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APPLICATIONS OF REFINED HARDY–TYPE INEQUALITIES

SAJID IQBAL, JOSIP PEČARIĆ, MUHAMMAD SAMRAIZ AND NAZRA SULTANA

(Communicated by S. Varošanec)

Abstract. This paper is to provide the broad range of Hardy-type inequalities and their refine-
ments for linear differential operator, Widder’s derivative and more generalized fractional inte-
gral operator using convex and monotone convex functions. As special cases we give results for
Saigo, Riemann-Liouville and Erdélyi-Kober fractional integral operators.

1. Introduction

Let (Σ1,Ω1,μ1) and (Σ2,Ω2,μ2) be measure spaces with positive σ -finite mea-
sures. Let U( f ,k) denote the class of functions g : Ω1 → R with the representation

g(x) =
∫

Ω2

k(x,t) f (t)dμ2(t),

and Ak be an integral operator defined by

Ak f (x) :=
g(x)
K(x)

=
1

K(x)

∫
Ω2

k(x,t) f (t)dμ2(t), (1)

where k : Ω1×Ω2 → R is measurable and non-negative kernel, f : Ω2 → R is measur-
able function and

0 < K(x) :=
∫

Ω2

k(x,t)dμ2(t), x ∈ Ω1. (2)

Hardy-type inequalities attracted the attention of many mathematicians and they gave a
lot of interesting generalizations and improvements of these inequalities and has added
the rich literature in this field. Čižmešija, Krulić Himmelreich, Pečarić and Persson
([2], [6], [14], [16]) has studied a lot of Hardy-type inequalities which is an incredible
contribution in theory of inequalities. But we give such type of inequalities for linear
differential operator, Widder’s derivative and more general fractional integral operator
using convex and monotone convex functions. For more detail we refer [1], [4], [10],
[13], [15] and the references cited therein.

The upcoming theorem is given in [14].
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THEOREM 1. Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with positive
σ -finite measures, u be a weight function on Ω1 , k a non-negativemeasurable function
on Ω1 ×Ω2 , and K be defined on Ω1 by (2) . Suppose that K(x) > 0 for all x ∈ Ω1 ,

that the function x �→ u(x) k(x,t)
K(x) is integrable on Ω1 for each fixed t ∈ Ω2 , and that v

is defined on Ω2 by

v(t) :=
∫

Ω1

u(x)
k(x,t)
K(x)

dμ1(x) < ∞. (3)

If Φ is a convex function on the interval I ⊆ R , then the inequality∫
Ω1

u(x)Φ(Ak f (x))dμ1(x) �
∫

Ω2

v(t)Φ( f (t))dμ2(t), (4)

holds for all measurable functions f : Ω2 → R , such that Im f ⊆ I , where Ak is defined
by (1) .

Substitute k(x, t) by k(x,t) f2(t) and f by f1
f2

, where fi : Ω2 → R , (i = 1,2) are
measurable functions in Theorem 1, we obtain the following result (see [11]).

THEOREM 2. Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with σ -finite
measures, u be a weight function on Ω1, k be a non-negative measurable function on
Ω1 ×Ω2. Assume that the function x �→ u(x) k(x,t)

g2(x)
is integrable on Ω1 for each fixed

t ∈ Ω2. Define p on Ω2 by

p(t) := f2(t)
∫

Ω1

u(x)
k(x,t)
g2(x)

dμ1(x) < ∞.

If Φ : I → R is a convex function and g1(x)
g2(x)

, f1(t)
f2(t)

∈ I, then the inequality

∫
Ω1

u(x)Φ
(

g1(x)
g2(x)

)
dμ1(x) �

∫
Ω2

p(t)Φ
(

f1(t)
f2(t)

)
dμ2(t), (5)

holds for all gi ∈ U( fi,k) , (i = 1,2) and for all measurable functions fi : Ω2 → R ,
(i = 1,2) .

REMARK 1. If Φ is strictly convex on I and f1(x)
f2(x)

is non-constant, then the in-

equality given in (5) is strict.

New refined general weighted Hardy-type inequality with a non-negative kernel
and related to an arbitrary convex function is given in the following theorem (see [5]).
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THEOREM 3. Let the assumptions of Theorem 1 be satisfied. Moreover, if Φ is a
convex function on an interval I ⊆ R and ϕ : I → R is any function, such that ϕ(x) ∈
∂Φ(x) for all x ∈ IntI , then the inequality∫

Ω2

v(t)Φ( f (t))dμ2(t)−
∫

Ω1

u(x)Φ(Ak f (x))dμ1(x)

�
∫

Ω1

u(x)
K(x)

∫
Ω2

k(x,t) | |Φ( f (t))−Φ(Ak f (x))|

− |ϕ(Ak f (x))| · | f (t)−Ak f (x)| | dμ2(t)dμ1(x),

holds for all measurable functions f : Ω2 → R , such that f (t) ∈ I for all t ∈ Ω2 .
If Φ is a monotone convex function on an interval I ⊆ R, then the inequality∫

Ω2

v(t)Φ( f (t))dμ2(t)−
∫

Ω1

u(x)Φ(Ak f (x))dμ1(x)

�
∣∣∣∣∣
∫

Ω1

u(x)
K(x)

∫
Ω2

sgn( f (t)−Ak f (x))k(x,t)
[

Φ( f (t))−Φ(Ak f (x))

−|ϕ(Ak f (x))| · ( f (t)−Ak f (x))
]
dμ2(t)dμ1(x)

∣∣∣∣∣,
holds for all measurable functions f : Ω2 → R, such that f (t) ∈ I, for all fixed t ∈ Ω2

where Ak f is defined by (1).

In the following theorem, a refinement of a Hardy–type inequality obtained by S.
Kaijser et al. in [13].

THEOREM 4. Let u : (0,b) → R be a weight function such that the function x �→
u(x)
x · k(x,t)

K(x) is integrable on (t,b) for each fixed t ∈ (0,b) , and let the function w :

(0,b) → R be defined by

w(t) := t

b∫
t

k(x,t)
K(x)

u(x)
dx
x

,

where 0 < b � ∞ and k : (0,b)× (0,b) → R be a non-negative measurable function,
such that

K(x) =
x∫

0

k(x,t) dt > 0, x ∈ (0,b).

