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SHARP INEQUALITIES FOR HILBERT

TRANSFORM IN A VECTOR–VALUED SETTING

ADAM OSȨKOWSKI

(Communicated by I. Pinelis)

Abstract. The paper is devoted to the study of the periodic Hilbert transform H in the vector
valued setting. Precisely, for any positive integer N we determine the norm of H as an operator
from L∞(T;�N

∞) to Lp(T;�N
∞) , 1 � p < ∞ , and from Lp(T;�N

1 ) to L1(T;�N
1 ) , for 1 < p � ∞ .

The proof rests on the existence of a certain family of special harmonic functions.

1. Introduction

The motivation for the results obtained in this paper comes from a very natural
question about the periodic Hilbert transform and its action on vector-valued functions.
Let us start with some historical perspective. Consider the trigonometric polynomial

f (θ ) =
a0

2
+

N

∑
k=1

(
ak coskθ +bk sinkθ

)
, θ ∈ T � [−π ,π ],

where a0 , a1 , . . . , aN , b1 , b2 , . . . , bN are real coefficients. Then the polynomial
conjugate to f (or the periodic Hilbert transform of f ) is given by

H f (θ ) =
N

∑
k=1

(ak sinkθ −bk coskθ ).

A natural question, which interested many mathematicians during the first half of 20th
century, can be roughly stated as follows: how does the size of f control the size of its
conjugate? Here the sizes of the polynomials can be measured, for instance, in terms of
the usual Lp -norms with respect to the normalized Haar measure:

|| f ||p =
(

1
2π

∫
T

| f (θ )|pdθ
)1/p

when 1 � p < ∞ , and || f ||∞ = esssupθ∈T | f (θ )| . By the orthogonality of the trigono-
metric system, we immediately see that ||H f ||2 � || f ||2 , and this estimate is clearly
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sharp (the equality can be attained for some nontrivial choice of f ). Concerning other
values of p , Marcel Riesz [23], [24] proved that

||H f ||p � Cp|| f ||p, 1 < p < ∞, (1.1)

for some constant Cp which depends only on p (and not on the coefficients of the
polynomial f ); furthermore, when p = 1 or p = ∞ , then the corresponding estimate
does not hold with any finite constant. The optimal value of Cp was determined almost
50 years later by Pichorides [22] (see also Gokhberg and Krupnik [17]): the optimal
choice turns out to be max{cot(π/2p), tan(π/2p)} , 1 < p < ∞ .

The above results of Riesz, together with his related works on interpolation, have
had a profound influence on the shape of contemporary analysis and have been extended
in numerous directions. In particular, ten years after the discovery of (1.1), its validity
for vector-valued functions began to be considered. More precisely, what can be said
about the constants in (1.1) if we allow the coefficients ai , b j to take values in a certain
Banach space B? For example, as Bochner and Taylor showed in [4], the inequality
(1.1) does not hold for any p if f is assumed to take values in �1 or �∞ . One can also
study this question from the perspective of other similar estimates (e.g., logarithmic,
weak-type, etc.). This problem gained a lot of interest in the literature: see e.g. Aldous
[1], Bourgain [5], [6], Burkholder [7]-[9], Calderón and Zygmund [11], McConnell
[19] and Rubio de Francia [25], to mention just a few. It turns out that the “good” class
of spaces, i.e., those in which (1.1) holds true for all 1 < p < ∞ with some finite Cp ,
is that of UMD spaces (Unconditional for Martingale Differences). We will not recall
the definition here; for the detailed description, properties and the interplay between
these spaces and the estimate (1.1), the reader is referred to the overview article [10] by
Burkholder.

The primary goal of this paper is to study a certain version of (1.1), in which
the action Lp → Lp is replaced by L∞ → Lp and/or Lp → L1 . Furthermore, we will
restrict ourselves to two specific choices of B : �N

1 and �N
∞ . Our main contribution is the

identification of the corresponding best constants. The result can be stated as follows.

