Further, we also construct new families of exponen-
tially convex functions and Cauchy-type means by looking at linear functionals associated with
the obtained inequalities.

1. Introduction and preliminary results

The theory developed under the theme of convex functions, arising from intu-
itive geometrical observations, may be readily applied to topics in real analysis and
economics. In modern Era, their occurs a rapid development in the theory of convex
functions. Their are serval reasons behind it: firstly, so many areas in modern analy-
sis directly or indirectly involve the application of convex functions; secondly, convex
functions are closely related to the theory of inequalities and many important inequali-
ties are consequences of the applications of convex functions (see [13]).

A characterization of convex function established by T. Popoviciu [14] is studied
by many people (see [15, 13] and references with in). For recent work, we refer [4, 7,
8, 9, 10]. The following form of Popoviciu’s inequality is by Vasić and Stanković in
[15] (see also page 173 [13]):

THEOREM 1. Let m,k ∈N , m � 3 , 2 � k � m−1 , [α,β ]⊂R , x = (x1, . . . ,xm)∈
[α,β ]m , p = (p1, . . . , pm) be a positive m-tuple such that ∑m

i=1 pi = 1 . Also let f :
[α,β ] → R be a convex function. Then

pk,m(x,p; f ) � m− k
m−1

p1,m(x,p; f )+
k−1
m−1

pm,m(x,p; f ), (1)
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where

pk,m(x,p; f ) = pk,m(x,p; f (x)) :=
1(m−1

k−1

) ∑
1�i1<...<ik�m

(
k

∑
j=1

pi j

)
f

⎛
⎜⎜⎜⎝

k
∑
j=1

pi j xi j

k
∑
j=1

pi j

⎞
⎟⎟⎟⎠

is the linear functional with respect to f .

By inequality (1), we write

P(x,p; f ) :=
m− k
m−1

p1,m(x,p; f )+
k−1
m−1

pm,m(x,p; f )− pk,m(x,p; f ). (2)

REMARK 1. It is important to note that under the assumptions of Theorem 1, if
the function f is convex then P(x,p; f ) � 0 and P(x,p; f ) = 0 for f (x) = x or f is a
constant function.

The mean value theorems and exponential convexity of the linear functional
P(x,p; f ) are given in [7] for a positive m-tuple p . Some special classes of convex
functions are considered to construct the exponential convexity of P(x,p; f ) in [7].
Consider the Green function G : [α,β ]× [α,β ]→ R defined as

G(t,s) =

⎧⎨
⎩

(t−β )(s−α)
β−α α � s � t;

(s−β )(t−α)
β−α , t � s � β .

(3)

The function G is convex and continuous w.r.t s and due to symmetry also w.r.t t .
For any function ψ : [α,β ] → R , ψ ∈C2([α,β ]) , we have

ψ(x) =
β − x
β −α

ψ(α)+
x−α
β −α

ψ(β )+
∫ β

α
G(x,s)ψ ′′(s)ds, (4)

where the function G is defined in (3) (see [16]).
In Theorem 1 we have that pi ( i = 1, . . . ,n ) are positive real numbers. In [8] (see

also [4]), the results related to P(x,p; f ) are generalized with help of Green function
for real values of pi ( i = 1, . . . ,n ) with ∑n

i=1 pi = 1 in the following theorem:

THEOREM 2. Let m,k ∈N , m � 3 , 2 � k � m−1 , [α,β ]⊂R , x = (x1, . . . ,xm)∈
[α,β ]m , p = (p1, . . . , pm) be a real m-tuple such that ∑k

j=1 pi j �= 0 for any 1 � i1 < .. .

< ik � m and ∑m
i=1 pi = 1 . Also let

k
∑
j=1

pi j xi j

k
∑
j=1

pi j

∈ [α,β ] for any 1 � i1 < .. . < ik � m.

Then the following statements are equivalent:
(i) For every continuous convex function f : [α,β ] → R

fk,m(x,p) � m− k
m−1

f1,m(x,p)+
k−1
m−1

fm,m(x,p), (5)
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where

fk,n(x,p) :=
1(m−1

k−1

) ∑
1�i1<...<ik�m

(
k

∑
j=1

pi j

)
f

⎛
⎜⎜⎜⎝

k
∑
j=1

pi j xi j

k
∑
j=1

pi j

⎞
⎟⎟⎟⎠.

(ii) For all s ∈ [α,β ]

Gk,m(x,s;p) � m− k
m−1

G1,m(x,s;p)+
k−1
m−1

Gm,m(x,s;p), (6)

where

Gk,m(x,s;p) :=
1(m−1

k−1

) ∑
1�i1<...<ik�m

(
k

∑
j=1

pi j

)
G

⎛
⎜⎜⎜⎝

k
∑
j=1

pi j xi j

k
∑
j=1

pi j

,s

⎞
⎟⎟⎟⎠; 1 � k � m,

for the function G : [α,β ]× [α,β ]→ R defined in (3).
Moreover, the statements (i) and (ii) are also equivalent if we change the sign of

inequality in both (5) and (6).

In order to obtain our main results in the present paper, we use the generalized
Montgomery identity via Taylor’s formula given in paper [1].

THEOREM 3. Let n∈N , ψ : I →R be such that ψ(n−1) is absolutely continuous,
I ⊂ R an open interval, α,β ∈ I , α < β . Then the following identity holds

ψ (x) =
1

β −α

∫ β

α
ψ (t)dt +

n−2

∑
l=0

ψ(l+1) (α)
l!(l +2)

(x−α)l+2

β −α
−

n−2

∑
l=0

ψ(l+1) (β )
l!(l +2)

(x−β )l+2

β −α

+
1

(n−1)!

