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Abstract. In this paper, we study jointly subadditive mappings induced by operator convex func-
tions and generalized inverses of positive linear maps. We formulate conditions under which the

inequalities T fT−
(

n
∑

k=1
TkAk

)
�

n
∑

k=1
Tk f (Ak) and T fT−Φ(A) � Φ( f (A)) hold, where f is an

operator convex function, A,Ak ∈ B(H) with Hilbert space H , and T , Tk and Φ are positive
linear maps (not necessarily unital) on B(H) , with a (reflexive) generalized inverse T− of T .
We also show that the transformation T fT−(B) is jointly subadditive in (T,B) and antimono-
tone in T (I) .

1. Introduction

Throughout the paper the symbol B(H) stands for the C∗ -algebra of all bounded
linear operators on Hilbert space H with inner product 〈·, ·〉 .

A self-adjoint operator A in B(H) is said to be positive, written 0 � A , if 〈Ax,x〉�
0 for x ∈ H . If moreover A is invertible then A is said to be strictly positive, written
0 < A .

For self-adjoint operators A and B in B(H) , we write A � B (resp. A < B) if
B−A is positive (resp. strictly positive).

A continuous function f : J → R on an interval J ⊂ R is called operator convex
if

f (αA+(1−α)B) � α f (A)+ (1−α) f (B)

for all α ∈ [0,1] and every self-adjoint operators A,B∈B(H) with spectra σ(A) , σ(B)
contained in J .

A continuous function f : J → R on an interval J ⊂ R is called operator concave
if − f is operator convex.

A linear map Φ : A → B between C∗ -algebras A and B is said to be positive,
if

0 � A implies 0 � Φ(A) for A ∈ A . (1)
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If (1) is replaced by the following condition

0 < A implies 0 < Φ(A) for A ∈ A ,

then Φ is said to be strictly positive.
A linear map Φ : A → B between unital C∗ -algebras A and B is called unital

if Φ(I) = I , where I denotes the unities of the algebras.
The Choi-Davis-Jensen (CDJ) inequality says that if f is an operator convex func-

tion on an interval J , and Φ is a unital positive linear map on B(H) , then

f (Φ(A)) � Φ( f (A)) (2)

for every self-adjoint operator A ∈ B(H) with spectrum σ(A) contained in J [16,
p. 128].

THEOREM A. [21] If f is an operator convex function on an interval J , and

Φ1, . . . ,Φn are positive linear maps on B(H) such that
n
∑

k=1
Φk(I) = I , then

f

(
n

∑
k=1

Φk(Ak)

)
�

n

∑
k=1

Φk( f (Ak)) (3)

for every self-adjoint operators Ak ∈ B(H) , k = 1,2, . . . ,n, with spectra contained in
J .

THEOREM B. [16] Let unital C∗ -algebras A and B be closed ∗ -subalgebras
of B(H) and B(K) , respectively, for some Hilbert spaces H and K .

Let Φ1, . . . ,Φn be strictly positive linear maps from a unital C∗ -algebra A into

a unital C∗ -algebra B and let Φ =
n
∑

k=1
Φk be unital.

If f is an operator convex function on an interval J , then

f (Φ(A)) �
n

∑
k=1

Φk(I)1/2 f
(

Φk(I)−1/2Φk(A)Φk(I)−1/2
)

Φk(I)1/2 � Φ( f (A)) (4)

for every self-adjoint operator A ∈ A with spectrum contained in J .

In order to see recent theorems on Jensen type inequalities for functions without
operator convexity, consult [13, 18, 19, 20].

The purpose of the present paper is to extend the above results to positive linear
mappings Φ (not necessarily unital) equipped with auxilary positive linear mappings
T . For an operator convex function f , we demonstrate Jensen type inequalities involv-
ing the transformation T fT− , where T− denotes a reflexive generalized inverse of T .
In particular, we show that the transformation T fT−(B) is jointly subadditive in (T,B)
and antimonotone in T (I) with fixed B . Such an approach allows to obtain some com-
plementary statements to (2), (3) and (4). We also provide corollaries describing some
special cases. Finally, we prove corresponding results for indexed mappings Tp , when
f (0) � 0 and the mapping p → Tp(I) is superadditive.
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2. Results

A generalized inverse (in short, g.i.) of a linear map T : V →W between linear
spaces V and W is a linear map T− : W → V satisfying TT−T = T . If in addition
T−TT− = T− then T− is said to be a reflexive generalized inverse of T [24] (cf. [2,
pp. 819–820]).