THEOREM 1. Fix a positive integer N .
(i) For any 1 � p < ∞ and any f ∈ L∞(T;�N

∞) we have

||H f ||Lp(T;�N
∞) �

(
N · 2p+2

π p+1

∫ π/(4N)

0
(logcots)p ds

)1/p

|| f ||L∞(T;�N
∞). (1.2)

(ii) For any 1 < p � ∞ and any f ∈ Lp(T;�N
1 ) we have

||H f ||L1(T;�N
1 ) �

(
N · 2p′+2

π p′+1

∫ π/(4N)

0
(logcots)p′ ds

)1/p′

|| f ||Lp(T;�N
1 ), (1.3)

where p′ denotes the conjugate exponent to p, i.e., p′ = p/(p−1) .
Both inequalities are sharp.
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The problem of finding sharp or almost sharp versions of various estimates for
the Hilbert transform has a long history and has been investigated by many math-
ematicians. See e.g. Davis [12], Essén [14], Essén, Shea and Stanton [15], [16],
Gokhberg and Krupnik [17], Janakiraman [18], Osȩkowski [20], [21], Pichorides [22]
and Tomaszewski [26]. We would like to point out that to the best of our knowledge,
the above theorem is the first result in the literature which contains the precise infor-
mation on the constants in the “true” Banach-space setting (all the results cited above
concerned the case of real- or Hilbert-space-valued functions). Of course, it would be
most desirable to obtain related results for other value spaces (for instance, �N

p , �p , or
direct sums of such spaces). Unfortunately, this problem seems to be very difficult and
not tractable by the methods developed in this paper. On the other hand, we strongly
believe that the approach we will introduce below can be applied to wider classes of
Fourier multipliers and/or other types of estimates involving �N

∞ and �N
1 -valued func-

tions.
As an application, we obtain sharp exponential and LlogL inequalities for H .

Here is the precise statement.

COROLLARY 1. (i) Suppose that f is a function on T with values in a unit ball
of �N

∞ . Then for any K < π/2 we have the sharp bound

1
2π

∫
T

exp
(
K||H f (eiθ )||�N

∞

)
dθ � 4N

π

∫ ∞

cot(π/(4N))

u2K/π

u2 +1
du. (1.4)

(ii) Let Ψ(s)= s logs−s, s � 0 . Then for any f : T→ �N
1 with

∫
T

Ψ(|| f (eiθ )||�N
1
||)dθ

< ∞ and any L > 2/π we have the sharp inequality

||H f ||L1(T;�N
1 ) � L

2π

∫
T

Ψ
(
|| f (eiθ )||�N

1

)
dθ +

4LN
π

∫ ∞

cot(π/(4N))

u2/(πL)

u2 +1
du. (1.5)

A few words about our approach and the organization of the paper are in order. The
proof rests on probabilistic methods combined with the existence of a family of cer-
tain special harmonic functions on the strip [−1,1]×R . These special objects are
introduced and studied in the next section. Section 3 is devoted to the proofs of the es-
timates formulated in Theorem 1 and Corollary 1. The final part of the paper addresses
the optimality of the constants involved in these bounds.

2. Special functions and their properties

Suppose that λ � 0 and p � 1 are fixed numbers. Let H = R
2
+ = R× [0,∞) denote

the upper halfplane and introduce the harmonic function Uλ ,p : R× (0,∞) → R , given
by the Poisson integral

Uλ ,p(α,β ) =
1
π

∫ ∞

−∞

β
(∣∣ 2

π log |s|∣∣p−λ
)

+

(α − s)2 + β 2 ds, (2.1)
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where, as usual, x+ = max{x,0} denotes the positive part of x ∈ R . It is easy to check
that U satisfies

lim
(α ,β )→(t,0)

Uλ ,p(α,β ) =
(∣∣∣∣ 2π log |t|

∣∣∣∣
p

−λ
)

+
for t �= 0. (2.2)

Next, consider the conformal mapping φ(z) = ie−iπz/2 , which sends the strip S =
[−1,1]×R onto H , and define Uλ ,p : S → R by the formula

Uλ ,p(x,y) =
{

Uλ ,p(φ(x,y)) if |x| < 1,
(|y|p−λ )+ if |x| = 1.