∫ β

α
Rn (x,s)ψ(n) (s)ds (7)

where

Rn (x,s) =

⎧⎨
⎩

− (x−s)n

n(β−α) + x−α
β−α (x− s)n−1 , α � s � x,

− (x−s)n

n(β−α) + x−β
β−α (x− s)n−1 , x < s � β .

(8)

In case n = 1 the sum ∑n−2
l=0 · · · is empty, so identity (7) reduces to well-known

Montgomery identity (see for instance [11])

ψ (x) =
1

β −α

∫ β

α
ψ (t)dt +

∫ β

α
P(x,s)ψ ′ (s)ds

where P(x,s) is the Peano kernel, defined by

P(x,s) =

{ s−α
β−α , α � s � x,

s−β
β−α , x < s � β .
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The organization of the paper follows the following pattern: In Section 2, we
generalize weighted Popoviciu’s inequality by using Green function and generalized
Montgomery identity for higher order convex functions. In Section 3, we use the
classical Čebyšev functional and obtain results related to Grüss-type inequalities and
Ostrowski-type inequalities. In Section 4, we study the functional defined as the differ-
ence between the R.H.S. and the L.H.S. of the generalized inequality and our goal is
to investigate the n -exponential and logarithmic convexity of the obtained functional.
Furthermore, we prove monotonicity property of the generalized Cauchy means ob-
tained via this functional. Finally, we conclude our paper by giving several examples
of the families of functions for which the obtained results can be applied.

2. Popoviciu’s inequality by Green function and extension of Montgomery
identity via Taylor’s formula

Motivated by identity (2), we construct the following identity with the help of (4)
and the generalized Montgomery identity.

THEOREM 4. Let all the assumptions of Theorem 3 be valid with n > 2 and
let m,k ∈ N , m � 3 , 2 � k � m− 1 , [α,β ] ⊂ R , x = (x1, . . . ,xm) ∈ [α,β ]m , p =
(p1, . . . , pm) be a real m-tuple such that ∑k

j=1 pi j �= 0 for any 1 � i1 < .. . < ik � m

and ∑m
i=1 pi = 1 . Also let

k
∑
j=1

pi j xi j

k
∑
j=1

pi j

∈ [α,β ] for any 1 � i1 < .. . < ik � m with G, Rn

be the same as defined in (3), (8) respectively. Then we have the following two identi-
ties:

P(x,p;ψ(x))

=
ψ ′(α)−ψ ′(β )

β −α

∫ β

α
P(x,p;G(x,s))ds

+
1

β−α

∫ β

α
P(x,p;G(x,s))

(
n−1

∑
l=2

l
(l−1)!

(
ψ(l) (α)(s−α)l−1−ψ(l) (β ) (s−β)l−1

))
ds

+
1

(n−3)!

∫ β

α
ψ(n)(v)(

∫ β

α
P(x,p;G(x,s))R̃n−2 (s,v)ds)dv, (9)

where

R̃n−2 (s,v) =

⎧⎪⎨
⎪⎩

1
β−α

[
(s−v)n−2

(n−2) + (s−α) (s− v)n−3
]
, α � v � s,

1
β−α

[
(s−v)n−2

(n−2) + (s−β)(s− v)n−3
]
, s < v � β ,
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and

P(x,p;ψ(x))

=
(

ψ ′(β )−ψ ′(α)
β −α

)∫ β

α
P(x,p;G(x,s))ds

+
1

β −α

∫ β

α
P(x,p;G(x,s))

(
n−1

∑
l=3

ψ(l) (α) (s−α)l−1−ψ(l) (β )(s−β)l−1

(l−3)!(l−1)

)
ds

+
1

(n−3)!

∫ β

α
ψ(n) (v)

(∫ β

α
P(x,p;G(x,s))Rn−2(s,v)ds

)
dv. (10)

Proof. Using (4) in (2) and following the linearity of P(x,p; ·) , we have

P(x,p;ψ(x)) =
∫ β

α
P(x,p;G(x,s))ψ

′′
(s)ds. (11)

Differentiating (7), twice with respect to the first variable, we have

ψ ′′ (s) =
ψ ′ (α)−ψ ′ (β )

β −α

+
n−1

∑
l=2

(
l

(l−1)!

)(
ψ(l) (α) (s−α)l−1 −ψ(l) (β )(s−β)l−1

β −α

)

+
1

(n−3)!

∫ β

α
R̃n−2 (s,v)ψ(n) (v)dv. (12)

Using (12) in (11), we get

P(x,p;ψ(x))

=
ψ ′ (α)−ψ ′ (β )

β −α

∫ β

α
P(x,p;G(x,s))ds

+
n−1

∑
l=2

l
(l−1)!

∫ β

α
P(x,p;G(x,s))

(
ψ(l) (α) (s−α)l−1−ψ(l) (β ) (s−β)l−1

β −α

)
ds

+
1

(n−3)!

∫ β

α
P(x,p;G(x,s))(

∫ β

α
R̃n−2 (s,v)ψ(n) (v)dv)ds.

By applying Fubini’s Theorem in the last term, we have (9).
Next, using formula (7) on the function ψ ′′ , replacing n by n− 2 (n � 3) and

rearranging the indices, we have

ψ ′′ (s) =
(

ψ ′(β )−ψ ′(α)
β −α

)

+
n−1

∑
l=3

(
1

(l−3)!(l−1)

)(
ψ(l) (α) (s−α)l−1−ψ(l) (β )(s−β)l−1

β −α

)

+
1

(n−3)!