EXAMPLE 2.1. A linear operator T : V →W between Hilbert spaces V and W
is called partial isometry if TT ∗T = T . Clearly, for a partial isometry T it holds that
TT ∗ and T ∗T are self-adjoint idempotents, i.e., projections.

It is also evident that T− = T ∗ is a generalized inverse of a partial isometry T . In
particular, T− = T−1 = T ∗ , whenever T is unitary.

On the other hand, T ∗TT ∗ = T ∗ holds for a partial isometry T . So, T ∗ is a
reflexive generalized inverse of T .

EXAMPLE 2.2. Let T ∈ Mp , where Mp is the space of p× p complex matri-
ces. By Singular Value Decomposition, T = U2diags(T )U1

∗ with unitary U1 and U2

[12, p. 144]. Here s(T ) = (s1(T ),s2(T ), . . . ,sp(T )) is the vector of singular values
of T . Define T− = U1diagσ(T )U2

∗ , where σ(T ) = (σ1(T ),σ2(T ), . . . ,σp(T )) , with
σi(T ) = 1

si(T ) if si(T ) �= 0, and σi(T ) = 0 if si(T ) = 0, i = 1,2, . . . , p . Then T− is a
reflexive generalized inverse of T .

It is known that if T ∈ B(H) with a Hilbert space H , then there exists a reflexive
generalized inverse of T if and only if T has closed range (see [11], [15, p. 478]). See
also [26, Theorem 2.2], [27, Theorems 2.1 and 2.3] for conditions for the existence of
generalized inverses of so-called adjointable linear maps on Hilbert C∗ -modules.

Remind that a linear map T : A →B between C∗ -algebras A and B is positive
if T sends the set P(A ) of positive elements of A into the set P(B) of positive
elements of B , i.e., T (P(A )) ⊂ P(B) (see (1)).

It is easy to verify that a generalized inverse of a positive lineat map T need not be
positive. For example, if T = 0 is the null map, then each linear map from B into A
is a generalized inverse of T . However, among all linear maps from B into A there
are non-positive linear maps.

We say that a linear map T : A → B is strongly positive if for X ∈ A ,

0 � X if and only if 0 � T (X). (5)

In the rest of the paper, it is assumed that A = B(H) with a Hilbert space H and
B is a unital C∗ -algebra. The symbol I stands for the identity operator in A .

For a linear map T : A →B , by Ran(T ) we denote the range {TA∈B : A∈A }
of T .

LEMMA 2.3. Let T : A → B be a positive linear map and T− : B → A be a
generalized inverse of T .

If T is strongly positive and T (P(A )) = P(B) , then T− is positive.



172 MAREK NIEZGODA

Proof. Take any Y ∈ P(B) . There exists X ∈ P(A ) such that Y = T (X) . It
follows that TT−T (X) = T (X) . Therefore we have TT−Y =Y with Y ∈ P(B) . Thus
TT−Y ∈ P(B) . So, in light of (5) we get T−Y ∈ P(A ) , as required.

In consequence, we conclude that T− is positive. �

In what follows it is assumed that there exists a generalized inverse T− of a linear
map T , whenever the symbol T− is used.

THEOREM 2.4. Let T : A → B and Tk : A → B , k = 1,2, . . . ,n, be positive
linear maps and T− : B → A be a positive reflexive g.i. of T . Assume that

T (I) =
n

∑
k=1

Tk(I), (6)

I ∈ Ran(T−), (7)

Ran(Tk) ⊂ Ran(T ), k = 1,2, . . . ,n. (8)

If f is an operator convex function on an interval J then

T f T−
(

n

∑
k=1

TkAk

)
�

n

∑
k=1

Tk f (Ak) (9)

for every self-adjoint operators A1, . . . ,An ∈ A with spectra contained in J .

Proof. Fix any self-adjoint operators A1, . . . ,An ∈A with spectra contained in J .
It follows that

T fT−
(

n

∑
k=1

TkAk

)
= T f

(
n

∑
k=1

T−TkAk

)
. (10)

From (7) we have T−T (I) = I by the reflexivity of T− . So, (6) implies

I =
n

∑
k=1

T−Tk(I).