Clearly, Uλ ,p is harmonic in the interior of S and, by (2.2), it is continuous on this
strip. We study the further properties of Uλ ,p in the lemma below. We use the notation
∂xxUλ ,p , ∂xyUλ ,p , etc., for the appropriate second-order partial derivatives of Uλ ,p .

LEMMA 1. The function Uλ ,p enjoys the following properties.
(i) Uλ ,p(x,y) = Uλ ,p(x,−y) = Uλ ,p(−x,y) for all (x,y) ∈ S .
(ii) For any x ∈ (−1,1) and y ∈ R we have ∂yyUλ ,p(x,y) � 0 and ∂xxUλ ,p(x,y) �

0 .
(iii) For any x ∈ [−1,1] we have

Uλ ,p(x,0) � Uλ ,p(0,0) =
4
π

∫ π/4

0

((
2
π

logcots

)p

−λ
)

+
ds.

(iv) For any (x,y) ∈ S , Uλ ,p(x,y) � (|y|p−λ )+.

Proof. (i) This is an immediate consequence of the following property of Uλ ,p :
for all α ∈ R and β > 0,

Uλ ,p(α,β ) = Uλ ,p(−α,β ) = Uλ ,p

(
α√

α2 + β 2
,

β√
α2 + β 2

)
.

This can be established by substituting t := −t and t := 1/t in (2.1).
(ii) It suffices to prove the first estimate, then the second follows immediately from

the harmonicity of Uλ ,p . We have, after the substitution t = sexp(πy/2) ,

Uλ ,p(x,y) =
1
π

∫ ∞

−∞

cos(π
2 x)
(∣∣ 2

π log |s|+ y
∣∣p−λ

)
+(

s− sin(π
2 x)
)2 + cos2(π

2 x)
ds. (2.3)

Since for any s ∈ R the function y �→
(∣∣ 2

π log |s|+ y
∣∣p−λ

)
+

is convex, the claim

follows.
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(iii) Since ∂ 2
xxUλ ,p � 0, (i) implies that x �→Uλ ,p(x,0) is nonincreasing on [0,1] .

Consequently, if x ∈ [−1,1] , then (2.3) gives

Uλ ,p(x,0) � Uλ ,p(0,0) =
1
π

∫ ∞

−∞

(∣∣ 2
π log |s|∣∣p−λ

)
+

s2 +1
ds

=
4
π

∫ ∞

1

(
( 2

π logs)p−λ
)
+

s2 +1
ds

=
4
π

∫ π/4

0

((
2
π

logcots

)p

−λ
)

+
ds,

as desired.
(iv) Fix y ∈ R and apply Jensen’s inequality in (2.3), with respect to the convex

function t �→ (|t + y|p−λ )+ . We get

Uλ ,p(x,y) �
(∣∣∣∣∣
∫ ∞

−∞

2
π

log |s| · 1
π

cos(π
2 x)(

s− sin(π
2 x)
)2 + cos2(π

2 x)
ds+ y

∣∣∣∣∣
p

−λ

)
+

,

which is the claim, since the integral inside is equal to 0 (simply substitute s :=
1/s). �

3. Proofs of (1.2), (1.3), (1.4) and (1.5)

Our reasoning will depend heavily on the theory of continuous-time martingales;
let us briefly introduce the necessary notions. Assume that (Ω,F ,P) is a complete
probability space, equipped with (Ft)t�0 , a nondecreasing family of sub-σ -fields of
F , such that F0 contains all the events of probability 0. Let X , Y be two real adapted
cádlág martingales, i.e., with right-continuous trajectories that have limits from the left.
The symbols [X ,X ] and [Y,Y ] will stand for the square brackets of X and Y , respec-
tively; see e.g. Dellacherie and Meyer [13] for the definition. Following Bañuelos and
Wang [2] and Wang [27], we say that Y is differentially subordinate to X , if the process
([X ,X ]t − [Y,Y ]t)t�0 is nonnegative and nondecreasing as a function of t . Furthermore,
X and Y are said to be orthogonal, if their bracket [X ,Y ] (defined by the polarization
formula [X ,Y ] = ([X +Y,X +Y ]− [X −Y,X −Y ])/4) is constant.

