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VOLTERRA TYPE OPERATORS ON MORREY TYPE SPACES

RUISHEN QIAN AND SONGXIAO LI

(Communicated by S. Stević)

Abstract. In this paper, we investigate the boundedness of Volterra type operators on Morrey
type spaces H2

K .

1. Introduction

Let D denote the open unit disk in the complex plane C , ∂D its boundary and
H(D) the space of all analytic functions in D . For a ∈ D , let ϕa be the automorphism
of D exchanging 0 for a , namely ϕa(z) = a−z

1−az , z ∈ D. Let μ denote a positive Borel
measure on D . For a subarc I ∈ ∂D , let S(I) be the Carleson box based on I with

S(I) = {z ∈ D : 1−|I|� |z| < 1 and
z
|z| ∈ I}.

If I = ∂D , let S(I) = D . We say that μ is a Carleson measure on D if

sup
I⊂∂D

μ(S(I))/|I| < ∞.

Here and henceforth supI⊂∂D indicates the supremum taken over all subarcs I of ∂D .
For 0 < p < ∞ , the Hardy space Hp consists of all f ∈ H(D) such that

‖ f‖p
Hp = sup

0<r<1

1
2π

∫ 2π

0
| f (reiθ )|pdθ < ∞.

As usual, H∞ denote the space of bounded analytic function.
Throughout this paper, we assume that K : [0,∞) → [0,∞) is a right-continuous

and nondecreasing function such that

∫ 1/e

0
K(log(1/ρ))ρdρ =

∫ ∞

1
K(t)e−2tdt < ∞.

We say that f belongs to the space QK if (see, for example [4, 5])

‖ f‖2
QK

= sup
a∈D

∫
D

| f ′(z)|2K(1−|ϕa(z)|2)dA(z) < ∞.
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QK is a Banach space under the norm | f (0)|+‖ f‖QK . For 0 < p < ∞ , K(t) = t p gives
the space Qp , Q1 = BMOA , the space of those analytic functions f in the Hardy space
Hp whose boundary functions have bounded mean oscillation on ∂D (see, for example
[6, 28, 31]).

We say that a function f ∈ H2 belongs to Morrey type space H2
K if

‖ f‖2
H2

K
= | f (0)|+ sup

I⊆∂D

1
K(|I|)

∫
I
| f (ζ )− fI |2 dζ

2π
< ∞,

where

fI =
1
|I|

∫
I
f (ζ )

dζ
2π

, I ⊆ ∂D.

This space was recently introduced by Wulan and Zhou in [27]. When K(t) = t , it also
gives the BMOA space. When K(t) = tλ (0 < λ < 1) , the space H2

K gives the classical
Morrey space L 2,λ , which was first studied by Wu and Xie in [26] in the case of the
unit disk. Morrey space was first studied by Morrey for solutions of partial differential
equations (PDE) in [16].

Let g ∈ H(D) . The multiplication operator Mg is defined by

Mg f (z) = f (z)g(z), f ∈ H(D).

An integral operator introduced by Pommerenke in [18] is defined as following:

Jg f (z) =
∫ z

0
f (ξ )g′(ξ )dξ , f ∈ H(D), z ∈ D.

We call Jg Volterra type operator (see, e.g. [19]), which can be viewed as a general-
ization of the Cesàro operator (see, e.g. [3]). Similarly, another integral operator was
defined by

Ig f (z) =
∫ z

0
f ′(ξ )g(ξ )dξ .

The importance of the operators Jg and Ig comes from the fact that

Jg f + Ig f + f (0)g(0) = Mg f .

Pommerenke showed that Jg is bounded on H2 if and only if g ∈ BMOA in
[18]. Recently, the boundedness, compactness, norm and essential norm of Jg and Ig
between some spaces of analytic functions, as well as their n -dimensional extensions
on the unit ball in Cn , have been investigated considerably (see, e.g. [1, 2, 3, 7, 8, 9,
10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 29, 32, 33] and also the related
references therein).

In [10], the authors studied the boundedness of Jg , Ig and Mg on Morrey space
L 2,λ (0 < λ < 1) . Motivated by [10], in this paper, we investigate the boundedness
of Jg , Ig and Mg on Morrey type space H2

K .
For our aim, we need more constraints on K in the rest of this paper. By [4],

we may assume that K is defined on [0,1] and extend its domain to [0,∞) by setting
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K(t) = K(1) for t > 1. We also assume that

∫ 1

0

ϕK(s)
s

ds < ∞ (1.1)

∫ ∞

1

ϕK(s)
s2 ds < ∞, (1.2)

where

ϕK(s) = sup
0�t�1

K(st)/K(t), 0 < s < ∞.

Finally, we assume that K(t) ≈ K(2t) . In this paper, the symbol f ≈ g means that
f � g � f . We say that f � g if there exists a constant C such that f � Cg .