That is, the map
n
∑

k=1
T−Tk is unital. Moreover, Φk = T−Tk : A →A , k = 1, . . . ,n , are

positive linear maps on A = B(H) .
In consequence, from Theorem A, eq. (3), we find that

f

(
n

∑
k=1

T−TkAk

)
�

n

∑
k=1

T−Tk f (Ak).

Hence, by the positivity of T and (8), we conclude that

T f

(
n

∑
k=1

T−TkAk

)
� T

n

∑
k=1

T−Tk f (Ak) =
n

∑
k=1

TT−Tk f (Ak) =
n

∑
k=1

Tk f (Ak) . (11)

Now, by combining (10) and (11) we obtain (9). This completes the proof. �
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REMARK 2.5. The inequality (9) is motivated by the right-hand side inequality of
(4) with n = 1, and

T = Φ(I)1/2(·)Φ(I)1/2 and T− = Φ(I)−1/2(·)Φ(I)−1/2.

Observe that T (I) = Φ(I) . However, in general T �= Φ .
An analog of the left-hand side inequality of (4) requires the additional assumption

that Φ is unital.

EXAMPLE 2.6. Let A = Mm , m = np , and B = Mp ⊕ . . .⊕Mp . Assume T :
A → B is a positive linear map given by T (X) = Xnn ⊕X11 ⊕ . . .⊕Xn−1,n−1 , where
X = (Xi j) is the block form of X ∈ Mm with p× p blocks Xi j ∈ Mp , i, j = 1, . . . ,n .

Let Tk(X) = 0⊕ . . .⊕0⊕Xkk⊕0⊕ . . .⊕0, k = 1, . . . ,n , where 0 ∈ Mp and X =
(Xi j) is as above. Obviously, Tk is positive and RanTk ⊂ RanT , k = 1, . . . ,n . We also

see that
n
∑

k=1
Tk(I) = T (I) for the identity matrix I ∈ Mm . However,

n
∑

k=1
Tk �= T .

Finally, it follows from Theorem 2.4 that if f is an operator convex function on
an interval J then inequality (9) is satisfied for any positive reflexive g.i. T− of T
satisfying (7). For instance, we can use T− = Tn−1 .

In next two corollaries we demonstrate a companion of CDJ inequality (2) for
positive linear map Φ (not necessarily unital) endowed with auxilary positive map T
(see Remark 2.8).

COROLLARY 2.7. Let Φ : A → B and T : A → B be positive linear maps and
T− : B → A be a positive reflexive g.i. of T such that

Φ(I) = T (I), (12)

I ∈ Ran(T−), (13)

Ran(Φ) ⊂ Ran(T ). (14)

If f is an operator convex function on an interval J then

T f T−Φ(A) � Φ( f (A)) (15)

for every self-adjoint operator A ∈ A with spectrum contained in J .

Proof. It is sufficient to apply Theorem 2.4 for n = 1 and T1 = Φ , A1 = A . �

REMARK 2.8. In the case Φ : A →A is a unital positive map, the CDJ inequal-
ity (2) can be recovered from (15), because conditions (12)–(14) hold trivially for T
the identity on A . In this sense, (15) can be thought of as an extension of (2).

COROLLARY 2.9. Let Φ : A → B be a positive linear map and T : A → B be
an invertible positive linear map with positive inverse T−1 : B → A such that

Φ(I) = T (I). (16)
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If f is an operator convex function on an interval J then

T f T−1Φ(A) � Φ( f (A)) (17)

for every self-adjoint operator A ∈ A with spectrum contained in J .

Proof. Since T is invertible, we have T− = T−1 , Ran(T ) = B and Ran(T−) =
A . Therefore conditions (13) and (14) are satisfied. Now, it is enough to apply Corol-
lary 2.7. �

Remind that a map T : A → B with B ⊂ A is called tripotent if T 3 = T . For
intance, any idempotent (T 2 = T ) is tripotent. Likewise, any involution (T 2 = id) is
tripotent.

COROLLARY 2.10. Let Φ : A → B be an unital positive linear map with B ⊂
A . Let T : A → B be a tripotent unital positive linear map such that

Ran(Φ) ⊂ Ran(T ). (18)

If f is an operator convex function on an interval J then

T f TΦ(A) � Φ( f (A)) (19)

for every self-adjoint operator A ∈ A with spectrum contained in J .