In our further considerations, the following fact from stochastic analysis will be
of importance. Recall that for any real martingale X there exists a unique continuous
local martingale part Xc of X satisfying

[X ,X ]t = |X0|2 +[Xc,Xc]t + ∑
0<s�t

|�Xs|2

for all t � 0. Here �Xs = Xs−Xs− denotes the jump of X at time s . Furthermore, we
have that [Xc,Xc] = [X ,X ]c , the pathwise continuous part of [X ,X ] . We will require
the following statement, which appears as Lemma 2.1 in [3].
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LEMMA 2. If X and Y are semimartingales, then Y is differentially subordinate
and orthogonal to X if and only if Y c is differentially subordinate and orthogonal to
Xc , |Y0| � |X0| and Y has continuous paths.

Now we are ready to establish the following auxiliary estimate.

LEMMA 3. Suppose that X and Y are orthogonal martingales satisfying the con-
ditions ||X ||∞ � 1 , Y0 ≡ 0 and such that Y is differentially subordinate to X . Then for
any λ � 0 and p � 1 ,

sup
t�0

E(|Yt |p−λ )+ � 4
π

∫ π/4

0

((
2
π

logcots

)p

−λ
)

+
ds. (3.1)

The inequality is sharp.

Proof. Let t � 0 be fixed. Since Uλ ,p is of class C∞ in the interior of the strip S ,
we may apply Itô’s formula to obtain

Uλ ,p(Xt ,Yt) = I0 + I1 + I2 +
1
2
I3 + I4,

where

I0 = Uλ ,p(X0,Y0),

I1 =
∫ t

0+
∂xUλ ,p(Xs−,Ys)dXs +

∫ t

0+
∂yUλ ,p(Xs−,Ys)dYs,

I2 =
∫ t

0+
∂ 2

xyUλ ,p(Xs−,Ys)d[Xc,Y ]s,

I3 =
∫ t

0+
∂ 2

xyUλ ,p(Xs−,Ys)d[Xc,Xc]s +
∫ t

0+
∂ 2

yyUλ ,p(Xs−,Ys)d[Y,Y ]s,

I4 = ∑
0<s�t

[
Uλ ,p(Xs,Ys)−Uλ ,p(Xs−,Ys)− ∂xUλ ,p(Xs−,Ys)ΔXs

]
.

(3.2)

Note that we have used above the equalities Ys− =Ys and Y =Yc , which are due to the
continuity of paths of Y . Let us analyse the terms I1 through I4 separately: here we
will combine Lemma 2 with the properties of Uλ ,p studied in the previous section. By
Lemma 1 (iii) we have

I0 � 4
π

∫ π/4

0

((
2
π

logcots

)p

−λ
)

+
ds.

The term I1 has zero expectation, by the properties of the stochastic integrals. We have
I2 = 0 in view of the orthogonality of X and Y . The differential subordination together
with Lemma 1 (ii) imply

I3 �
∫ t

0
∂ 2

xxUλ ,p(Xs,Ys)d[Xc,Xc]s +
∫ t

0
∂ 2

yyUλ ,p(Xs,Ys)d[Xc,Xc]s = 0.
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Finally, we have that I4 � 0, by the concavity of Uλ ,p(·,y) for any fixed y ∈ R : see
Lemma 1 (ii). Therefore, by the last part of that lemma,

E(|Yt |p−λ )+ � EUλ ,p(Xt ,Yt) � 4
π

∫ π/4

0

((
2
π

logcots

)p

−λ
)

+
ds (3.3)

and it suffices to take supremum over t to obtain (3.1). The optimality of the constant
on the right will follow from the sharpness of (1.2): see the end of Section 4 below. �

The next step in the analysis is to establish the following statement.

LEMMA 4. Suppose that X and Y are orthogonal martingales satisfying the con-
ditions ||X ||∞ � 1 , Y0 ≡ 0 and such that Y is differentially subordinate to X . Then for
any p and any event A,

sup
t�0

E|Yt |p1A � 2p+2

π p+1

∫ πP(A)/4

0
(logcots)p ds

and the number on the right cannot be replaced by a smaller one.