If Φ is a convex function on an interval I ⊆R and ϕ : I →R is such that ϕ(x)∈ ∂Φ(x)
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for all x ∈ Int I , then the inequality

b∫
0

w(t)Φ( f (t))
dt
t
−

b∫
0

u(x)Φ(Ak f (x))
dx
x

(6)

�
b∫

0

u(x)
K(x)

x∫
0

k(x, t) | |Φ( f (t))−Φ(Ak f (x))|− |ϕ(Ak f (x))| | f (t)−Ak f (x)| |dt
dx
x

,

holds for all measurable functions f : (0,b)→ R with values in I and for Ak f defined
by

Ak f (x) :=
1

K(x)

x∫
0

k(x,t) f (t)dt, x ∈ (0,b).

If the function Φ is concave, the order of integrals on the left-hand side of (6) is
reversed. If Φ is monotone convex on the interval I ⊆ R, then the following inequality

b∫
0

w(t)Φ( f (t))
dt
t
−

b∫
0

u(x)Φ(Ak f (x))
dx
x

�
∣∣∣ b∫

0

u(x)
K(x)

x∫
0

sgn( f (t)−Ak f (x))k(x,t)
[

Φ( f (t)−Φ(Ak f (x))

−|ϕ(Ak f (x))|.( f (t)−Ak f (x))
]
dt

dx
x

∣∣∣,
holds for all measurable functions f : (0,b) → R with values in I .

Next mean value theorem is given in [8].

THEOREM 5. Let (Ω1,Σ1,μ1) , (Ω2,Σ2,μ2) be measure spaces with σ -finite mea-
sures and u : Ω1 → R be a weight function. Let I be compact interval of R , h̃ ∈C2(I) ,
and f : Ω2 → R a measurable function such that Im f ⊆ I . Then there exists η ∈ I
such that ∫

Ω2

v(t)h̃( f (t))dμ2(t)−
∫

Ω1

u(x)h̃(Ak f (x))dμ1(x)

=
h̃′′(η)

2

⎡⎣∫
Ω2

v(t) f 2(t)dμ2(t)−
∫

Ω1

u(x)(Ak f (x))2 dμ1(x)

⎤⎦ ,

where Ak f and v are defined by (1) and (3) respectively.

We continue with the definition of exponentially convex function as originally
given in [3] by Bernstein.
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DEFINITION 1. A function Φ : (a,b) → R is exponentially convex if it is contin-
uous and

n

∑
i, j=1

tit jΦ(xi + x j) � 0,

for all n∈N and all sequences (tn)n∈N and (xn)n∈N of real numbers, such that xi +x j ∈
(a,b) , 1 � i, j � n .

LEMMA 1. For s ∈ R , let function ϕs : (0,∞) → R be defined by

ϕs(x) =

⎧⎪⎪⎨⎪⎪⎩
xs

s(s−1) , s �= 0,1,

− logx, s = 0,

x logx, s = 1.

(7)

Then ϕ ′′
s (x) = xs−2 , that is, ϕs is a convex function.

THEOREM 6. [8] Let the conditions of Theorem 1 be satisfied and ϕs be defined
by (7) . Let f be a positive function. Then the function ξ : R → [0,∞) defined by

ξ (s) =
∫

Ω2

v(t)ϕs( f (t))dμ2(t)−
∫

Ω1

u(x)ϕs(Ak f (x))dμ1(x),

is exponentially convex.

THEOREM 7. Let the conditions of Theorem 5 be satisfied. Moreover, g, h̃∈C2(I)
such that h̃′′(x) �= 0 for every x ∈ I and∫

Ω2

v(t) h̃( f (t))dμ2(t)−
∫

Ω1

u(x) h̃(Ak f (x))dμ1(x) �= 0.

Then there exists η ∈ I such that it holds

g′′(η)
h̃′′(η)

=

∫
Ω2

v(t)g( f (t))dμ2(t)−
∫

Ω1

u(x)g(Ak f (x))dμ1(x)∫
Ω2

v(t) h̃( f (t))dμ2(t)−
∫

Ω1

u(x) h̃(Ak f (x))dμ1(x)
.

Under assumptions of the Theorem 1, we define a linear functional by taking the
positive difference of the inequality stated in (4) as:

Δ1(Φ) =
∫

Ω2

v(t)Φ( f (t))dμ2(t)−
∫

Ω1

u(x)Φ(Ak f (x))dμ1(x). (8)

We also define a linear functional by taking the positive difference of left-hand side and
right-hand side of the inequality (5) given in Theorem 2 as:

Δ2(Φ) =
∫

Ω2

p(t)Φ
(

f1(t)
f2(t)

)
dμ2(t)−

∫
Ω1

u(x)Φ
(

g1(x)
g2(x)

)
dμ1(x). (9)
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First we give some necessary details about the divided differences. Let I ⊆ R be an
interval and f : I → R be a function. Then for distinct points zi ∈ I, i = 0,1,2, the
divided differences of first and second order are defined by:

[zi,zi+1; f ] =
f (zi+1)− f (zi)

zi+1− zi
, (i = 0,1) ,

[z0,z1,z2; f ] =
[z1,z2; f ]− [z0,z1; f ]

z2− z0
. (10)

The values of the divided differences are independent of the order of points z0,z1,z2

and may be extended to include the cases when some or all points are equal, that is

[z0,z0; f ] = lim
z1→z0

[z0,z1; f ] = f ′(z0),

provided that f ′ exists.
Now passing through the limit z1 → z0 and replacing z2 by z in (10) , we have

(see [16, p. 16])

[z0,z0,z; f ] = lim
z1→z0

[z0,z1,z; f ] =
f (z)− f (z0)− (z− z0) f ′(z0)

(z− z0)
2 , z �= z0,

provided that f ′ exists. Also passing to the limit zi → z (i = 0,1,2) in (10) , we have

[z,z,z; f ] = lim
zi→z

[z0,z1,z2; f ] =
f ′′(z)

2
,

provided that f ′′ exists.
One can observe that if for all z0,z1 ∈ I , [z0,z1, f ] � 0, then f is increasing on

I and if for all z0,z1,z2 ∈ I , [z0,z1,z2; f ] � 0, then f is convex on I . The following
theorem is given in [12].

THEOREM 8. Let Γ = {Φp : p ∈ J} be a family of functions defined on I , such
that the function p �→ [z0,z1,z2;Φp] is n-exponentially convex in the Jensen sense on
J for every three distinct points z0, z1, z2 ∈ I . Let Δi (i = 1,2) be linear functionals
defined by (8) , (9) . Then the function p �→Δi(Φp) (i = 1,2) is n-exponentially convex
in the Jensen sense on J, if it is continuous on J.