Proof. Since TTT = T , we can put T− = T . Hence T− is a reflexive generalized
inverse of T . Moreover, the map T− is positive, because T is so.

Because I = Φ(I) and Ran(Φ) ⊂ Ran(T ) by (18), we have I ∈ RanT = RanT− .
Thus condition (13) is fulfilled.

Furthermore, condition (12) is also met, since Φ and T are unital.
Now, by applying Corollary 2.7 we obtain (19). This completes the proof. �

EXAMPLE 2.11. Put A = Mn with n = 2k and B = Mk ⊕Mk . Consider the
unital positive linear maps Φ : A → B and T : A → B given by

Φ(X) =

⎛
⎜⎜⎝

x11 0 0 . . . 0
0 x22 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . xnn

⎞
⎟⎟⎠ for X = (xi j) ∈ Mn,

T (X) =
(

X22 0
0 X11

)
for X =

(
X11 X12

X21 X22

)
∈ Mn

with X11,X12,X21,X22 ∈ Mk .
Then T is tripotent, and Ran(Φ) ⊂ Ran(T ) . In consequence, (19) holds.

In Corollary 2.12 we give an interpretation of Theorem 2.4, which extends some
recent results by Effros [8] and Moslehian et al. [22].
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COROLLARY 2.12. Let T : A →B and Tk : A →B , k = 1,2, . . . ,n, be positive
linear maps and T− : B → A be a positive reflexive g.i. of T . Assume that

T (I) =
n

∑
k=1

Tk(I), (20)

I ∈ Ran(T−), (21)

Ran(Tk) ⊂ Ran(T ), k = 1,2, . . . ,n. (22)

If f is an operator convex function on an interval J then

T f T−
(

n

∑
k=1

Bk

)
�

n

∑
k=1

Tk f T−
k (Bk) (23)

for every self-adjoint operators Bk ∈ Ran(Tk) such that T−
k (Bk) , k = 1,2, . . . ,n, have

spectra contained in J .

Proof. By Bk ∈ Ran(Tk) we get TkT
−
k (Bk) = Bk for k = 1,2, . . . ,n . By putting

Ak = T−
k Bk we have TkAk = Bk . Now, according to Theorem 2.4, eq. (9), we derive

(23), as required. �
Corollary 2.12 simplifies when the maps T and Tk , k = 1,2, . . . ,n , are invertible,

as follows.

COROLLARY 2.13. Let T : A → B and Tk : A → B , k = 1,2, . . . ,n, be invert-
ible positive linear maps and T−1 : B → A be a positive linear map. Assume that

T (I) =
n

∑
k=1

Tk(I). (24)

If f is an operator convex function on an interval J then

T f T−1

(
n

∑
k=1

Bk

)
�

n

∑
k=1

Tk f T−1
k (Bk) (25)

for every self-adjoint operators Bk ∈ B such that T−1
k (Bk) , k = 1,2, . . . ,n, have spec-

tra contained in J .

Proof. Since T and Tk , k = 1, . . . ,n , are invertible, we have T− = T−1 , T−
k =

T−1
k and Ran(T ) = B , Ran(Tk) = B and Ran(T−) = A . Therefore conditions (21)–

(22) are fulfilled. Now, it is enough to apply Corollary 2.12. �
As can be seen in the previous results (cf. (9), (15), (17), (23), (25)), the key

ingredient related to the Choi-Davis-Jensen’s inequality (2) and to the operator Jensen’s
inequality (3) is the binary transformation

(B,T ) → T fT−(B). (26)
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Such an operation plays an important role in many other problems. E.g., (26) can
be viewed as an extension of the notion of generalized perspective function associated
to (operator) convex function f (see [8, 11, 22]). In fact, for T := C1/2(·)C1/2 with
strictly positive operator C , from (26) we obtain

(B,C) →C1/2 f (C−1/2BC−1/2)C1/2. (27)

On the other hand, some sums (integrals) of mappings of type (26) and (27) lead to the
definition f -divergence [7, 22] (cf. (31) below).

Furthermore, the version of (27) with operator concave function f = (·)1/2 pro-
vides the definition of the geometric mean of operators B and C [14, 17]. Similarly,
for f = log(·) , the quantity in (27) becomes the operator relative entropy [1, 9].