Proof. Fix t , an event A and let

λ =
(

2
π

logcot
πP(A)

4

)p

� 0.

Next, consider the splitting A = A+∪A− , where

A+ = A∩{|Yt|p � λ} and A− = A∩{|Yt|p < λ}.
By the previous lemma, we have

E(|Yt |p−λ )1A+ � E(|Yt |p−λ )+ � 4
π

∫ π/4

0

((
2
π

logcots

)p

−λ
)

+
ds

=
4
π

∫ πP(A)/4

0

((
2
π

logcots

)p

−λ
)

ds

=
2p+2

π p+1

∫ πP(A)/4

0
(logcots)p ds−λP(A).

Furthermore, we obviously have E(|Yt |p −λ )1A− � 0. Adding the latter two estimates
gives

E(|Yt |p−λ )1A � 2p+2

π p+1

∫ πP(A)/4

0
(logcots)p ds−λP(A)

or, equivalently,

E|Yt |p1A � 2p+2

π p+1

∫ πP(A)/4

0
(logcots)p ds.

It remains to take the supremum over t � 0 to get the desired estimate. Its sharpness is
deferred to the end of Section 4. �

The next result can be regarded as a probabilistic version of (1.2) and is of inde-
pendent interest.



1568 A. OSȨKOWSKI

THEOREM 2. Suppose that X = (X1,X2, . . . ,XN) is a bounded martingale taking
values in �N

∞ and let Y = (Y 1,Y 2, . . . ,YN) be an �N
∞ -valued martingale such that for

each j , Y j and X j are orthogonal and Y j is differentially subordinate to X j . Then we
have the sharp inequality

sup
t�0

∣∣∣∣∣∣||Yt ||�N
∞

∣∣∣∣∣∣
p
� N1/p ·

(
2p+2

π p+1

∫ π/(4N)

0
(logcots)p ds

)1/p

sup
t�0

∣∣∣∣∣∣||Xt ||�N
∞

∣∣∣∣∣∣
∞

.

Proof. By homogeneity, we may assume that ||X ||�N
∞

� 1; then each coordinate
X j is a martingale taking values in the interval [−1,1] . Suppose that t � 0 is fixed.
Then there are pairwise disjoint events A1 , A2 , . . . , AN such that

||Yt ||p�N
∞

=
N

∑
j=1

|Y j
t |p1Aj .

and hence, by the previous lemma,

E||Yt ||p�N
∞

=
N

∑
j=1

E|Y j
t |p1Aj �

N

∑
j=1

2p+2

π p+1

∫ πP(Aj)/4

0
(logcots)p ds.

However, the function u �→ ∫ u
0 (logcots)p ds is concave: indeed, the integrand is non-

increasing. Consequently, by Jensen’s inequality, we obtain

E||Yt ||p�N∞
� N · 2p+2

π p+1

∫ π/(4N)

0
(logcots)p ds.

It remains to take the supremum over t to get the claim. The sharpness will be made
clear at the end of Section 4. �

Now let us deduce our main result for the Hilbert transform.

Proof of (1.2). This follows from a well-known and straightforward argument.
Let B = (Bt)t�0 be a planar Brownian motion starting from 0 and let τ denote the first
moment B hits the unit circle. Let f be a fixed function on the unit circle T , taking
values in the unit ball of �N

∞ . Denote by u and v the harmonic extensions of f and
H f to the unit disc. Then the processes X , Y given by Xt = u(Bτ∧t) , Yt = v(Bτ∧t)
(for t � 0) are orthogonal martingales and Y is differentially subordinate to X (more
precisely, these properties hold for each pair X j and Y j of coordinates). This follows
at once from the identities

[X j,X j]t = u2(ξ )+
∫ τ∧t

0
|∇u j(Bs)|2ds,

[Y j,Y j]t =
∫ τ∧t

0
|∇v j(Bs)|2ds =

∫ τ∧t

0
|∇u j(Bs)|2ds,

[X j,Y j]t =
∫ τ∧t

0
∇u j(Bs) ·∇v j(Bs)ds = 0,
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where the latter equality is due to Cauchy-Riemann equations. But u takes values in
the unit ball of �N