The rest of the paper is planned in the following way: In Section 2, we prove
new Hardy-type inequalities and their refinements involving linear differential oper-
ator. Section 3 deals with Hardy-type, refined Hardy-type inequalities for Widder’s
derivative. Section 4 contain refined Hardy-type inequalities for generalized fractional
integral operator. As special case we obtain the results for Saigo, Riemann-Liouville
and Erdélyi-Kober fractional integral operators.
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2. Hardy-type inequalities for linear differential operator

Let [a,b]⊂R , ai(x) , i = 0,1, . . . ,n−1 (n ∈ N), h(x) be continuous functions on
[a,b]. Let

L = Dn +an−1(x)Dn−1 + . . .+a0(x), x ∈ (a,b),

be a fixed linear differential operator on Cn[a,b]. Let y1(x), . . . ,yn(x) be a set of linearly
independent solution to Ly = 0 and the associated Green’s function for L is

H(x,t) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1(t) · · · yn(t)
y′1(t) · · · y′n(t)
· · ·
· · ·
· · ·

y(n−2)
1 (t) · y(n−2)

n (t)
y1(x) · · · yn(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1(t) · · · yn(t)
y′1(t) · · · y′n(t)
· · ·
· · ·
· · ·

y(n−2)
1 (t) · y(n−2)

n (t)
y(n−1)
1 (t) · · · y(n−1)

n (t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

which is continuous function on [a,b]2, then

y(x) =
x∫

a

H(x,t)h(t)dt, for all x ∈ [a,b],

is the unique solution to the initial value problem

Ly = h, y(i)(a) = 0, i = 0,1, . . . ,n−1.

In our first upcoming main result we establish the refinement of the Theorem 2.1
of [9].

THEOREM 9. Let u be a weight function on (a,b) , H(x,t) be a non-negative
measurable Green function associated to linear differential operator L. Suppose that
H̃(x) > 0 for all x ∈ (a,b) , that the function x �→ u(x)H(x,t)

H̃(x)
is integrable on (a,b) for

each fixed t ∈ (a,b) and v is defined on (a,b) by

v(t) :=
b∫

t

u(x)
H(x,t)
H̃(x)

dx < ∞. (11)
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If Φ is a convex function on an interval I ⊆ R and ϕ : I → R is any function, such that
ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I , then the inequality

b∫
a

v(t)Φ(h(t))dt−
b∫

a

u(x)Φ

⎛⎝ 1

H̃(x)

x∫
a

H(x, t)h(t)dt

⎞⎠dx (12)

�
b∫

a

u(x)
H̃(x)

x∫
a

H(x,t)

∣∣∣∣∣∣
∣∣∣∣∣∣Φ(h(t))−Φ

⎛⎝ 1

H̃(x)

x∫
a

H(x,t)h(t)dt

⎞⎠
∣∣∣∣∣∣

−
∣∣∣∣∣∣ϕ
⎛⎝ 1

H̃(x)

x∫
a

H(x,t)h(t)dt

⎞⎠
∣∣∣∣∣∣ ·
∣∣∣∣∣∣h(t)− 1

H̃(x)

x∫
a

H(x,t)h(t)dt

∣∣∣∣∣∣
∣∣∣∣∣∣dtdx,

holds for all measurable functions h : (a,b) → R , such that h(t) ∈ I for all t ∈ (a,b) .
If Φ is a monotone convex function on an interval I ⊆ R, then the inequality

b∫
a

v(t)Φ(h(t))dt−
b∫

a

u(x)Φ

⎛⎝ 1

H̃(x)

x∫
a

H(x,t)h(t)dt

⎞⎠dx (13)

�
∣∣∣∣∣

b∫
a

u(x)
H̃(x)

x∫
a

sgn

⎛⎝h(t)− 1

H̃(x)

x∫
a

H(x,t)h(t)dt

⎞⎠
×H(x, t)

⎡⎣Φ(h(t))−Φ

⎛⎝ 1

H̃(x)

x∫
a

H(x,t)h(t)dt

⎞⎠
−
∣∣∣∣∣∣ϕ
⎛⎝ 1

H̃(x)

x∫
a

H(x,t)h(t)dt

⎞⎠
∣∣∣∣∣∣ ·
⎛⎝h(t)− 1

H̃(x)

x∫
a

H(x,t)h(t)dt

⎞⎠⎤⎦ dt dx

∣∣∣∣∣,
holds for all measurable functions h : (a,b) → R, such that h(t) ∈ I, for all fixed
t ∈ (a,b) and H̃(x) is defined as

0 < H̃(x) :=
x∫

a

H(x,t)dt.

Proof. Applying Theorem 3 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt
and k(x, t) = H(x, t), we get inequality (12) and inequality (13). �

REMARK 2. Choose the particular convex function Φ(x) = xν , ν � 1 and weight

function u(x) = H̃(x) in Theorem 9 we obtain, v(t) =
b∫
t
H(x,t)dx =: K1(t) . Since right

hand side of inequality (12) and inequality (13) is non negative, we obtain

b∫
a

H̃1−ν(x)

⎛⎝ x∫
a

H(x,t)h(t)dt

⎞⎠ν

dx �
b∫

a

K1(t)hν(t)dt. (14)
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Inequality (14) gives

H̃1−ν(b)
b∫

a

yν(x)dx � K1(a)
b∫

a

hν(t)dt.

This implies that

‖y‖ν(a,b) �
(

K1(a)
H̃1−ν(b)

) 1
ν
‖h‖ν(a,b).

One-dimensional setting give refined Hardy and Pólya-Knopp-type inequalities. In
the following theorem, a refinement of a Hardy-type inequality obtained by S. Kaijser
et al. in [13] is given for linear differential operator.

THEOREM 10. Let 0 < b � ∞ and H : (0,b)× (0,b) → R be a non-negative
measurable function, such that

H(x) =
x∫

0

H(x,t) dt > 0, x ∈ (0,b).

Let a weight u : (0,b) → R be such that the function x �→ u(x)
x · H(x,t)

H(x)
is integrable on

(t,b) for each fixed t ∈ (0,b) , and let the function w : (0,b) → R be defined by

w(t) := t

b∫
t

H(x,t)
H(x)

u(x)
dx
x

.