To give another application of (26), we now recall the notion of sub- and super-
additivity.

A nonempty subset P of a real linear space V is called additive if p,q ∈ P
implies p+q ∈ P .

Let V be a linear space and B be a C∗ -algebra. A mapping F : P →B defined
on an additive set P ⊂ V is said to be subadditive (resp. superadditive) if

F(p+q) � (�) F(p)+F(q) for p,q ∈ P .

Let V1 and V2 be linear spaces and B be a C∗ -algebra. A mapping F : P1 ×
P2 → B with additive sets P1 ⊂ V1 and P2 ⊂ V2 is said to be jointly subadditive
(resp. jointly superadditive) if

F(p1 +q1, p2 +q2) � (�) F(p1, p2)+F(q1,q2) for p1,q1 ∈ P1 , p2,q2 ∈ P2 .

We are now in a position to present the joint subadditivity of the mapping (T,B)→
T fT−(B) .

COROLLARY 2.14. Let Tk : A →B , k = 1,2, . . . ,n, be positive linear maps and(
n
∑

k=1
Tk

)−
: B → A be a positive reflexive g.i. of

n
∑

k=1
Tk . Assume that

I ∈ Ran

(
n

∑
k=1

Tk

)−
, (28)

Ran(Tk) ⊂ Ran

(
n

∑
k=1

Tk

)
, k = 1,2, . . . ,n. (29)

If f is an operator convex function on an interval J then(
n

∑
k=1

Tk

)
f

(
n

∑
k=1

Tk

)−( n

∑
k=1

Bk

)
�

n

∑
k=1

Tk f T−
k (Bk) (30)

for every self-adjoint operators Bk ∈ Ran(Tk) such that T−
k (Bk) , k = 1,2, . . . ,n, have

spectra contained in J .
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Proof. Apply Corollary 2.12 with T =
n
∑

k=1
Tk. �

REMARK 2.15. Condition (29) amounts to

n

∑
k=1

Ran(Tk) = Ran

(
n

∑
k=1

Tk

)
.

To interpret inequality (30), we denote

T = (T1, . . . ,Tn) and B = (B1, . . . ,Bn),

and

I f (T,B) =
n

∑
k=1

Tk f T−
k (Bk). (31)

Following [22], the quantity (31) is called the generalized f -divergence of the pair
(T,B) .

Note that (30) can be restated as

I f (T,B) � I f (T,B), (32)

where
T = (T , . . . ,T ) and B = (B, . . . ,B)

and

T =
1
n

n

∑
k=1

Tk and B =
1
n

n

∑
k=1

Bk.

In fact, (30) says that

(
nT
)

f
(
nT
)− (

nB
)

�
n

∑
k=1

Tk f T−
k (Bk),

which gives

I f (T,B) = nT fT
− (

B
)

=
(
nT
)

f
(
nT
)− (

nB
)

�
n

∑
k=1

Tk f T−
k (Bk) = I f (T,B),

as claimed.
Statement (32) corresponds to a related result of Csiszár et al. [4] (see [7, pp. 159–

160]).

EXAMPLE 2.16. (Csiszár divergence) Let f : (0,∞) → (0,∞) be a convex func-
tion, and p = (p1, p2, . . . , pn) and q = (q1,q2, . . . ,qn) be two n -tuples of positive num-
bers. Consider linear mappings defined by

R 
 p → Tkp = qkp ∈ R, k = 1,2, . . . ,n.
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It is readily seen that

R 
 p → T−1
k p =

1
qk

p ∈ R, k = 1,2, . . . ,n.

Therefore (31) with A = B = R reduces to the Csiszár f -divergence [3]:

I f (p,q) =
n

∑
k=1

qk f

(
pk

qk

)
. (33)

In this context, inequality (32) takes the form

n

∑
k=1

qk f

⎛
⎜⎜⎝

n
∑
j=1

p j

n
∑
j=1

q j

⎞
⎟⎟⎠� I f (p,q) (34)

(see [7, p. 160]).

3. Results for operator convex functions f with f (0) � 0

In this section, we restrict ourselves to the class of operator convex functions f
with the condition f (0) � 0. This allows to relax a restriction of type (12) or (20).