2. Main results and proofs

In this section, we give our main results and proofs. For this purpose, we need
some auxiliary results. The following lemma can be found in [27, Theorem 3.1].

LEMMA 1. Let K satisfy the conditions (1.1) and (1.2). Then the following state-
ments are equivalent.

(a) f ∈ H2
K ;

(b)

sup
I⊆∂D

1
K(|I|)

∫
S(I)

| f ′(z)|2(1−|z|2)dA(z) < ∞;

(c)

sup
a∈D

1−|a|2
K(1−|a|2)

∫
D

| f ′(z)|2(1−|ϕa(z)|2)dA(z) < ∞.

LEMMA 2. Let K satisfy the conditions (1.1) and (1.2). Then,

|w|
∫ 1

0

√
K(1−|w|t)

(1−|w|t) 3
2

dt �
√

K(1−|w|)√
1−|w| , w ∈ D.

Proof. Since K satisfies (1.2), from the proof of Lemma 2.2 of [5], we see that
there exists a small enough c > 0 such that

ϕK(t) � t1−c, t � 1.
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By making change of variables, we have

|w|
∫ 1

0

√
K(1−|w|t)

(1−|w|t) 3
2

dt =
∫ |w|

0

√
K(1− s)

(1− s)
3
2

ds

=
√

K(1−|w|)
∫ |w|

0

√
K(1− s)

K(1−|w|)(1− s)−
3
2 ds

�
√

K(1−|w|)
∫ |w|

0

√
ϕK

(
1− s

1−|w|
)

(1− s)−
3
2 ds

�
√

K(1−|w|)
∫ |w|

0

√(
1− s

1−|w|
)1−c

(1− s)−
3
2 ds

�
√

K(1−|w|)
1−|w| ,

completing the proof. �

LEMMA 3. Let K satisfy the conditions (1.1) and (1.2). Suppose that f ∈ H2
K ,

then

| f (z)| �
‖ f‖H2

K

√
K(1−|z|2)√

(1−|z|2) , z ∈ D.

Proof. By Lemma 1, for any w ∈ D , we have

1−|w|2
K(1−|w|2)

∫
D

| f ′(z)|2(1−|ϕw(z)|2)dA(z)

�sup
a∈D

1−|a|2
K(1−|a|2)

∫
D

| f ′(z)|2(1−|ϕa(z)|2)dA(z)

�‖ f‖2
H2

K
.

Let E(w,r) = {z ∈ D : |ϕw(z)| < r} . Using the sub-mean value property of | f ′|2 and
notice the fact that

|1− zw| ≈ 1−|z|2 ≈ 1−|w|2, z ∈ E(w,r),

we get

| f ′(w)|2 � 1
(1−|w|2)2

∫
E(w,r)

| f ′(z)|2dA(z)

� 1
(1−|w|2)2

∫
E(w,r)

| f ′(z)|2(1−|ϕw(z)|2)dA(z)

� 1
(1−|w|2)2

∫
D

| f ′(z)|2(1−|ϕw(z)|2)dA(z).
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Hence, we have

| f ′(w)| �
‖ f‖H2

K

√
K(1−|w|2)

(1−|w|2) 3
2

.

Since

| f (w)− f (0)| = |w
∫ 1

0
f ′(wt)dt| � |w|

∫ 1

0
| f ′(wt)|dt,

combine with Lemma 2, we easy to get that

| f (w)− f (0)| � ‖ f‖H2
K
|w|

∫ 1

0

√
K(1−|wt|2)

(1−|wt|2) 3
2

dt � ‖ f‖H2
K

√
K(1−|w|2)√

1−|w|2 .

By [5, Lemma 2.3], we know that there exists a K3 such that K3 ≈ K and K3(t)
t is

nonincreasing on (0,∞) . Thus,

K(t)
t

≈ K3(t)
t

� 1, t ∈ (0,1).

Since the point w is arbitrary, it follows that

| f (z)| � ‖ f‖H2
K

√
K(1−|z|2)√

1−|z|2 , z ∈ D.

The proof is completed. �

LEMMA 4. ([30, Lemma 1]) Suppose that α >−1 and s, t > 0 . If t < α +2 < s,
then we have

∫
D

(1−|z|2)α

|1−az|s|1−bz|t dA(z) � 1

(1−|a|2)s−α−2|1−ba|t .

LEMMA 5. [6] Suppose that μ is a non-negative measure on D . Then μ is a
Carleson measure if and only if the following inequality

∫
D

| f (z)|2dμ � ‖ f‖2
H2

holds for all f ∈ H2 . Moreover,

sup
‖ f‖H2=1

∫
D

| f (z)|2dμ ≈ sup
I⊆∂D

μ(S(I))
|I| .