∫ β

α
Rn−2(s,v)ψ(n) (v)dv. (13)
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Similarly, using (13) in (11) and applying Fubini’s Theorem, we get (10). �
For n -convex functions, we can give the following form of new identities (9) and

(10).

THEOREM 5. Let all the assumptions of Theorem 4 be satisfied and n � 3 . Also
let ψ be n-convex function such that ψ(n−1) is absolutely continuous. Then we have
the following two results:

If ∫ β

α
P(x,p;G(x,s))R̃n−2 (s,v)ds � 0, v ∈ [α,β ] (14)

then

P(x,p;ψ(x))

� ψ ′(α)−ψ ′(β )
β −α

∫ β

α
P(x,p;G(x,s))ds

+
1

β−α

∫ β

α
P(x,p;G(x,s))

(
n−1

∑
l=2

l
(l−1)!

(
ψ(l) (α) (s−α)l−1−ψ(l) (β )(s−β )l−1

))
ds,

(15)

and if ∫ β

α
P(x,p;G(x,s))Rn−2 (s,v)ds � 0, v ∈ [α,β ] (16)

then

P(x,p;ψ(x))

�
(

ψ ′(β )−ψ ′(α)
β −α

)∫ β

α
P(x,p;G(x,s))ds

+
1

β−α

∫ β

α
P(x,p;G(x,s))

(
n−1

∑
l=3

ψ(l) (α) (s−α)l−1−ψ(l) (β )(s−β )l−1

(l−3)!(l−1)

)
ds.

(17)

Proof. Since ψ(n−1) is absolutely continuous on [α,β ] , ψ(n) exists almost every-
where. As ψ is n -convex, so ψ(n)(x) � 0 for all x ∈ [α,β ] (see [13], p. 16). Hence
we can apply Theorem 4 to obtain (15) and (17) respectively. �

REMARK 2. The inequalities (15) and (17) hold in reverse directions if the in-
equalities in (14) and (16) are reversed.

Now we give generalization of Popoviciu’s inequality for n -convex functions.

THEOREM 6. Let all the assumptions of Theorem 4 be satisfied in addition with
the condition that p = (p1, . . . , pm) be a positive m-tuple such that ∑m

i=1 pi = 1 and
consider ψ : [α,β ] → R is n-convex function.



POPOVICIU TYPE INEQUALITIES VIA GREEN FUNCTION. . . 1525

(i) If n be even and n � 4 , then (15) and (17) holds.

(ii) Let the inequality (15) be satisfied and

n−1

∑
l=1

l
(l−1)!

(
ψ(l) (α)(s−α)l−1−ψ(l) (β )(s−β)l−1

)
� 0; ∀s ∈ [α,β ],

(18)
or (17) be satisfied and

ψ ′(β )−ψ ′(α)+
n−1

∑
l=3

ψ(l) (α) (s−α)l−1−ψ(l) (β ) (s−β)l−1

(l−3)!(l−1)
� 0; ∀s∈ [α,β ].

(19)
Then we have

P(x,p;ψ(x)) � 0. (20)

Proof. Since Green’s function G is convex and the weights are positive, P(x,p;
G(x,s)) � 0 by virtue of Remark 1.

(i) R̃n−2 (s,v) � 0 and Rn−2 (s,v) � 0 for n = 4,6, . . . , so (14) and (16) holds. As ψ
is n -convex, hence by following Theorem 5, we obtain (15) and (17).

(ii) Using (18) in (15) and (19) in (17), we have (20). �

3. Bounds for identities related to generalization of Popoviciu’s inequality

In this section we present some interesting results by using Čebyšev functional
and Grüss type inequalities. For two Lebesgue integrable functions f ,h : [α,β ] → R ,
we consider the Čebyšev functional

Δ( f ,h) =
1

β −α

∫ β

α
f (t)h(t)dt − 1

β −α

∫ β

α
f (t)dt.

1
β −α

∫ β

α
h(t)dt.

The following Grüss type inequalities are given in [3].

THEOREM 7. Let f : [α,β ]→R be a Lebesgue integrable function and h : [α,β ]→
R be an absolutely continuous function with (.−α)(β − .)[h′]2 ∈L[α,β ]. Then we have
the inequality

|Δ( f ,h)| � 1√
2
[Δ( f , f )]

1
2

1√
β −α

(∫ β

α
(x−α)(β − x)[h′(x)]2dx

) 1
2

. (21)

The constant 1√
2

in (21) is the best possible.
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THEOREM 8. Assume that h : [α,β ] → R is monotonic nondecreasing on [α,β ]
and f : [α,β ] → R be an absolutely continuous with f ′ ∈ L∞[α,β ]. Then we have the
inequality

|Δ( f ,h)| � 1
2(β −α)

|| f ′||∞
∫ β

α
(x−α)(β − x)[h′(x)]2dh(x). (22)

The constant 1
2 in (22) is the best possible.

In the sequel, we consider above theorems to derive generalizations of the results
proved in the previous section. In order to avoid many notions let us denote

Õ(v) =
∫ β

α
P(x,p;G(x,s))R̃n−2 (s,v)ds � 0, v ∈ [α,β ], (23)

and

O(v) =
∫ β

α
P(x,p;G(x,s))Rn−2 (s,v)ds � 0, v ∈ [α,β ]. (24)

Consider the Čebyšev functional Δ(Õ,Õ) and Δ(O,O) given as:

Δ(Õ,Õ) =
1

β −α

∫ β

α
Õ2(v)dv−

(
1

β −α

∫ β

α
Õ(v)dv

)2

,

and

Δ(O,O) =
1

β −α

∫ β

α
O2(v)dv−

(
1

β −α

∫ β

α
O(v)dv

)2

,

respectively.