THEOREM 3.1. Let T : A → B and T1 : A → B be positive linear maps, and
T− : B → A be positive reflexive g.i. of T . Assume that

I ∈ Ran(T−), (35)

RanT1 ⊂ Ran(T ). (36)

If f : J → R is an operator convex function such that 0 ∈ J and f (0) � 0 , then

T1(I) � T (I) implies T f T−(B) � T1 f T−
1 (B) (37)

for every self-adjoint operator B ∈ RanT1 such that T−
1 B has spectrum contained in

J .

Proof. Assume that T1(I) � T (I). Then T−T1(I) � T−T (I) = I by the positivity
of T− and (35). Denote Φ1 = T−T1 . Clearly, Φ1 is a positive linear map on A =
B(H) . We define Φ2 = C1/2(·)C1/2 , where C = I−Φ1(I) � 0. Hence Φ2(I) = C and
Φ1(I)+ Φ2(I) = I .

In consequence, by operator Jensen’s inequality (3) (see Theorem A), we get

f (Φ1(A)+ Φ2(0)) � Φ1( f (A))+ Φ2( f (0))

for every self-adjoint operator A ∈ A = B(H) with spectrum contained in J .
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Therefore for each A ∈ A such that σ(A) ⊂ J , we obtain

f (Φ1(A)) � Φ1( f (A))+ Φ2( f (0)) � Φ1( f (A))+ Φ2(0) = Φ1( f (A)).

The second inequality follows from the assumptions that 0 ∈ J and f (0) � 0.
Thus we have

f (T−T1(A)) � T−T1( f (A)) (38)

for each A ∈ A such that σ(A) ⊂ J .
By the fact that T preserves � and from (36) and (38), we derive

T fT−T1(A) � TT−T1 f (A) = T1 f (A) for each A ∈ A such that σ(A) ⊂ J . (39)

Consider any B ∈ RanT1 ⊂ B such that σ(T−
1 (B)) ⊂ J . It is readily seen that

T1T
−
1 (B) = B . By putting A = T−

1 (B) we find that T1(A) = B with σ(A) ⊂ J . There-
fore (39) implies

T fT−(B) � T1 f T−
1 (B),

as claimed. �
Statement (37) has an interesting interpretation. Namely, let P ⊂ B be an addi-

tive set. Consider indexed positive linear maps Tp : A → B , p ∈ P , satisfying

Tp(I) = p for each p ∈ P . (40)

Then (37) means the antimonotonicity of the mapping p → Tp f T−
p (B) , as follows.

p1 � p implies Tp f T−
p (B) � Tp1 f T−

p1
(B), for p, p1 ∈ P . (41)

REMARK 3.2. For some interesting relations between generalized inverses of a
family {Tp : p ∈ P} and of their sum ∑

p∈P
Tp , see [25, Theorems 3.4, 4.3, 4.9 and

Corollary 3.5].

In the next theorem we prove joint subadditivity of the binary mapping (p,B) →
Tp f T−

p (B) .

THEOREM 3.3. Let P be an additive set in a linear space, and Tp : A → B ,
p ∈ P , be positive linear maps, and (Tp)− : B → A be a positive reflexive g.i. of Tp .
Assume that ψ : p → Tp(I) , p ∈ P , is a superadditive mapping. Let p1, . . . , pn ∈ P

and

(
n
∑

k=1
Tpk

)−
: B → A be a positive reflexive g.i. of

n
∑

k=1
Tpk satisfying

I ∈ Ran

(
n

∑
k=1

Tpk

)−
∩Ran

(
T n

∑
k=1

pk

)−
, (42)

Ran(Tpk) ⊂ Ran

(
n

∑
k=1

Tpk

)
⊂ Ran

(
T n

∑
k=1

pk

)
, k = 1,2, . . . ,n. (43)
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If f : J → R is an operator convex function such that 0 ∈ J and f (0) � 0 , then(
T n

∑
k=1

pk

)
f

(
T n

∑
k=1

pk

)−( n

∑
k=1

Bk

)
�

n

∑
k=1

Tpk f T−
pk

(Bk) (44)

for every self-adjoint operators Bk ∈Ran(Tpk) such that σ(T−
pk

(Bk))⊂ J , k = 1,2, . . . ,n.

Proof. Since ψ is superadditive, we have

ψ

(
n

∑
k=1

pk

)
�

n

∑
k=1

ψ(pk).