LEMMA 6. [6] Suppose that f ∈ H(D) , then f ∈ BMOA if and only if the mea-
sure μ f = | f ′(z)|2(1−|z|2)dA(z) is a Carleson measure.
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THEOREM 1. Suppose that g ∈ H(D) and K satisfy the conditions (1.1) and
(1.2). Then Ig is bounded on H2

K if and only if g ∈ H∞ . Moreover,

‖Ig‖ ≈ sup
z∈D

|g(z)|.

Proof. If g ∈ H∞ , then by Lemma 1, it is easy to see that Ig is bounded on H2
K

and

‖Ig‖ � sup
z∈D

|g(z)|.

Now we assume that Ig is bounded on H2
K . For any w ∈ D , we define

fw(z) =

√
K(1−|w|2)

1−|w|2 (ϕw(z)−w) , z ∈ D.

Since K satisfies (2), by [5, Lemma 2.2], there exists a small enough c > 0 such that
ϕK(t) � t1−c , t � 1. By Lemma 4, we have

sup
a∈D

1−|a|2
K(1−|a|2)

∫
D

| f ′w(z)|2 (
1−|ϕa(z)|2

)
dA(z)

=sup
a∈D

1−|a|2
K(1−|a|2)

∫
D

K(1−|w|2)(1−|w|2)
|1−wz|4

(
1−|ϕa(z)|2

)
dA(z)

=sup
a∈D

(1−|a|2)2K(1−|w|2)(1−|w|2)
K(1−|a|2)

∫
D

(
(1−|z|2)

|1−wz|4|1−az|2
)

dA(z)

�sup
a∈D

(1−|a|2)2K(1−|w|2)
K(1−|a|2)|1−aw|2

�sup
a∈D

(1−|a|2)2K(|1−aw|)
K(1−|a|)|1−aw|2

�sup
a∈D

(1−|a|2)2

|1−aw|2 ϕK

( |1−aw|
1−|a|

)

�sup
a∈D

(1−|a|2)2

|1−aw|2
( |1−aw|

1−|a|
)1−c

=sup
a∈D

(1−|a|2)1+c

|1−aw|1+c � 1.

By Lemma 1, we see that fw ∈ H2
K .

Since g ∈ H(D) , then g ◦ϕw ∈ H(D) . By sub-mean value property of |g|2 , the
asymptotic relations

|1− zw| ≈ 1−|z|2 ≈ 1−|w|2, z ∈ E(w,r),
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and Lemma 1, we obtain

∞ >‖Ig fw‖2
H2

K

�sup
a∈D

1−|a|2
K(1−|a|2)

∫
D

| f ′w(z)|2|g(z)|2 (
1−|ϕa(z)|2

)
dA(z)

� 1−|w|2
K(1−|w|2)

∫
D

| f ′w(z)|2|g(z)|2 (
1−|ϕw(z)|2)dA(z)

�
∫

D

|g(z)|2|ϕ ′
w(z)|2 (

1−|ϕw(z)|2)dA(z)

�
∫

E(w,r)
|g(z)|2|ϕ ′

w(z)|2 (
1−|ϕw(z)|2)dA(z)

�|g(w)|2.

Since w ∈ D is arbitrary, we have ∞ > ‖Ig fw‖H2
K

� ‖g‖H∞ . Moreover, from the proof

we see that ‖Ig‖ ≈ supz∈D |g(z)| , completing the proof. �

THEOREM 2. Suppose that g ∈ H(D) and K satisfy the conditions (1.1) and
(1.2). Then Jg is bounded on H2

K if and only if g ∈ BMOA. Moreover,

‖Jg‖ ≈ ‖g‖BMOA.

Proof. First, we assume that Jg is bounded on H2
K . For any I ⊆ ∂D , let w =

(1−|I|)ζ ∈ D , where ζ is the center of I . Then

1−|w| ≈ |1−wz| ≈ |I|, z ∈ S(I).

Thus, by double condition and nondecreasing of weighted function K , we have

K(1−|w|)≈ K(|I|), z ∈ S(I).

Take

hw(z) =
(1−|w|2)

√
K(1−|w|2)

(1−wz)
3
2

, z ∈ D.

Similarly to the proof of Theorem 1, we get

sup
a∈D

1−|a|2
K(1−|a|2)

∫
D

|h′w(z)|2 (
1−|ϕa(z)|2

)
dA(z)

=sup
a∈D

(1−|a|2)2K(1−|w|2)(1−|w|2)2

K(1−|a|2)
∫

D

(
1−|z|2

|1−wz|5|1−az|2
)

dA(z)

�sup
a∈D

(1−|a|2)2K(1−|w|2)
K(1−|a|2)|1−aw|2

�1.
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Thus, hw ∈ H2
K . By Lemma 1 and the boundedness of Jg , we have

1
|I|

∫
S(I)

|g′(z)|2(1−|z|2)dA(z)

� 1
K(|I|)

∫
S(I)

|hw(z)|2|g′(z)|2(1−|z|2)dA(z)

� 1
K(|I|)

∫
S(I)

|(Jghw)′(z)|2(1−|z|2)dA(z)

�‖Jghw‖2
H2

K
< ∞.