If Φ is a convex function on an interval I ⊆R and ϕ : I →R is such that ϕ(x)∈ ∂Φ(x)
for all x ∈ Int I , then the inequality

b∫
0

w(t)Φ(h(t))
dt
t
−

b∫
0

u(x)Φ

⎛⎝ 1

H(x)

x∫
0

H(x,t)h(t)dt

⎞⎠ dx
x

(15)

�
b∫

0

u(x)
H(x)

x∫
0

H(x,t)

∣∣∣∣∣∣
∣∣∣∣∣∣Φ(h(t))−Φ

⎛⎝ 1

H(x)

x∫
0

H(x,t)h(t)dt

⎞⎠∣∣∣∣∣∣
−
∣∣∣∣∣∣ϕ
⎛⎝ 1

H(x)

x∫
0

H(x,t)h(t)dt

⎞⎠∣∣∣∣∣∣ ·
∣∣∣∣∣∣h(t)− 1

H(x)

x∫
0

H(x,t)h(t)dt

∣∣∣∣∣∣
∣∣∣∣∣∣dt

dx
x

,

holds for all measurable functions h : (0,b) → R with values in I . If the function Φ
is concave, the order of integrals on the left-hand side of (15) is reversed. If Φ is
monotone convex on the interval I ⊆ R and ϕ : I → R is such that ϕ(x) ∈ ∂Φ(x) for



1548 S. IQBAL, J. PEČARIĆ, M. SAMRAIZ AND N. SULTANA

all x ∈ IntI, then the following inequality

b∫
0

w(t)Φ(h(t))
dt
t
−

b∫
0

u(x)Φ

⎛⎝ 1

H(x)

x∫
0

H(x,t)h(t)dt

⎞⎠ dx
x

(16)

�
∣∣∣∣∣

b∫
0

u(x)
H(x)

x∫
0

sgn

⎛⎝h(t)− 1

H(x)

x∫
0

H(x,t)h(t)dt

⎞⎠
×H(x, t)

⎡⎣Φ(h(t))−Φ

⎛⎝ 1

H(x)

x∫
0

H(x,t)h(t)dt

⎞⎠
−
∣∣∣∣∣∣ϕ
⎛⎝ 1

H(x)

x∫
0

H(x,t)h(t)dt

⎞⎠
∣∣∣∣∣∣ ·
⎛⎝h(t)− 1

H(x)

x∫
0

H(x,t)h(t)dt

⎞⎠⎤⎦dt
dx
x

∣∣∣∣∣,
holds for all measurable functions h : (0,b) → R with values in I .

Proof. Applying Theorem 4 with k(x,t) = H(x,t), we get inequality (15) and
inequality (16). �

REMARK 3. Choose the particular convex function Φ(x) = xν , ν � 1 and weight

function u(x) = xH(x) in Theorem 10 we obtain, w(t) = t
b∫
t
H(x,t)dx = tK1(t) . Since

the right hand side of inequality (15) and inequality (16) is non negative, we obtain

‖y‖ν(0,b) �
(

K1(0)

H
1−ν

(b)

) 1
ν

‖h‖ν(0,b).

Next we give the mean value theorem’s for linear differential operators.

THEOREM 11. Let u : (a,b) → R be a weight function. Let I be a compact in-
terval of R , h̃ ∈C2(I) , and h : (a,b) → R a measurable function such that Imh ⊆ I .
Then there exists η ∈ I such that

b∫
a

v(t)h̃(h(t))dt−
b∫

a

u(x)h̃

⎛⎝ 1

H̃(x)

x∫
a

H(x, t)h(t)dt

⎞⎠ dx (17)

=
h̃′′(η)

2

⎡⎢⎣ b∫
a

v(t)h2(t)dt−
b∫

a

u(x)

⎛⎝ 1

H̃(x)

x∫
a

H(x, t)h(t)dt

⎞⎠2

dx

⎤⎥⎦ ,

where v is defined by (11) .

Proof. Applying Theorem 5 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt
and k(x, t) = H(x, t), we get (17). �
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THEOREM 12. Let the conditions of Theorem 9 be satisfied and ϕs be defined by
(7) . Let h be a positive function. Then the function ξ̃ : R→ [0,∞) for linear differential
operator defined by

ξ̃ (s) =
b∫

a

v(t)ϕs(h(t))dt −
b∫

a

u(x)ϕs

⎛⎝ 1

H̃(x)

x∫
a

H(x,t)h(t)dt

⎞⎠ dx, (18)

is exponentially convex.

Proof. Applying Theorem 6 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt
and k(x, t) = H(x, t), we get (18). �

THEOREM 13. Let u : (a,b)→ R be a weight function. Let I be a compact inter-
val in R and g, h̃ ∈C2(I) such that h̃′′(x) �= 0 for every x ∈ I . Let h : (a,b) → R be a
measurable function such that Imh ⊆ I and

b∫
a

v(t)h̃(h(t))dt−
b∫

a

u(x)h̃

⎛⎝ 1

H̃(x)

x∫
a

H(x, t)h(t)dt

⎞⎠ dx �= 0.

Then there exists η ∈ I such that it holds

g′′(η)
h̃′′(η)

=

b∫
a

v(t)g(h(t))dt−
b∫
a

u(x)g

(
1

H̃(x)

x∫
a

H(x,t)h(t)dt

)
dx

b∫
a

v(t)h̃(h(t))dt −
b∫
a

u(x)h̃
(

1
H̃(x)

x∫
a

H(x,t)h(t)dt

)
dx

. (19)

Proof. Applying Theorem 7 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt
and k(x, t) = H(x, t), we get (19). �

Under assumptions of the Theorem 9, we define a linear functional by taking the
positive difference of the inequality stated in (12) as:

ϒ1(Φ) =
b∫

a

v(t)Φ(h(t))dt−
b∫

a

u(x)Φ

⎛⎝ 1

H̃(x)

x∫
a

H(x,t)h(t)dt

⎞⎠dx. (20)

Also we take a linear functional by taking the positive difference of left-hand side and
right-hand side of the inequality (5) given in Theorem 2 for linear differential operators
as:

ϒ2(Φ) =
b∫

a

p(t)Φ
(

h1(t)
h2(t)

)
dt−

b∫
a

u(x)Φ
(

y1(x)
y2(x)

)
dx. (21)
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THEOREM 14. Let Γ = {Φp : p ∈ J} be a family of functions defined on I , such
that the function p �→ [z0,z1,z2;Φp] is n-exponentially convex in the Jensen sense on
J for every three distinct points z0, z1, z2 ∈ I . Let ϒi (i = 1,2) be linear functionals
defined by (20) , (21) . Then the function p �→ ϒi(Φp) (i = 1,2) is n-exponentially
convex in the Jensen sense on J. If the function p �→ ϒi(Φp) is continuous on J , then
it is n-exponentially convex on J .