THEOREM 9. Let ψ : [α,β ] → R be such that for n � 4 , ψ(n) is absolutely con-
tinuous with (.−α)(β − .)[ψ(n+1)]2 ∈ L[α,β ] . Let m,k ∈ N , m � 3 , 2 � k � m− 1 ,
[α,β ] ⊂ R , x = (x1, . . . ,xm) ∈ [α,β ]m , p = (p1, . . . , pm) be a real m-tuple such that

∑k
j=1 pi j �= 0 for any 1 � i1 < .. . < ik � m and ∑m

i=1 pi = 1 . Also let

k
∑
j=1

pi j xi j

k
∑
j=1

pi j

∈ [α,β ]

for any 1 � i1 < .. . < ik � m with Õ and O defined in (23) and (24) respectively.
Then

P(x,p;ψ(x))

=
ψ ′(α)−ψ ′(β )

β −α

∫ β

α
P(x,p;G(x,s))ds

+
1

β−α

∫ β

α
P(x,p;G(x,s))

(
n−1

∑
l=2

l
(l−1)!

(
ψ(l) (α)(s−α)l−1−ψ(l) (β )(s−β )l−1

))
ds

+
ψ(n−1)(β )−ψ(n−1)(α)

(β −α)(n−3)!

∫ β

α
Õ(v)dv+ K̃n(α,β ;ψ), (25)
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and

P(x,p;ψ(x))

=
ψ ′(β )−ψ ′(α)

β −α

∫ β

α
P(x,p;G(x,s))ds

+
1

β −α

∫ β

α
P(x,p;G(x,s))

(
n−1

∑
l=3

ψ(l) (α) (s−α)l−1−ψ(l) (β )(s−β)l−1

(l−3)!(l−1)

)
ds

+
ψ(n−1)(β )−ψ(n−1)(α)

(β −α)(n−3)!

∫ β

α
O(v)dv+Kn(α,β ;ψ), (26)

the remainders K̃n(α,β ;ψ) and Kn(α,β ;ψ) satisfy the bounds

|K̃n(α,β ;ψ)| � 1
(n−3)!

[Δ(Õ,Õ)]
1
2

√
β −α

2

∣∣∣∣
∫ β

α
(v−α)(β − v)[ψ(n+1)(v)]2dv

∣∣∣∣
1
2

,

(27)

|Kn(α,β ;ψ)| � 1
(n−3)!

[Δ(O,O)]
1
2

√
β −α

2

∣∣∣∣
∫ β

α
(v−α)(β − v)[ψ(n+1)(v)]2dv

∣∣∣∣
1
2

,

(28)
respectively.

Proof. If we apply Theorem 7 for f 	→ Õ and h 	→ ψ(n) , we get∣∣∣∣ 1
(β −α)

∫ β

α
Õ(v)ψ(n)(v)dv− 1

(β −α)

∫ β

α
Õ(v)dv.

1
(β −α)

∫ β

α
ψ(n)(v)dv

∣∣∣∣
� 1√

2
[Δ(Õ,Õ)]

1
2

1√
β −α

∣∣∣∣
∫ β

α
(v−α)(β − v)[ψ(n+1)(v)]2dv

∣∣∣∣
1
2

. (29)

Divide both sides of (29) by (n−3)! and multiplying by (β −α) , we have∣∣∣∣ 1
(n−3)!

∫ β

α
Õ(v)ψ(n)(v)dv− 1

(n−3)!

∫ β

α
Õ(v)dv.

ψ(n−1)(β )−ψ(n−1)(α)
(β −α)

∣∣∣∣
� 1

(n−3)!
[Δ(Õ,Õ)]

1
2

√
β −α

2

∣∣∣∣
∫ β

α
(v−α)(β − v)[ψ(n+1)(v)]2dv

∣∣∣∣
1
2

. (30)

By denoting

K̃n(α,β ;ψ)=
1

(n−3)!

∫ β

α
Õ(v)ψ(n)(v)dv− 1

(n−3)!

∫ β

α
Õ(v)dv.

ψ(n−1)(β )−ψ(n−1)(α)
(β−α)

.

in (30), we have (27). Hence, we have

1
(n−3)!

∫ β

α
Õ(v)ψ(n)(v)dv =

ψ(n−1)(β )−ψ(n−1)(α)
(β −α)(n−3)!

∫ β

α
Õ(v)dv+ K̃n(α,β ;ψ),
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where the remainder K̃n(α,β ;ψ) satisfies the estimation (27) . Now from identity (9),
we obtain (25) .

Similarly, from identity (10), we obtain (26) . �
The following Grüss type inequalities can be obtained by using Theorem 8

THEOREM 10. Let ψ : [α,β ] → R be such that for n � 2 , ψ(n) is absolutely
continuous and let ψ(n+1) � 0 on [α,β ] with Õ and O defined in (23) and (24)
respectively. Then the representation (25) and the remainder K̃n(α,β ;ψ) satisfies the
estimation

|K̃n(α,β ;ψ)| � (β −α)||Õ′||∞
(n−3)!

[
ψ(n−1)(β )+ ψ(n−1)(α)

2
− ψ(n−2)(β )−ψ(n−2)(α)

(β −α)

]
,

(31)
whereas the representation (26) and the remainder Kn(α,β ;ψ) satisfies the estimation

|Kn(α,β ;ψ)| � (β −α)||O′||∞
(n−3)!