Thus, g ∈ BMOA .
Conversely, suppose that g ∈ BMOA . For any I ⊆ ∂D and f ∈ H2

K , let ζ be the
center of I and w = (1−|I|)ζ ∈ D . We have

1
K(|I|)

∫
S(I)

|(Jg f )′(z)|2(1−|z|2)dA(z)

=
1

K(|I|)
∫

S(I)
| f (z)|2|g′(z)|2(1−|z|2)dA(z) � A+B,

where

A :=
1

K(|I|)
∫

S(I)
| f (w)|2|g′(z)|2(1−|z|2)dA(z)

and

B :=
1

K(|I|)
∫

S(I)
| f (z)− f (w)|2|g′(z)|2(1−|z|2)dA(z).

By Lemma 3, we get

| f (w)| �
‖ f‖H2

K

√
K(1−|w|2)√

(1−|w|2) �
‖ f‖H2

K

√
K(|I|)√|I| , w ∈ S(I).

Combine with Lemma 6, it easy to get

A � ‖ f‖2
H2

K
‖g‖2

BMOA.

Since
1−|z|2
|I| � 1−|ϕw(z)|2, z ∈ S(I),

we obtain

B � |I|
K(|I|)

∫
S(I)

| f (z)− f (w)|2|g′(z)|2(1−|ϕw(z)|2)dA(z)

� |I|
K(|I|)

∫
S(I)

| f ◦ϕw(η)− f (w)|2|(g ◦ϕw)′(η)|2(1−|η |2)dA(η)

� 1−|w|2
K(1−|w|2)

∫
D

| f ◦ϕw(η)− f (w)|2|(g ◦ϕw)′(η)|2(1−|η |2)dA(η).
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Since g ∈ BMOA , then g ◦ϕw ∈ BMOA and |(g ◦ϕw)′(η)|2(1−|η |2)dA(η) is a Car-
leson measure by Lemma 6. From Lemma 1, if a = 0, it is not hard to deduce that
f ∈ H2

K ⊆ H2 . Then ( f ◦ϕw)(η)− f (w) ∈ H2 . Combining this with Lemma 5 gives

B � 1−|w|2
K(1−|w|2)‖g ◦ϕw‖2

BMOA

∫ 2π

0
| f ◦ϕw(eiθ )− f (w)|2dθ

� 1−|w|2
K(1−|w|2)‖g ◦ϕw‖2

BMOA

∫
D

| f ′(z)|2(1−|ϕw(z)|2)dA(z)

�‖g‖2
BMOA‖ f‖2

H2
K
,

where we used the Littlewood-Paley identity in the second inequality (see [6, page
236]). Therefore,

‖Jg f‖2
H2

K
� A+B � ‖g‖2

BMOA‖ f‖2
H2

K
.

The proof is complete. �

THEOREM 3. Suppose that g ∈ H(D) and K satisfy the conditions (1.1) and
(1.2). Then Mg is bounded on H2

K if and only if g ∈ H∞ .

Proof. Suppose Mg is bounded on H2
K . For any w ∈ D , consider the function hw

defined in Theorem 2. Using Lemma 3, it gives

|Mghw| =
∣∣∣∣∣ (1−|w|2)√K(1−|w|2)

(1−wz)
3
2

g(z)

∣∣∣∣∣
�
‖Mghw‖H2

K

√
K(1−|z|2)√

(1−|z|2)

�‖Mg‖
√

K(1−|z|2)√
(1−|z|2) .

Taking z = w , we get |g(w)|� ‖Mg‖. Since w∈D is arbitrary, we deduce that g∈H∞ .
The other side is obvious. The proof is complete. �

REMARK 1. If K(t) = tλ (0 < λ < 1) , then K satisfies our conditions and H2
K

is just Morrey space. Hence our results generalize the results in [10]. If K(t) = t ,
H2

K is just BMOA space. However K does not satisfy the condition (1.2). Hence, our
results do not include the case of BMOA space. In [19], Siskakis and Zhao proved that
Jg : BMOA → BMOA is bounded if only if

sup
I⊂∂D

(log 2
|I| )

2

|I|
∫

S(I)
|g′(z)|2(1−|z|2)dA(z) < ∞.
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[4] M. ESSÉN AND H. WULAN, On analytic and meromorphic functions and spaces of QK -type, Illinois
J. Math. 46 (2002), 1233–1258.
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[22] S. STEVIĆ, Products of integral-type operators and composition operators from the mixed norm space

to Bloch-type spaces, Siberian Math. J. 50 (4) (2009), 726–736.
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