Proof. Applying Theorem 8 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt
and k(x, t) = H(x, t) to complete the proof. �

3. Refined Hardy-type inequalities for Widder’s derivative

First it is necessary to give some important details about Widder’s derivative (see
[17]). Let f ,u0,u1, . . . ,un ∈Cn+1[a,b] , n � 0, and the Wronskians

Wi(x) := W [u0(x),u1(x), . . . ,ui(x)] =

∣∣∣∣∣∣∣∣∣∣∣∣

u0(x) · · · ui(x)
u′0(x) · · · u′i(x)
· · ·
· · ·
· · ·

u(i)
0 (x) · · · u(i)

i (x)

∣∣∣∣∣∣∣∣∣∣∣∣
,

i = 0,1, . . . ,n. Here W0(x) = u0(x). Assume Wi(x) > 0 over [a,b] . For i � 0, the
differential operator of order i (Widder’s derivative):

Li f (x) :=
W [u0(x),u1(x), . . . ,ui−1(x), f (x)]

Wi−1(x)
,

i = 1, . . . ,n+1; L0 f (x) = f (x) for all x ∈ [a,b]. Consider also

gi(x,t) :=
1

Wi(t)

∣∣∣∣∣∣∣∣∣∣∣∣

u0(t) · · · ui(t)
u
′
0(t) · · · u

′
i(t)

· · ·
· · ·

u(i−1)
0 (t) · · · u(i−1)

i (t)
u0(x) · · · ui(x)

∣∣∣∣∣∣∣∣∣∣∣∣
,

i = 1,2, . . . ,n; g0(x, t) := u0(x)
u0(t)

for all x,t ∈ [a,b].

EXAMPLE 1. [17] Sets of the form {u0,u1,u2, . . . ,un} are {1,x,x2, . . . ,xn},
{1,sinx,cosx,−sin2x,cos2x, . . . ,(−1)n−1 sinnx,(−1)n−1 cosnx}, etc. fulfill the above
theory.

We also mention the generalized Widder-Talylor’s formula, see [17].
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THEOREM 15. Let the functions f ,u0,u1, . . . ,un ∈Cn+1[a,b], and the Wronkians
W0(x),W1(x), . . . ,Wn(x) > 0 on [a,b] , x ∈ [a,b]. Then for t ∈ [a,b] we have

f (x) = f (t)
u0(x)
u0(t)

+L1 f (t)g1(x,t)+ . . .+Ln f (t)gn(x,t)+Rn(x),

where

Rn(x) :=
x∫

s

gn(x,s)Ln+1 f (s)ds.

For example (see [17]) one could take u0(x) = c > 0. If ui(x) = xi , i = 0,1, . . . ,n,
defined on [a,b], then

Li f (t) = f (i)(t) and gi(x,t) =
(x− t)i

i!
, t ∈ [a,b].

COROLLARY 1. By additionally assuming for fixed a that Li f (a) = 0 , i = 0,1,
. . . ,n, we get that

f (x) :=
x∫

a

gn(x,t)Ln+1 f (t)dt f or all x ∈ [a,b].

In the next result we give refinement of Theorem 3.4 of [9].

THEOREM 16. Let u be a weight function on (a,b) and gn(x,t) be a non-negative
measurable kernel. Suppose that g̃n(x) > 0 for all x ∈ (a,b) , that the function x �→
u(x) gn(x,t)

g̃n(x)
is integrable on (a,b) for each fixed t ∈ (a,b) , and that ṽ is defined on

(a,b) by

ṽ(t) :=
b∫

t

u(x)
gn(x,t)
g̃n(x)

dx < ∞. (22)

If Φ is a convex function on an interval I ⊆ R and ϕ : I → R is any function, such that
ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I , then the inequality

b∫
a

ṽ(t)Φ(Ln+1 f (t))dt −
b∫

a

u(x)Φ

⎛⎝ 1
g̃n(x)

x∫
a

gn(x,t)Ln+1 f (t)dt

⎞⎠dx

�
b∫

a

u(x)
g̃n(x)

x∫
a

gn(x,t)

∣∣∣∣∣∣
∣∣∣∣∣∣Φ(Ln+1 f (t))−Φ

⎛⎝ 1
g̃n(x)

x∫
a

gn(x,t)Ln+1 f (t)dt

⎞⎠
∣∣∣∣∣∣

−
∣∣∣∣∣∣ϕ
⎛⎝ 1

g̃n(x)

x∫
a

gn(x,t)Ln+1 f (t)dt

⎞⎠
∣∣∣∣∣∣

×
∣∣∣∣∣∣Ln+1 f (t)− 1

g̃n(x)

x∫
a

gn(x,t)Ln+1 f (t)dt

∣∣∣∣∣∣
∣∣∣∣∣∣dtdx, (23)
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holds for all measurable functions Ln+1 f : (a,b) → R , such that Ln+1 f (t) ∈ I for all
t ∈ (a,b) . If Φ is a monotone convex function on an interval I ⊆R, then the inequality

b∫
a

ṽ(t)Φ(Ln+1 f (t))dt−
b∫

a

u(x)Φ

⎛⎝ 1
g̃n(x)

x∫
a

gn(x, t)Ln+1 f (t)dt

⎞⎠dx

�
∣∣∣∣∣

b∫
a

u(x)
g̃n(x)

x∫
a

sgn

⎛⎝Ln+1 f (t)− 1
g̃n(x)

x∫
a

gn(x, t)Ln+1 f (t)dt

⎞⎠
×gn(x, t)

⎡⎣Φ(Ln+1 f (t))−Φ

⎛⎝ 1
g̃n(x)

x∫
a

gn(x,t)Ln+1 f (t)dt

⎞⎠
−
∣∣∣∣∣∣ϕ
⎛⎝ 1

g̃n(x)

x∫
a

gn(x,t)Ln+1 f (t)dt

⎞⎠
∣∣∣∣∣∣

×
⎛⎝Ln+1 f (t)− 1

g̃n(x)

x∫
a

gn(x,t)Ln+1 f (t)dt

⎞⎠⎤⎦dtdx

∣∣∣∣∣, (24)

holds for all measurable functions Ln+1 f : (a,b) → R, such that Ln+1 f (t) ∈ I, for all
fixed t ∈ (a,b) and where g̃n is defined as

g̃n(x) :=
x∫

a

gn(x,t)dt.