[
ψ(n−1)(β )+ ψ(n−1)(α)

2
− ψ(n−2)(β )−ψ(n−2)(α)

(β −α)

]
.

(32)

Proof. Applying Theorem 8 for f 	→ Õ and h 	→ ψ(n) , we get∣∣∣∣ 1
(β −α)

∫ β

α
Õ(v)ψ(n)(v)dv− 1

(β −α)

∫ β

α
Õ(v)dv.

1
(β −α)

∫ β

α
ψ(n)(v)dv

∣∣∣∣
� 1

2(β −α)
||Õ′||∞

∫ β

α
(v−α)(β − v)ψ(n+1)(v)dv. (33)

Multiplying both sides of (33) by (β −α) , we get∣∣∣∣
∫ β

α
Õ(v)ψ(n)(v)dv−

∫ β

α
Õ(v)dv.

1
(β −α)

∫ β

α
ψ(n)(v)dv

∣∣∣∣
� 1

2
||Õ′||∞

∫ β

α
(v−α)(β − v)ψ(n+1)(v)dv. (34)

Since ∫ β

α
(v−α)(β − v)ψ(n+1)(v)dv

=
∫ β

α
[2v− (α + β )]ψ(n)(v)dv

= (β −α)
[
ψ(n−1)(β )+ ψ(n−1)(α)

]−2
(
ψ(n−2)(β )−ψ(n−2)(α)

)
.

Therefore, using identity (9) and the inequality (34) , we deduce (31) .
Similarly, using (10) instead of (9), we have (32). �
Now we intend to give the Ostrowski type inequalities related to generalizations

of Popoviciu’s inequality.
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THEOREM 11. Suppose all the assumptions of Theorem 4 be satisfied. Moreover,
assume (p,q) is a pair of conjugate exponents, that is p,q ∈ [1,∞] such that 1/p+
1/q = 1 . Let |ψ(n)|p : [α,β ] → R be a R-integrable function for some n � 4 . Then, we
have∣∣∣∣∣∣∣

P(x,p;ψ(x))−ψ ′(α)−ψ ′(β )
β−α

∫ β
α P(x,p;G(x,s))ds

− 1
β−α

∫ β
α P(x,p;G(x,s))

(
n−1
∑
l=2

l
(l−1)!

(
ψ(l) (α) (s−α)l−1−ψ(l) (β ) (s−β)l−1

))
ds

∣∣∣∣∣∣∣
� 1

(n−3)!
||ψ(n)||p

(∫ β

α

∣∣∣∣
∫ β

α
P(x,p;G(x,s))R̃n−2 (s,v)ds

∣∣∣∣
q

dv

)1/q

, (35)

∣∣∣∣∣∣∣
P(x,p;ψ(x))− ψ ′(β )−ψ ′(α)

β−α
∫ β

α P(x,p;G(x,s))ds

− 1
β−α

∫ β
α P(x,p;G(x,s))

(
n−1
∑
l=3

ψ(l)(α)(s−α)l−1−ψ(l)(β )(s−β )l−1

(l−3)!(l−1)

)
ds

∣∣∣∣∣∣∣
� 1

(n−3)!
||ψ(n)||p

(∫ β

α

∣∣∣∣
∫ β

α
P(x,p;G(x,s))Rn−2 (s,v)ds

∣∣∣∣
q

dv

)1/q

. (36)

The constants on the R.H.S. of (35) and (36) are sharp for 1 < p � ∞ and the best
possible for p = 1 , respectively.

Proof. Denote

I =
1

(n−3)!

(∫ β

α
P(x,p;G(x,s))R̃n−2 (s,v)ds

)
, v ∈ [α,β ].

Using identity (9) , we obtain∣∣∣∣∣∣∣
P(x,p;ψ(x))−ψ ′(α)−ψ ′(β )

β−α
∫ β

α P(x,p;G(x,s))ds

− 1
β−α

∫ β
α P(x,p;G(x,s))

(
n−1
∑
l=2

l
(l−1)!

(
ψ(l) (α) (s−α)l−1−ψ(l) (β )(s−β )l−1

))
ds

∣∣∣∣∣∣∣
=
∣∣∣∣
∫ β

α
I(v)ψ(n)(v)dv

∣∣∣∣ . (37)

Apply Hölder’s inequality for integrals on the right hand side of (37), we have

∣∣∣∣
∫ β

α
I(v)ψ(n)(v)dv

∣∣∣∣�
(∫ β

α

∣∣∣ψ(n) (v)
∣∣∣p dv

) 1
p
(∫ β

α
|I(v)|q dv

) 1
q

,

which combine together with (37) gives (35).

For the proof of the sharpness of the constant

(∫ β
α
∣∣I(v)

∣∣qdv

)1/q

, let us define

the function ψ for which the equality in (35) is obtained.
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For 1 < p � ∞ take ψ to be such that

ψ(n)(v) = sgnI(v)|I(v)| 1
p−1 .

For p = ∞ take ψ(n)(v) = sgnI(v) .
For p = 1, we prove that

∣∣∣∣
∫ β

α
I(v)ψ(n)(v)dv

∣∣∣∣� max
v∈[α ,β ]

|I(v)|
(∫ β

α
ψ(n)(v)dv

)
(38)

is the best possible inequality. Suppose that |I(v)| attains its maximum at v0 ∈ [α,β ] .
To start with first we assume that I(v0) > 0. For δ small enough we define ψδ (v) by

ψδ (v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 , α � v � t0 ,

1
δn!(v− v0)n , vo � v � v0 + δ ,

1
n!(v− v0)n−1 , v0 + δ � v � β .

