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SHARP INEQUALITIES FOR HILBERT

TRANSFORM IN A VECTOR–VALUED SETTING

ADAM OSȨKOWSKI

Abstract. The paper is devoted to the study of the periodic Hilbert transform H in the vector
valued setting. Precisely, for any positive integer N we determine the norm of H as an operator
from L∞(T;�N

∞) to Lp(T;�N
∞) , 1 � p < ∞ , and from Lp(T;�N

1 ) to L1(T;�N
1 ) , for 1 < p � ∞ .

The proof rests on the existence of a certain family of special harmonic functions.
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