In other words,

T n
∑

k=1
pk

(I) �
n

∑
k=1

Tpk(I) =

(
n

∑
k=1

Tpk

)
(I).

In light of Theorem 3.1 applied to T := T n
∑

k=1
pk

and T1 :=
n
∑

k=1
Tpk , we get

(
T n

∑
k=1

pk

)
f

(
T n

∑
k=1

pk

)−
(B) �

(
n

∑
k=1

Tpk

)
f

(
n

∑
k=1

Tpk

)−
(B) (45)

for every self-adjoint operators B ∈ RanT1 such that σ(T−
1 (B)) ⊂ J .

Simultaneously, (43) gives

Ran

(
n

∑
k=1

Tpk

)
=

n

∑
k=1

Ran
(
Tpk

)
.

In consequence,
n

∑
k=1

Bk ∈ Ran

(
n

∑
k=1

Tpk

)
= Ran(T1),

because Bk ∈ Ran(Tpk) for k = 1,2, . . . ,n .

Furthermore, we have σ(T−
1 (B)) ⊂ J for B =

n
∑

k=1
Bk . In fact, by Bk ∈ RanTpk it

holds that Bk = TpkT
−
pk

Bk . Therefore one has

T−
1 (B) =

(
n

∑
k=1

Tpk

)− n

∑
k=1

Bk =

(
n

∑
k=1

Tpk

)− n

∑
k=1

TpkT
−
pk

Bk =

(
n

∑
k=1

Tpk

)− n

∑
k=1

TpkAk,

where Ak := T−
pk

Bk . Notice that the map

(A1, . . . ,An) →
(

n

∑
k=1

Tpk

)− n

∑
k=1

Tpk(Ak) (46)
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is positive and unital on A n . Indeed,

(
n
∑

k=1
Tpk

)−
and

n
∑

k=1
Tpk(·) are positive, and

(
n

∑
k=1

Tpk

)− n

∑
k=1

Tpk(I) =

(
n

∑
k=1

Tpk

)−( n

∑
k=1

Tpk

)
(I) = I.

Here the last equality holds by the assumptions that

(
n
∑

k=1
Tpk

)−
is a positive reflexive

g.i. of
n
∑

k=1
Tpk and that I ∈ Ran

(
n
∑

k=1
Tpk

)−
by (42). Consequently, the map (46) is

unital and positive on A n .
So, the spectrum of

T−
1 (B) =

(
n

∑
k=1

Tpk

)− n

∑
k=1

TpkAk

lies in J , since the spectra of Ak = T−
pk

Bk , k = 1,2, . . . ,n , are contained in J .
Summarizing all of this, we deduce from (45) that(

T n
∑

k=1
pk

)
f

(
T n

∑
k=1

pk

)−( n

∑
k=1

Bk

)
�
(

n

∑
k=1

Tpk

)
f

(
n

∑
k=1

Tpk

)−( n

∑
k=1

Bk

)
. (47)

On the other hand, it follows from Corollary 2.14 that(
n

∑
k=1

Tpk

)
f

(
n

∑
k=1

Tpk

)−( n

∑
k=1

Bk

)
�

n

∑
k=1

Tpk f T−
pk

(Bk). (48)

Finally, by combining (47) and (48), we obtain (44), as required. �

COROLLARY 3.4. Let P be an additive set in a linear space, and Tp : A → B ,
p ∈ P , be invertible positive linear maps, and (Tp)−1 : B → A be positive inverse of
Tp . Assume that ψ : p → Tp(I) , p ∈ P , is a superadditive mapping. Let p1, . . . , pn ∈
P and

(
n
∑

k=1
Tpk

)−1

: B → A be positive inverse of
n
∑

k=1
Tpk .

If f : J → R is an operator convex function such that 0 ∈ J and f (0) � 0 , then(
T n

∑
k=1

pk

)
f

(
T n

∑
k=1

pk

)−1( n

∑
k=1

Bk

)
�

n

∑
k=1

Tpk f T−1
pk

(Bk) (49)

for every self-adjoint operators Bk ∈ B such that σ(T−1
pk

(Bk)) ⊂ J , k = 1,2, . . . ,n.