Proof. Applying Theorem 3 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt
and k(x, t) = gn(x, t), we get inequality (23) and inequality (24). �

REMARK 4. Choose the particular convex function Φ(x) = xν , ν � 1 and weight

function u(x) = g̃n(x) in Theorem 16 we obtain, ṽ(t) =
b∫
t
gn(x,t)dx =: K2(t) . Since

right hand side of inequality (23) and inequality (24) is non negative, therefore we get
that

b∫
a

g̃1−ν
n (x)

⎛⎝ x∫
a

gn(x,t)Ln+1 f (t)dt

⎞⎠ν

dx �
b∫

a

K2(t)Ln+1 f ν (t)dt. (25)

Inequality (25) gives

g̃1−ν
n (b)

b∫
a

f ν (x)dx � K2(a)
b∫

a

Ln+1 f ν (t)dt.

This implies that

‖ f‖ν(a,b) �
(

K2(a)
g̃1−ν

n (b)

) 1
ν
‖Ln+1 f (t)‖ν (a,b).
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In the following theorem, a refinement of a Hardy-type inequality is given for
Widder’s derivative.

THEOREM 17. Let 0 < b � ∞ and gn : (0,b)× (0,b) → R be a non-negative
measurable function, such that

gn(x) :=
x∫

0

gn(x,t) dt > 0, x ∈ (0,b).

Let a weight u : (0,b) → R be such that the function x �→ u(x)
x · gn(x,t)

gn(x)
is integrable on

(t,b) for each fixed t ∈ (0,b) , and let the function w̃ : (0,b) → R be defined by

w̃(t) := t

b∫
t

gn(x,t)
gn(x)

u(x)
dx
x

.

If Φ is a convex function on an interval I ⊆R and ϕ : I →R is such that ϕ(x)∈ ∂Φ(x)
for all x ∈ Int I , then the inequality

b∫
0

w̃(t)Φ(Ln+1 f (t))
dt
t
−

b∫
0

u(x)Φ

⎛⎝ 1
gn(x)

x∫
0

gn(x,t)Ln+1 f (t)dt

⎞⎠ dx
x

�
b∫

0

u(x)
gn(x)

x∫
0

gn(x,t)

∣∣∣∣∣∣
∣∣∣∣∣∣Φ(Ln+1 f (t))−Φ

⎛⎝ 1
gn(x)

x∫
0

gn(x,t)Ln+1 f (t)dt

⎞⎠
∣∣∣∣∣∣

−
∣∣∣∣∣∣ϕ
⎛⎝ 1

gn(x)

x∫
0

gn(x,t)Ln+1 f (t)dt

⎞⎠
∣∣∣∣∣∣

×
∣∣∣∣∣∣Ln+1 f (t)− 1

gn(x)

x∫
0

gn(x,t)Ln+1 f (t)dt

∣∣∣∣∣∣
∣∣∣∣∣∣dt

dx
x

, (26)

holds for all measurable functions Ln+1 f : (0,b) → R with values in I . If the function
Φ is concave, the order of integrals on the left-hand side of (26) is reversed. If Φ is
monotone convex on the interval I ⊆ R then the following inequality

b∫
0

w̃(t)Φ(Ln+1 f (t))
dt
t
−

b∫
0

u(x)Φ

⎛⎝ 1
gn(x)

x∫
0

gn(x,t)Ln+1 f (t)dt

⎞⎠ dx
x

(27)

�
∣∣∣∣∣

b∫
0

u(x)
gn(x)

x∫
0

sgn

⎛⎝Ln+1 f (t)− 1
gn(x)

x∫
0

gn(x,t)Ln+1 f (t)dt

⎞⎠
×gn(x, t)

⎡⎣Φ(Ln+1 f (t)−Φ

⎛⎝ 1
gn(x)

x∫
0

gn(x,t)Ln+1 f (t)dt

⎞⎠
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−
∣∣∣∣∣∣ϕ
⎛⎝ 1

gn(x)

x∫
0

gn(x,t)Ln+1 f (t)dt

⎞⎠
∣∣∣∣∣∣

×
⎛⎝Ln+1 f (t)− 1

gn(x)

x∫
0

gn(x,t)Ln+1 f (t)dt

⎞⎠⎤⎦dt
dx
x

∣∣∣∣∣,
holds for all measurable functions Ln+1 f : (0,b) → R with values in I .

Proof. Applying Theorem 4 with k(x,t) = gn(x,t), we get inequality (26) and
inequality (27). �

REMARK 5. Choose the particular convex function Φ(x) = xν , ν � 1 and weight

function u(x)= xgn(x) in Theorem 17 we obtain, w̃(t) = t
b∫
t
gn(x,t)dx =: tK2(t) . Since

right hand side of inequality (26) and (27) is non negative, so we obtain

‖ f‖ν(0,b) �
(

K2(0)
gn(b)1−ν

) 1
ν
‖Ln+1 f (t)‖ν(0,b).

The upcoming results are mean value theorems for Widder’s derivative.

THEOREM 18. Let u : (a,b) → R be a weight function. Let I be a compact
interval of R , h̃ ∈ C2(I) , and Ln+1 f : (a,b) → R a measurable function such that
ImLn+1 f ⊆ I . Then there exists η ∈ I such that

b∫
a

ṽ(t)h̃(Ln+1 f (t))dt −
b∫

a

u(x)h̃

⎛⎝ 1
g̃n(x)

x∫
a

gn(x,t)Ln+1 f (t)dt

⎞⎠ dx (28)

=
h̃′′(η)

2

⎡⎢⎣ b∫
a

ṽ(t)(Ln+1 f (t))2 dt−
b∫

a

u(x)

⎛⎝ 1
g̃n(x)

x∫
a

gn(x,t)Ln+1 f (t)dt

⎞⎠2

dx

⎤⎥⎦ ,

where ṽ(t) is defined by (22) .