∞ , since so does f . Consequently, the martingale X also has this
boundedness property. Therefore, by (1.2), we may write

||H f ||Lp(T;�N
∞) � sup

t�0

∣∣∣∣∣∣||Yt ||�N
∞

∣∣∣∣∣∣
p

� N1/p ·
(

2p+2

π p+1

∫ π/(4N)

0
(logcots)p ds

)1/p

sup
t�0

∣∣∣∣∣∣||Xt ||�N
∞

∣∣∣∣∣∣
∞

� N1/p ·
(

2p+2

π p+1

∫ π/(4N)

0
(logcots)p ds

)1/p

|| f ||L∞(T;�N
∞),

which gives the first estimate. To obtain (1.3), we use duality argument: clearly, we
have

||H f ||L1(T;�N
1 ) =

1
2π

∫
T

N

∑
j=1

|H f j|dθ = sup
1
2π

∫
T

N

∑
j=1

H f jg jdθ ,

where the supremum is taken over all functions g = (g1,g2, . . . ,gN) on T satisfying
||g||L∞(T;�N

∞) � 1. Now, for any such g , we may write

1
2π

∫
T

N

∑
j=1

H f jg jdθ = − 1
2π

∫
T

N

∑
j=1

f jH g jdθ

� ||H g||Lp′ (T;�N
∞)|| f ||Lp(T;�N

1 )

�
(

N · 2p′+2

π p′+1

∫ π/(4N)

0
(logcots)p′ ds

)1/p′

|| f ||Lp(T;�N
1 ),

where in the last passage we have applied (1.2) to g . This proves the claim. �

Finally, we are ready to establish the inequalities of Corollary 1.

Proof of (1.4) and (1.5). To show the exponential bound, observe that (1.2) im-
plies, for any n � 1,

||H f ||nLn(T;�N
∞) � 4N

π

∫ π/(4N)

0

(
2
π

logcots

)n

ds.

Divide both sides by n! , sum over all n add 1 to both sides to get

1
2π

∫
T

exp
(
K||H f (eiθ )||�N

∞

)
dθ � 4N

π

∫ π/(4N)

0
exp

(
2K
π

logcots

)
ds,

which is (1.4) (use the substitution u = cots). To show the LlogL estimate, we use
duality, as in the above proof of (1.3). We will need an auxiliary bound

xy � Ψ(x)+ ey (3.4)
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valid for all nonnegative x, y (we leave the straightforward proof to the reader). We
have

||H f ||L1(T;�N
1 ) = sup

{
− 1

2π

∫
T

N

∑
j=1

f j(eiθ )H g j(eiθ )dθ : ||g||L∞(T;�N
∞) � 1

}

� sup

{
L
2π

∫
T

|| f (eiθ )||�N
1

∣∣∣∣
∣∣∣∣H g(eiθ )

L

∣∣∣∣
∣∣∣∣
�N

∞

dθ : ||g||L∞(T;�N
∞) � 1

}

and, by (3.4) and (1.4) (applied to K = 1/L ),

L
2π

∫
T

|| f (eiθ )||�N
1

∣∣∣∣
∣∣∣∣H g(eiθ )

L

∣∣∣∣
∣∣∣∣
�N

∞

dθ

� L
2π

∫
T

Ψ
(
|| f (eiθ )||�N

1

)
dθ +

L
2π

∫
T

exp

(∣∣∣∣
∣∣∣∣H g(eiθ )

L

∣∣∣∣
∣∣∣∣
�N

∞

)
dθ

� L
2π

∫
T

Ψ
(
|| f (eiθ )||�N

1

)
dθ +

4LN
π

∫ ∞

cot(π/(4N))

u2/(πL)

u2 +1
du.