Then for δ small enough

∣∣∣∣
∫ β

α
I(v)ψ(n)(v)dv

∣∣∣∣=
∣∣∣∣
∫ v0+δ

v0

I(v)
1
δ

dv

∣∣∣∣= 1
δ

∫ v0+δ

v0

I(v)dv.

Now from inequality (38) , we have

1
δ

∫ v0+δ

v0

I(v)dv � I(v0)
∫ v0+δ

v0

1
δ

dv = I(v0).

Since

lim
δ→0

1
δ

∫ v0+δ

v0

I(v)dv = I(v0),

the statement follows. The case when I(v0) < 0, we define ψδ (v) by

ψδ (v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
n! (v− v0− δ )n−1 , α � v � v0 ,

−1
δn!(v− v0− δ )n , vo � v � v0 + δ ,

0 , v0 + δ � v � β ,

and rest of the proof is the same as above.
The proof of (36) is also similar, but we use (10) instead of (9). �
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4. Mean value theorems and n -exponential convexity

We recall some definitions and basic results from [2], [5] and [12] which are re-
quired in sequel.

DEFINITION 1. A function ψ : I → R is n -exponentially convex in the Jensen
sense on I if

n

∑
i, j=1

ξiξ j ψ
(

xi + x j

2

)
� 0,

hold for all choices ξ1, . . . ,ξn ∈ R and all choices x1, . . . ,xn ∈ I . A function ψ : I →
R is n -exponentially convex if it is n -exponentially convex in the Jensen sense and
continuous on I .

DEFINITION 2. A function ψ : I →R is exponentially convex in the Jensen sense
on I if it is n -exponentially convex in the Jensen sense for all n ∈ N .

A function ψ : I → R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous.

PROPOSITION 1. If ψ : I → R is an n-exponentially convex in the Jensen sense,

then the matrix
[
ψ
(

xi+x j
2

)]m
i, j=1

is a positive semi-definite matrix for all m∈N,m � n.

Particularly,

det

[
ψ
(

xi + x j

2

)]m

i, j=1
� 0

for all m ∈ N , m = 1,2, . . . ,n.

REMARK 3. It is known that ψ : I → R is a log-convex in the Jensen sense if and
only if

α2ψ(x)+2αβ ψ
(

x+ y
2

)
+ β 2ψ(y) � 0,

holds for every α,β ∈ R and x,y ∈ I . It follows that a positive function is log-convex
in the Jensen sense if and only if it is 2-exponentially convex in the Jensen sense.

A positive function is log-convex if and only if it is 2-exponentially convex.

REMARK 4. By the virtue of Theorem 5, we define the positive linear functionals
with respect to n -convex function ψ as follows

Ω1(ψ) := P(x,p;ψ(x))− ψ ′(α)−ψ ′(β )
β −α

∫ β

α
P(x,p;G(x,s))ds

− 1
β −α

∫ β

α
P(x,p;G(x,s))

×
(

n−1

∑
l=2

l
(l−1)!

(
ψ(l) (α) (s−α)l−1−ψ(l) (β )(s−β)l−1

))
ds � 0, (39)
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and

Ω2(ψ) := P(x,p;ψ(x))− ψ ′(β )−ψ ′(α)
β −α

∫ β

α
P(x,p;G(x,s))ds

− 1
β −α

∫ β

α
P(x,p;G(x,s))

×
(

n−1

∑
l=3

ψ(l) (α) (s−α)l−1 −ψ(l) (β )(s−β)l−1

(l−3)!(l−1)

)
ds � 0. (40)

Lagrange and Cauchy type mean value theorems related to defined functional is
given in the following theorems.

THEOREM 12. Let ψ : [α,β ] → R be such that ψ ∈Cn[α,β ] . If the inequalities
in (14) and (16) are valid, then there exist ξi ∈ [α,β ] such that

Ωi(ψ) = ψ(n)(ξ )Ωi(ϕ); i = 1,2,

where ϕ(x) = xn

n! and Ωi(·) are defined in Remark 4.

Proof. Similar to the proof of Theorem 4.1 in [6]. �

THEOREM 13. Let ψ ,λ : [α,β ] → R be such that ψ ,λ ∈ Cn[α,β ] . If the in-
equalities in (14) and (16) are valid, then there exist ξi ∈ [α,β ] such that

Ωi(ψ)
Ωi(λ )

=
ψ(n)(ξ )
λ (n)(ξ )

; i = 1,2,

provided that the denominators are non-zero and Ωi(·) are defined in Remark 4.

Proof. Similar to the proof of Corollary 4.2 in [6]. �
Theorem 13 enables us to define Cauchy means, because if

ξi =

(
ψ(n)

λ (n)

)−1(
Ωi(ψ)
Ωi(λ )

)
,

which show that ξi ( i = 1,2) are means of α , β for given functions ψ and λ .
Next we construct the non trivial examples of n -exponentially and exponentially

convex functions from positive linear functionals Ωi(·) ( i = 1,2). We use the idea
given in [12]. In the sequel I and J are intervals in R .

THEOREM 14. Let Θ = {ψt : t ∈ J} , where J is an interval in R , be a family of
functions defined on an interval I in R such that the function t 	→ [x0, . . . ,xn;ψt ] is
n-exponentially convex in the Jensen sense on J for every (n + 1) mutually different
points x0, . . . ,xn ∈ I . Then for the linear functionals Ωi(ψt) ( i = 1,2 ) as defined in
Remark 4, the following statements are valid for each i = 1,2 :
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(i) The function t → Ωi(ψt) is n-exponentially convex in the Jensen sense on J and
the matrix [Ωi(ψ t j+tl

2
)]mj,l=1 is a positive semi-definite for all m ∈ N , m � n,

t1, ..,tm ∈ J . Particularly,

det[Ωi(ψ t j+tl
2

)]mj,l=1 � 0 for all m ∈ N , m = 1,2, . . . ,n.