Proof. Use Theorem 3.3. �

In order to interpret the last result, we now employ positive linear maps induced
by Schur product of matrices.
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EXAMPLE 3.5. Remind that the Schur product of k× k matrices A = (ai j) and
B = (bi j) is the k× k matrix A◦B = (ai jbi j) . The Schur product theorem says that

A,B � 0 implies A◦B � 0 (50)

(see [12, Theorem 5.2.1]).
The m-th Schur-power of A is defined by A[m] = A◦ . . .◦A︸ ︷︷ ︸

m times

, m = 1,2, . . . . In

addition, A[0] = E , where E = ee∗ � 0 is the k× k matrix of ones and e is the k× 1
vector of ones.

Consider the following situation. Let A = B = Mk(C) , the linear space of k× k
complex matrices. Denote by P the set of all k× k positive semidefinite matrices
P = (pi j) with 0 < pi j , i, j = 1,2, . . . ,k .

Take

TP(X) = P◦X = (pi jxi j) for X = (xi j) ∈ Mk(C) and P = (pi j) ∈ P .

By (50), TP is a positive linear map, i.e.,

X � 0 implies TP(X) � 0,

provided P ∈ P . Moreover, the mapping ψ : P → TP(I) , P ∈ P , is additive.
It is not hard to verify that TP is invertible with

T−1
P (Y ) = P[−1] ◦Y for Y = (yi j) ∈ Mk(C) , (51)

where P[−1] = (1/pi j) .
Under the hypothesis that P = (pi j) with 0 < pi j < 2, i, j = 1,2, . . . ,k , we have

P[−1] = E +(E −P)+ (E−P)[2] + (E −P)[3] + . . . , (52)

the convergent (geometric) Schur-power series (see [12, pp. 449-450]).
So, it is a simple consequence of (50) that (E −P)[m] � 0, m = 0,1,2,3, . . . , pro-

vided that E −P � 0. For this reason we deduce that

P ∈ P0 imply P[−1] � 0, (53)

where
P0 := {P ∈ P : P = (pi j), 0 < pi j < 2, 0 � P � E}

(see [12, Theorem 6.3.5]). In other words, T−1
P is a positive linear map from Mk(C)

to Mk(C) , whenever P ∈ P0 (see (51) and (53)).

Take any P1, . . . ,Pn ∈ P0 so that
n
∑

k=1
Pk ∈ P0 . Then

(
n
∑

k=1
TPk

)−1

: Mk(C) →

Mk(C) is positive inverse of
n
∑

k=1
TPk = T n

∑
k=1

Pk
. Therefore by Corollary 3.4, we conclude

that if f : J → R is an operator convex function such that 0 ∈ J and f (0) � 0, then(
n

∑
k=1

Pk

)
◦ f

⎛
⎝( n

∑
k=1

Pk

)[−1]

◦
(

n

∑
k=1

Bk

)⎞⎠�
n

∑
k=1

Pk ◦ f (Pk
[−1] ◦Bk) (54)
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for every self-adjoint operators Bk ∈Mk(C) such that σ(T−1
Pk

(Bk))⊂ J , k = 1,2, . . . ,n .
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[13] S. IVELIĆ, A. MATKOVIĆ AND J. E. PEČARIĆ, On a Jensen-Mercer operator inequality, Banach J.
Math. Anal., 5 (2011), no. 1, 19–28.

[14] R. KAUR, M. SINGH, J. S. AUJLA AND M. S. MOSLEHIAN, A general double inequality related to
operator means and positive linear maps, Linear Algebra Appl., 437 (2012), 1016–1024.

[15] M. KHOSRAVI, Corach-Porta-Recht inequality for closed range operators, Math. Inequal. Appl., 16
(2) (2013), 477–481.

[16] M. KHOSRAVI, J. S. AUJLA, S. S. DRAGOMIR AND M. S. MOSLEHIAN,Refinements of Choi-Davis-
Jensen’s inequality, Bull. Math. Anal. Appl., 3 (2011), 127–133.

[17] F. KUBO AND T. ANDO, Means of positive linear maps, Math. Ann., 246 (1980), 205–224.
[18] J. MIĆIĆ, Z. PAVIĆ AND J. PEČARIĆ, Jensen’s inequality for operators without operator convexity,

Linear Algebra Appl., 434 (2011), 1228–1237.
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[20] J. MIĆIĆ, J. PEČARIĆ AND J. PERIĆ, Refined Jensen’s operator inequality with condition on spectra,

Operators and Matrices, 7 (2013), 293–308.
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