This completes the proof. �

4. Sharpness

In this section, we show that the constants appearing in (1.2), (1.3), (1.4), (1.5) as
well as in the estimates of Lemmas 3, 4 and Theorem 2 cannot be improved. First let
us focus on the estimate (1.2). Note that the mapping

G(z) = (−2i/π) log[(iz−1)/(z− i)]−1

is conformal, satisfies G(0) = 0 and sends the unit disc onto the strip [−1,1]×R . We
easily derive that w = Re G and its conjugate H w = Im G admit the formulas

w(eiθ ) = 1{|θ |�π/2}−1{|θ |>π/2}, H w(eiθ ) = − 2
π

log

∣∣∣∣1+ sinθ
cosθ

∣∣∣∣
for θ ∈ [−π ,π ] . Now, given a positive integer N , consider the set

A =
{

θ ∈ [−π ,π ] : |θ −π/2|< π/(2N) or |θ + π/2|< π/(2N)
}
,

which is a sum of two intervals of length π/N , with centers at −π/2 and π/2. The
function H w satisfies the symmetry condition

|H w(eiθ ) = |H w(ei(π−θ))| = |H w(e−iθ )|
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for all θ ∈ [−π ,π ] , and therefore

1
2π

∫
A
|H w(eiθ )|pdθ =

2
π

∫ π/2+π/(2N)

π/2
|H w(eiθ )|pdθ

=
2p+1

π p+1

∫ π/2+π/(2N)

π/2

∣∣∣∣log

∣∣∣∣1+ sinθ
cosθ

∣∣∣∣
∣∣∣∣
p

dθ

=
2p+1

π p+1

∫ π/(2N)

0

∣∣∣∣log

∣∣∣∣1+ cosθ
sinθ

∣∣∣∣
∣∣∣∣
p

dθ

=
2p+2

π p+1

∫ π/(4N)

0
(logcots)pds.

Now consider the pairwise disjoint subsets A1 = A , A2 = A + π/N , A3 = A +
2π/N , . . . , AN = A+(N−1)π/N of [−π ,π ] (here, as usual, A+u = {x+u : x ∈ A}
and we identify x and y if their difference is a multiple of 2π ). Composing the function
G with an appropriate rotation z �→ eiϕz , we see that for any j ∈ {1, 2, . . . , N} , there is
a function wj : T → {−1,1} , such that

1
2π

∫
Aj

|H wj(eiθ )|pdθ =
2p+2

π p+1

∫ π/(4N)

0
(logcots)pds.

Therefore, if we take w = (w1,w2, . . . ,wN) , we see that ||w||L∞(T;�N
∞) = 1 and

||H w||Lp(�N
∞) �

(
1
2π

N

∑
j=1

∫
Aj

|H wj|pdθ

)1/p

=
(

N · 2p+2

π p+1

∫ π/(4N)

0
(logcots)pds

)1/p

.

Therefore, the inequality (1.2) is sharp. This also proves that the constants involved in
the estimates of Lemmas 3, 4 and Theorem 2 are also the best possible: indeed, if any
of them could be improved, then it would be possible to decrease the constant in (1.2).
Finally, since the above extremal example is the same for each p , we immediately
obtain the sharpness of the exponential bound (1.4).

It remains to show that the constants in (1.3) and (1.5) are the best as well. This
can be deduced from the sharpness of (1.2) and (1.4) with the use of duality argument.
We will only present the details for the first estimate, and leave the analysis of (1.5) to
the reader. So, assume that for a given 1 < p � ∞ , the optimal constant in (1.3) equals
βp . Fix f ∈ L∞(T;�N

∞) and observe that

||H f ||Lp′ (T;�N
∞) = sup

1
2π

∫
T

N

∑
j=1

H f jg jdθ ,

where the supremum is taken over all g = (g1,g2, . . . ,gN) on T satisfying ||g||Lp(T;�N
1 ) �
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1 . Now, for any such g we may write

1
2π

∫
T

N

∑
j=1

H f jg jdθ =
1
2π

∫
T

N

∑
j=1

f jH g jdθ

� || f ||L∞(T;�N
∞)||H g||L1(T;�N

1 ) � βp|| f ||L∞(T;�N
∞).

Here we have used the assumed fact that (1.3) holds with the constant βp . Conse-
quently, ||H f ||Lp′ (T;�N

∞) � βp|| f ||L∞(T;�N∞) and by the sharpness of (1.2), we get

βp �
(

N · 2p′+2

π p′+1

∫ π/(4N)

0
(logcots)p′ ds

)1/p′

.

This is precisely the claim.
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