(ii) If the function t → Ωi(ψt) is continuous on J , then it is n-exponentially convex
on J .

Proof. Fix i = 1,2.
(i) For ξ j ∈ R and t j ∈ J , j = 1, . . . ,n , we define the function

h(x) =
n

∑
j,l=1

ξ jξlψ t j+tl
2

(x).

Using the assumption that the function t 	→ [x0, . . . ,xn;ψt ] is n -exponentially convex in
the Jensen sense, we have

[x0, . . . ,xn,h] =
n

∑
j,l=1

ξ jξl [x0, . . . ,xn;ψ t j+tl
2

] � 0,

which in turn implies that h is a n -convex function on J , therefore from Remark 4 we
have Ωi(h) � 0. The linearity of Ωi(·) gives

n

∑
j,l=1

ξ jξlΩi(ψ t j+tl
2

) � 0.

We conclude that the function t 	→ Ωi(ψt) is n -exponentially convex on J in the Jensen
sense.

The remaining part follows from Proposition 1.
(ii) If the function t → Ωi(ψt) is continuous on J , then it is n -exponentially con-

vex on J by definition. �
The following corollary is an immediate consequence of the above theorem

COROLLARY 1. Let Θ = {ψt : t ∈ J} , where J is an interval in R , be a family
of functions defined on an interval I in R , such that the function t 	→ [x0, . . . ,xn;ψt ]
is exponentially convex in the Jensen sense on J for every (n + 1) mutually different
points x0, . . . ,xn ∈ I . Then for the linear functional Ωi(ψt) ( i = 1,2 ), the following
statements hold:

(i) The function t → Ωi(ψt) is exponentially convex in the Jensen sense on J and
the matrix [Ωi(ψ t j+tl

2
)]mj,l=1 is a positive semi-definite for all m ∈ N , m � n,

t1, ..,tm ∈ J . Particularly,

det[Ωi(ψ t j+tl
2

)]mj,l=1 � 0 for all m ∈ N , m = 1,2, . . . ,n.
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(ii) If the function t → Ωi(ψt) is continuous on J , then it is exponentially convex on
J .

COROLLARY 2. Let Θ = {ψt : t ∈ J} , where J is an interval in R , be a family
of functions defined on an interval I in R , such that the function t 	→ [x0, . . . ,xn;ψt ] is
2 -exponentially convex in the Jensen sense on J for every (n + 1) mutually different
points x0, . . . ,xn ∈ I . Let Ωi(·) ( i = 1,2 ) be linear functionals, then the following
statements hold:

(i) If the function t 	→ Ωi(ψt) is continuous on J , then it is 2 -exponentially convex
function on J . If t 	→ Ωi(ψt) is additionally strictly positive, then it is also log-
convex on J . Furthermore, the following inequality holds true:

[Ωi(ψs)]t−r � [Ωi(ψr)]t−s [Ωi(ψt)]s−r ,

for every choice r,s,t ∈ J , such that r < s < t .

(ii) If the function t 	→ Ωi(ψt ) is strictly positive and differentiable on J, then for
every p,q,u,v ∈ J , such that p � u and q � v, we have

μp,q(Ωi,Θ) � μu,v(Ωi,Θ), (41)

where

μp,q(Ωi,Θ) =

⎧⎪⎪⎨
⎪⎪⎩
(

Ωi(ψp)
Ωi(ψq)

) 1
p−q

, p �= q,

exp

(
d
dp Ωi(ψp)
Ωi(ψp)

)
, p = q,

(42)

for ψp,ψq ∈ Θ .

Proof. Fix i = 1,2.

(i) This is an immediate consequence of Theorem 14 and Remark 3.

(ii) Since p 	→ Ωi(ψt) is positive and continuous, by (i) we have that t 	→ Ωi(ψt) is
log-convex on J , that is, the function t 	→ logΩi(ψt) is convex on J . Hence we
get

logΩi(ψp)− logΩi(ψq)
p−q

� logΩi(ψu)− logΩi(ψv)
u− v

, (43)

for p � u , q � v , p �= q , u �= v . So, we conclude that

μp,q(Ωi,Θ) � μu,v(Ωi,Θ).

Cases p = q and u = v follow from (43) as limit cases. �
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5. Applications to Cauchy means

In this section, we present some families of functions which fulfil the conditions of
Theorem 14, Corollary 1 and Corollary 2. This enables us to construct a large families
of functions which are exponentially convex. Explicit form of this functions is obtained
after we calculate explicit action of functionals on a given family.

EXAMPLE 1. Let us consider a family of functions

Θ1 = {ψt : R → R : t ∈ R}

defined by

ψt(x) =

{
etx

tn , t �= 0,

xn

n! , t = 0.

