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SCHUR CONVEXITY PROPERTIES FOR THE

ELLIPTIC NEUMAN MEAN WITH APPLICATIONS

YING-QING SONG, MIAO-KUN WANG AND YU-MING CHU

(Communicated by I. Perić)

Abstract. Strictly Schur convexity, Schur multiplicative convexity and Schur harmonic convexity
are investigated for the elliptic Neuman mean. As applications, several sharp bounds for the
arithmetic, geometric and harmonic means in terms of the elliptic Neuman mean are presented.

1. Introduction

For x,y∈R
2
+ = (0,+∞)×(0,+∞) and k∈ [0,1] the elliptic Neuman mean Nk(x,y)

[6] is defined by

Nk(x,y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
y2−x2

cn−1(x/y,k) , x < y,

x, x = y,
√

x2−y2

nc−1(x/y,k) , y < x,

where cn−1(x,k) =
1∫
x

du√
(1−u2)(k′2+k2u2)

and nc−1(x,k) =
x∫
1

du√
(u2−1)(k2+k′2u2)

are the

inverse functions of Jacobian elliptic functions cn and nc [2, 7], respectively, and

k′ =
√

1− k2 . In particular, cn−1(0,k) = K (k) =
π/2∫
0

dt√
1−k2 sin2 t

is the well-known

complete elliptic integral of the first kind.
In [6] Neuman proved that Nk(x,y) is symmetric and homogeneous of degree 1 on

R
2
+ , and strictly decreasing with respect to k ∈ [0,1] for fixed (x,y) ∈ R

2
+ with x �= y .

Let us recall the notions of Schur convex (concave), Schur multiplicatively convex
(concave), and Schur harmonic convex (concave) of a symmetric function on R

2
+ .

A real-valued function f : R
2
+ → R is said to be strictly Schur convex on R

2
+ if

f (x1,x2) < f (y1,y2) for each pair of 2-tuples x = (x1,x2) and y = (y1,y2) in R
2
+ with
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x ≺ y , i.e., max{x1,x2} < max{y1,y2} and x1 + x2 = y1 + y2 . f is said to be strictly
Schur concave if − f is strictly Schur convex.

A real-valued function g : R
2
+ → R is said to be strictly Schur multiplicatively

convex on R
2
+ if g(x1,x2) < g(y1,y2) for each pair of 2-tuples x = (x1,x2) and y =

(y1,y2) in R
2
+ with logx = (logx1, logx2) ≺ logy = (logy1, logy2) . g is said to be

strictly Schur multiplicatively concave if 1/g is strictly Schur multiplicatively convex.
A real-valued function h : R

2
+ →R is said to be strictly Schur harmonic convex (or

concave, respectively) on R
2
+ if h(x1,x2) < h(y1,y2) (or h(x1,x2) > h(y1,y2) , respec-

tively) for each pair of 2-tuples x = (x1,x2) and y = (y1,y2) in R
2
+ with 1

x = ( 1
x1

, 1
x2

)≺
1
y = ( 1

y1
, 1

y2
) .

The main purpose of this paper is to discuss the Schur convexity, Schur multiplica-
tive and Schur harmonic convexity properties of the elliptic Neuman mean Nk(x,y) , and
present the sharp bounds for the arithmetic, geometric and harmonic means in terms of
the elliptic Neuman mean.

2. Lemmas

In order to establish our main results we need several lemmas, which we present
in this section.

LEMMA 2.1. (See [5]) Suppose that f : R
2
+ → R+ is a continuous symmetric

function. If f is differentiable in R
2
+ , then f is strictly Schur convex on R

2
+ if and only

if
∂ f (x1,x2)

∂x2
− ∂ f (x1,x2)

∂x1
> 0 (2.1)

for all x = (x1,x2) ∈ R
2
+ with x2 > x1 . And f is strictly Schur concave on R

2
+ if and

only if inequality (2.1) is reversed. Here, f is a symmetric function in R
2
+ means that

f (xP) = f (x) for all x ∈ R
2
+ and any 2×2 permutation matrix P.

LEMMA 2.2. (see [4, Lemma 2.2] and [3, Lemma 2.10]) Suppose that g : R
2
+ →

R+ is a continuous symmetric function. If g is differentiable in R
2
+ , then g is strictly

Schur multiplicatively convex on R
2
+ if and only if

x2
∂g(x1,x2)

∂x2
− x1

∂g(x1,x2)
∂x1

> 0 (2.2)

for all x = (x1,x2) ∈ R
2
+ with x2 > x1 . And g is strictly Schur multiplicatively concave

on R
2
+ if and only if inequality (2.2) is reversed.

LEMMA 2.3. (see [4, Lemma 2.2] and [3, Lemma 2.11]) Suppose that h : R
2
+ →

R+ is a continuous symmetric function. If h is differentiable in R
2
+ , then h is strictly

Schur harmonic convex on R
2
+ if and only if

x2
2 ∂h(x1,x2)

∂x2
− x1

2 ∂h(x1,x2)
∂x1

> 0 (2.3)
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for all x = (x1,x2) ∈ R
2
+ with x2 > x1 . And h is strictly Schur harmonic concave on

R
2
+ if and only if inequality (2.3) is reversed.