Proof. Applying Theorem 5 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt
and k(x, t) = gn(x, t), we get equality (28). �

THEOREM 19. Let the conditions of Theorem 16 be satisfied and ϕs be defined

by (7) . Let f be a positive function. Then the function ξ : R → [0,∞) defined by

ξ (s) =
b∫

a

ṽ(t)ϕs(Ln+1 f (t))dt −
b∫

a

u(x)ϕs

⎛⎝ 1
g̃n(x)

x∫
a

gn(x,t)Ln+1 f (t)dt

⎞⎠ dx, (29)

is exponentially convex.
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Proof. Applying Theorem 6 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt
and k(x, t) = gn(x, t), we get equality (29). �

THEOREM 20. Assume that all conditions of Theorem 18 are satisfied. Let I be
a compact interval in R and g, h̃ ∈ C2(I) such that h̃′′(x) �= 0 for every x ∈ I . Let
Ln+1 f : (a,b) → R be a measurable function such that ImLn+1 f ⊆ I and

b∫
a

ṽ(t)h̃(Ln+1 f (t))dt −
b∫

a

u(x)h̃

⎛⎝ 1
g̃n(x)

x∫
a

gn(x,t)Ln+1 f (t)dt

⎞⎠ dx �= 0.

Then there exists η ∈ I such that it holds

g′′(η)
h̃′′(η)

=

b∫
a

ṽ(t)g(Ln+1 f (t))dt −
b∫
a

u(x)g
(

1
g̃n(x)

x∫
a

gn(x, t)Ln+1 f (t)dt

)
dx

b∫
a

ṽ(t)h̃(Ln+1 f (t)) dt−
b∫
a

u(x)h̃
(

1
g̃n(x)

x∫
a

gn(x,t)Ln+1 f (t)dt

)
dx

. (30)

Proof. Applying Theorem 7 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt
and k(x, t) = gn(x, t), we get equality (30). �

Under assumptions of the Theorem 16, we define a linear functional by taking the
positive difference of the inequality stated in (23) as:

Λ1(Φ) =
b∫

a

ṽ(t)Φ(Ln+1 f (t))dt−
b∫

a

u(x)Φ

⎛⎝ 1
g̃n(x)

x∫
a

gn(x,t)Ln+1 f (t)dt

⎞⎠dx. (31)

We also define a linear functional by taking the positive difference of left-hand side and
right-hand side of the inequality (5) given in Theorem 2 for Widder’s derivative as:

Λ2(Φ) =
b∫

a

p(t)Φ
(

Ln+1 f1(t)
Ln+1 f2(t)

)
dt−

b∫
a

u(x)Φ
(

f1(x)
f2(x)

)
dx. (32)

THEOREM 21. Let Γ = {Φp : p ∈ J} be a family of functions defined on I, such
that the function p �→ [z0,z1,z2;Φp] is n-exponentially convex in the Jensen sense on
J for every three distinct points z0, z1, z2 ∈ I . Let Λi (i = 1,2) be linear functionals
defined by (31) , (32) . Then the function p �→ Λi(Φp) (i = 1,2) is n-exponentially
convex in the Jensen sense on J. If the function p �→ Λi(Φp) is continuous on J , then
it is n-exponentially convex on J .

Proof. Applying Theorem 8 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt
and k(x, t) = gn(x, t) to complete the proof. �
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4. Refined Hardy-type inequalities for generalized fractional integral operator

In the following we give the definition of generalized fractional integral operator
involving hypergeometric function in its kernel (see, [7]).

DEFINITION 2. Let α > 0, μ > −1, β ,η ∈ R. Then the generalized fractional

integral Iα ,β ,η,μ
a,x of order α , for a real-valued continuous function f is defined by:

Iα ,β ,η,μ
a,x f (x) (33)

:=
x−α−β−2μ

Γ(α)

x∫
a

tμ(x− t)α−1
2F1

(
α + β + μ ,−η ;α;1− t

x

)
f (t)dt, x ∈ [a,b],

where, the function 2F1(. , . , ; .) appearing in kernel for operator (33) is the Gaussian
hypergeometric function defined by

2F1(a,b;c;t) =
∞

∑
n=0

(a)n(b)n

(c)nn!
tn,

and (a)n is the Pochhammer symbol: (a)n = a(a+1) . . .(a+n−1),(a)0 = 1.

The operator (33) includes Saigo, Riemann-Liouville and Erdélyi-Kober fractional
integral operators i.e.

Iα ,β ,η
a,x f (x) = Iα ,β ,η,0

a,x f (x)

=
x−α−β

Γ(α)

x∫
a

(x− t)α−1
2F1

(
α + β ,−η ;α;1− t

x

)
f (t)dt, x ∈ [a,b],

Rα f (x) = Iα ,−α ,η
a,x f (x) =

1
Γ(α)

x∫
a

(x− t)α−1 f (t)dt, x ∈ [a,b],

and

Iα ,η f (x) = Iα ,0,η
a,x f (x) =

x−α−η

Γ(α)

x∫
a

(x− t)α−1tη f (t)dt, x ∈ [a,b].

First we give our general result for generalized fractional integral of order α, then
as special cases we establish the inequalities for Saigo, Riemann-Liouville and Erdélyi-
Kober fractional integral operators.

THEOREM 22. Let α > 0 , μ > −1 , β ,η ∈ R , Iα ,β ,η,μ
a,x denotes the generalized

fractional integral of order α and u be a weight function defined on (a,b) . Moreover
for each fixed t ∈ (a,b) define v̂ by

v̂(t) :=
1

Γ(α)

b∫
t

u(x)
x−α−β−2μ

2F1
(
α + β + μ ,−η ,α;1− t

x

)
tμ(x− t)α−1

K̂(x)
dx < ∞.

(34)



APPLICATIONS OF REFINED HARDY-TYPE INEQUALITIES 1557

If Φ is a convex function on the interval I ⊆ R , then the inequality

b∫
a

u(x)Φ

(
Iα ,β ,η,μ
a,x f (x)

K̂(x)

)
dx �

b∫
a

v̂(t)Φ( f (t))dt, (35)

where

K̂(x) :=
x∫

a

x−α−β−2μ

Γ(α) 2F1

(
α + β + μ ,−η ,α;1− t

x

)
tμ(x− t)α−1dt. (36)

Proof. Applying Theorem 1 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt,

k(x, t) =

{
x−α−β−2μ

Γ(α) 2F1(α + β + μ ,−η ,α;1− t
x )t

μ(x− t)α−1, a � t � x ;
0, x < t � b ,

and g(x) = Iα ,β ,η,μ
a,x f (x), so inequality (35) follows. �

Now we obtain the fractional inequality for generalized fractional integral.