Since dnψt
dxn (x) = etx > 0, the function ψt is n -convex on R for every t ∈ R and t 	→

dnψt
dxn (x) is exponentially convex by definition. Using analogous arguing as in the proof
of Theorem 14 we also have that t 	→ [x0, . . . ,xn;ψt ] is exponentially convex (and so
exponentially convex in the Jensen sense). Now, using Corollary 1 we conclude that
t 	→ Ωi(ψt ) ( i = 1,2) are exponentially convex in the Jensen sense. It is easy to verify
that this mapping is continuous (although the mapping t 	→ ψt is not continuous for
t = 0), so it is exponentially convex. For this family of functions, μt,q(Ωi,Θ1) from
(42), becomes

μt,q(Ωi,Θ1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Ωi(ψt)
Ωi(ψq)

) 1
t−q

, t �= q,

exp
(

Ωi(id·ψt)
Ωi(ψt)

− n
t

)
, t = q �= 0,

exp
(

1
n+1

Ωi(id·ψ0)
Ωi(ψ0)

)
, t = q = 0,

i = 1,2

where “ id ” is the identity function. By Corollary 2 μt,q(Ωi,Θ1) is a monotone function
in parameters t and q .

Since (
dn ft
dxn

dn fq
dxn

) 1
t−q

(logx) = x,

using Theorem 13 it follows that:

Mt,q(Ωi,Θ1) = logμt,q(Ωi,Θ1), i = 1,2

satisfies
α � Mt,q(Ωi,Θ1) � β , i = 1,2.

Hence Mt,q(Ωi,Θ1) ( i = 1,2) are monotonic means.
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EXAMPLE 2. Let us consider a family of functions

Θ2 = {gt : (0,∞) → R : t ∈ R}
defined by

gt(x) =

⎧⎨
⎩

xt

t(t−1)···(t−n+1) , t /∈ {0,1, . . . ,n−1},
x j logx

(−1)n−1− j j!(n−1− j)! , t = j ∈ {0,1, . . . ,n−1}.
Since dngt

dxn (x) = xt−n > 0, the function gt is n -convex for x > 0 and t 	→ dngt
dxn (x) is

exponentially convex by definition. Arguing as in Example 1 we get that the mappings
t 	→Ωi(gt) is exponentially convex for each i = 1,2. Hence, for this family of functions
μp,q(Ωi,Θ2) ( i = 1,2), from (42), are equal to

μt,q(Ωi,Θ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Ωi(gt)
Ωi(gq)

) 1
t−q

, t �= q,

exp

(
(−1)n−1(n−1)!Ωi(g0gt)

Ωi(gt)
+

n−1
∑

k=0

1
k−t

)
, t = q /∈ {0,1, . . . ,n−1},

exp

⎛
⎝(−1)n−1(n−1)!Ωi(g0gt)

2Ωi(gt)
+

n−1
∑

k=0
k �=t

1
k−t

⎞
⎠ , t = q ∈ {0,1, . . . ,n−1}.

Again, using Theorem 13 we conclude that

α �
(

Ωi(gt)
Ωi(gq)

) 1
t−q

� β , i = 1,2.

Hence μt,q(Ωi,Θ2) ( i = 1,2) are means and their monotonicity is followed by (41).

EXAMPLE 3. Let

Θ3 = {ζt : (0,∞) → R : t ∈ (0,∞)}
be a family of functions defined by

ζt(x) =

⎧⎨
⎩

t−x

(− logt)n , t �= 1;

xn

(n)! , t = 1.

Since dnζt
dxn (x) = t−x is the Laplace transform of a non-negative function (see [16]) it is

exponentially convex. Obviously ζt are n -convex functions for every t > 0.
For this family of functions, μt,q (Ωi,Θ3) , in this case for [α,β ] ⊂ R

+ , from (42)
become

μt,q (Ωi,Θ3) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Ωi(ζt )
Ωi(ζq)

) 1
t−q

, t �= q;

exp
(
−Ωi(id.ζt )

tΩi(ζt)
− n

t logt

)
, t = q �= 1;

exp
(
− 1

n+1
Ωi(id.ζ1)

Ωi(ζ1)

)
, t = q = 1,

i = 1,2
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where “ id ” is the identity function. By Corollary 2 μp,q(Ωi,Θ3) ( i = 1,2) are mono-
tone functions in parameters t and q .

Using Theorem 13 it follows that

Mt,q (Ωi,Θ3) = −L(t,q)logμt,q (Ωi,Θ3) , i = 1,2

satisfy

α � Mt,q (Ωi,Θ3) � β , i = 1,2.

This shows that Mt,q (Ωi,Θ3) is a mean for each i = 1,2. Because of the inequality
(41), these means are monotonic. Furthermore, L(t,q) is logarithmic mean defined by

L(t,q) =

{ t−q
log t−logq , t �= q;

t, t = q.

EXAMPLE 4. Let

Θ4 = {γt : (0,∞) → R : t ∈ (0,∞)}

be a family of functions defined by

γt(x) =
e−x

√
t(−√

t
)n .

Since dnγt
dxn (x) = e−x

√
t is the Laplace transform of a non-negative function (see [16]) it

is exponentially convex. Obviously γt are n -convex function for every t > 0.
For this family of functions, μt,q (Ωi,Θ4) ( i = 1,2), in this case for [α,β ] ⊂ R

+ ,
from (42) become

μt,q (Ωi,Θ4) =

⎧⎪⎨
⎪⎩
(

Ωi(γt)
Ωi(γq)

) 1
t−q

, t �= q;

exp
(
− Ωi(id.γt)

2
√

tΩi(γt)
− n

2t

)
, t = q;

i = 1,2.

By Corollary 2, these are monotone functions in parameters t and q .
Using Theorem 13 it follows that

Mt,q (Ωi,Θ4) = −(√t +
√

q
)
lnμt,q (Ωi,Θ4) , i = 1,2

satisfy

α � Mt,q (Ωi,Θ4) � β , i = 1,2.

This shows that Mt,q (Ωi,Θ4) ( i = 1,2) are means. Because of the above inequality
(41), these means are monotonic in nature.
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