THEOREM 23. Let α > 0 , μ > −1 , β ,η ∈ R and Iα ,β ,η,μ
a,x denotes the general-

ized fractional integral of order α. Define p̂ on (a,b) by

p̂(t) :=
f2(t)
Γ(α)

b∫
t

u(x)
x−α−β−2μ

2F1(α + β + μ ,−η ,α;1− t
x )t

μ(x− t)α−1

Iα ,β ,η,μ
a,x f2(x)

dx < ∞.

If Φ : I → R is a convex function and
Iα,β ,η,μ
a,x f1(x)

Iα,β ,η,μ
a,x f2(x)

, f1(t)
f2(t)

∈ I, then the inequality

b∫
a

u(x)Φ

(
Iα ,β ,η,μ
a,x f1(x)

Iα ,β ,η,μ
a,x f2(x)

)
dx �

b∫
a

p̂(t)Φ
(

f1(t)
f2(t)

)
dt, (37)

Proof. Applying Theorem 2 with the same technique used in Theorem 22. �
Refinement of Theorem 22 is given in next theorem.

THEOREM 24. Let the assumption of Theorem 22 be satisfied. Moreover, if Φ
is a convex function on an interval I ⊆ R and ϕ : I → R is any function, such that
ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I , then the inequality

b∫
a

v̂(t)Φ( f (t))dt −
b∫

a

u(x)Φ

(
Iα ,β ,η,μ
a,x f (x)

K̂(x)

)
dx (38)

� 1
Γ(α)

b∫
a

u(x)
K̂(x)

x∫
a

x−α−β−2μ
2F1

(
α + β + μ ,−η ,α;1− t

x

)
tμ(x− t)α−1
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×
∣∣∣∣∣
∣∣∣∣∣Φ( f (t))−Φ

(
Iα ,β ,η,μ
a,x f (x)

K̂(x)

)∣∣∣∣∣
−
∣∣∣∣∣ϕ
(

Iα ,β ,η,μ
a,x f (x)

K̂(x)

)∣∣∣∣∣ ·
∣∣∣∣∣ f (t)− Iα ,β ,η,μ

a,x f (x)
K̂(x)

∣∣∣∣∣
∣∣∣∣∣dtdx,

holds for all measurable functions f : (a,b) → R , such that f (t) ∈ I for all t ∈ (a,b) .
If Φ is a monotone convex function on an interval I ⊆ R, then the following

inequality holds:

b∫
a

v̂(t)Φ( f (t))dt−
b∫

a

u(x)Φ

(
Iα ,β ,η,μ
a,x f (x)

K̂(x)

)
dx (39)

� 1
Γ(α)

∣∣∣∣∣
b∫

a

u(x)
K̂(x)

x∫
a

sgn

(
f (t)− Iα ,β ,η,μ

a,x f (x)
K̂(x)

)

×
x∫

a

x−α−β−2μ
2F1

(
α + β + μ ,−η ,α;1− t

x

)
tμ(x− t)α−1

×
[

Φ( f (t))−Φ

(
Iα ,β ,η,μ
a,x f (x)

K̂(x)

)
−
∣∣∣∣∣ϕ
(

Iα ,β ,η,μ
a,x f (x)

K̂(x)

)∣∣∣∣∣
×
(

f (t)− Iα ,β ,η,μ
a,x f (x)

K̂(x)

)]
dt dx

∣∣∣∣∣,
where v̂ and K̂ are defined by (34) and (36) .

Proof. Applying Theorem 3 with the same technique used in Theorem 22. �
Similar results can be given for one dimensional setting but we omit the details.

Here we give the mean value theorems for generalized fractional integral.

THEOREM 25. Let the assumption of Theorem 22 be satisfied. Moreover, suppose
I be a compact interval of R , h̃ ∈C2(I). Then there exists η ∈ I such that

b∫
a

v̂(t)h̃( f (t))dt −
b∫

a

u(x)h̃

(
Iα ,β ,η,μ
a,x f (x)

K̂(x)

)
dx (40)

=
h̃′′(η)

2

⎡⎣ b∫
a

v̂(t) f 2(t)dt −
b∫

a

u(x)

(
Iα ,β ,η,μ
a,x f (x)

K̂(x)

)2

dx

⎤⎦ ,

v̂ and K̂ are defined by (34) and (36) respectively.

Proof. Applying Theorem 5 with the same technique used in Theorem 22. �
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THEOREM 26. Let the assumption of Theorem 22 be satisfied and ϕs be defined
by (7) . Let f be a positive function. Then the function ξ̂ : R → [0,∞) defined by

ξ̂ (s) =
b∫

a

v̂(t)ϕs( f (t))dt −
b∫

a

u(x)ϕs

(
Iα ,β ,η,μ
a,x f (x)

K̂(x)

)
dx, (41)

is exponentially convex.

Proof. Applying Theorem 6 with the same technique used in Theorem 22. �

THEOREM 27. Let the assumption of Theorem 25 be satisfied. Moreover, g, h̃ ∈
C2(I) such that h̃′′(x) �= 0 for every x ∈ I and

b∫
a

v̂(t) h̃( f (t))dt −
b∫

a

u(x) h̃

(
Iα ,β ,η,μ
a,x f (x)

K̂(x)

)
dx �= 0.

Then there exists η ∈ I such that it holds

g′′(η)
h̃′′(η)

=

b∫
a

v̂(t)g( f (t))dt −
b∫
a

u(x)g

(
Iα,β ,η,μ
a,x f (x)

K̂(x)

)
dx

b∫
a

v̂(t) h̃( f (t))dt −
b∫
a

u(x) h̃

(
Iα,β ,η,μ
a,x f (x)

K̂(x)

)
dx

. (42)

Proof. Applying Theorem 7 with the same technique used in Theorem 22. �

COROLLARY 2. If we take μ = 0 in inequalities (35), (37), (38), (39), (40),
(41), and (42) we get the inequalities for Saigo fractional integral.

COROLLARY 3. If along μ = 0 we take β =−α in inequalities (35), (37), (38),
(39), (40), (41), and (42) we get the inequalities for Riemann-Liouvill’s fractional
integral.

COROLLARY 4. If we take β = 0 and μ = 0 in inequalities (35), (37), (38),
(39), (40), (41), and (42) we get the inequalities for Erdélyi-Kober fractional integral
operator.
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[9] S. IQBAL, G. FARID AND J. PEČARIĆ, Hardy-type inequalities for linear differential operator and
Widder’s derivative, (Submitted).
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