LEMMA 2.4. (see [1, Lemma 3.21(7)]) If c � 1/4 , then the function k → (1−
k2)cK (k) is strictly decreasing from (0,1) onto (0,π/2) .

LEMMA 2.5. Let t ∈ (0,1) , k ∈ [0,1] , k0 ∈ (0.897,0.898) be the unique solution
of the equation K (k)−1/

√
1− k2 = 0 and

fk(t) = cn−1(t,k)−
√

1− t2√
1− k2 + k2t2

.

Then fk(t) > 0 for all t ∈ (0,1) if and only if k �
√

2/2 , and fk(t) < 0 for all t ∈ (0,1)
if and only if k � k0 .

Proof. We divide the proof into two cases.
Case 1 k = 1. Then we clearly see that

f1(t) =cn−1(t,1)−
√

1− t2

t
= cosh−1

(
1
t

)
−

√
1− t2

t

= log(1+
√

1− t2)− logt−
√

1− t2

t
,

f1(1−) = 0, (2.4)

f1
′(t) =

1− t

t2
√

1− t2
> 0 (2.5)

for all t ∈ (0,1) .
It follows from (2.4) and (2.5) that f1(t) < 0 for all t ∈ (0,1) .
Case 2 0 � k < 1. Then simple computations lead to

fk(0+) = K (k)− 1√
1− k2

, (2.6)

fk(1−) = 0, (2.7)

fk
′(t) =− 1√

(1− t2)(1− k2 + k2t2)
+

t(1− k2 + k2t2)+ k2t(1− t2)√
1− t2(1− k2 + k2t2)3/2

=

√
1− t2

(1− k2 + k2t2)3/2

(
k2 − 1

1+ t

)
. (2.8)

We divide the proof into three subcases.
Subcase 2.1 0 � k �

√
2/2. Then (2.8) implies that

fk
′(t) < 0 (2.9)
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for all t ∈ (0,1) .
Therefore, fk(t) > 0 for all t ∈ (0,1) follows from (2.7) and (2.9).
Subcase 2.2 k0 � k < 1. Then from Lemma 2.4 and (2.6) we get

fk(0+) =

√
1− k2K (k)−1√

1− k2
� 0. (2.10)

Let t0 = t0(k) = 1/k2−1, then from (2.8) and k � k0 >
√

2/2 we clearly see that
t0 ∈ (0,1) , and fk(t) is strictly decreasing in (0,t0] and strictly increasing in [t0,1) .

Therefore, fk(t) < 0 follows from (2.7) and (2.10) together with the piecewise
monotonicity of fk(t) .

Subcase 2.3
√

2/2 < k < k0 . Then from Lemma 2.4 and (2.6) together with (2.8)
we know that

fk(0+) =

√
1− k2K (k)−1√

1− k2
> 0, (2.11)

and fk(t) is strictly decreasing in (0,t0] and strictly increasing in [t0,1) with t0 =
1/k2−1 ∈ (0,1) .

From (2.7) and (2.11) together with the piecewise monotonicity of fk(t) we clearly
see that there exists unique λ ∈ (0,t0) such that fk(t) > 0 for t ∈ (0,λ ) and fk(t) < 0
for t ∈ (λ ,1) . �

LEMMA 2.6. Let t ∈ (0,1) , k ∈ [0,1] , and

gk(t) = cn−1(t,k)− 2t
√

1− t2

(1+ t2)
√

1− k2 + k2t2
.

Then gk(t) > 0 for all t ∈ (0,1) if and only if k �
√

2/2 , and there exists μ = μ(k) ∈
(0,1) such that gk(t) > 0 for t ∈ (0,μ) and gk(t) < 0 for t ∈ (μ ,1) if

√
2/2 < k � 1 .

Proof. We divide the proof into two cases.
Case 1 k = 1. Then we clearly see that

g1(t) = cn−1(t,1)− 2
√

1− t2

1+ t2
= log(1+

√
1− t2)− logt− 2

√
1− t2

1+ t2
,

g1(0+) = +∞, (2.12)

g1(1−) = 0, (2.13)

g1
′(t) =

(3t2−1)
√

1− t2

t(1+ t2)2 . (2.14)

Equation (2.14) implies that g1(t) is strictly decreasing in (0,
√

3/3] and strictly
increasing in [

√
3/3,1) . It follows from (2.12) and (2.13) together with the piecewise

monotonicity of g1(t) that there exists unique μ ∈ (0,
√

3/3) such that g1(t) > 0 for
t ∈ (0,μ) and g1(t) < 0 for t ∈ (μ ,1) .
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Case 2 0 � k < 1. Then simple computations lead to

gk(0+) = K (k) > 0, (2.15)

gk(1−) = 0, (2.16)

g′k(t) =− 1√
(1− t2)(1− k2 + k2t2)

− 2k2(t6 −3t4 +3t2−1)−6t2 +2√
1− t2(1+ t2)2(1− k2 + k2t2)3/2

=
(3t4−2t2 +3)

√
1− t2

(1+ t2)2(1− k2 + k2t2)3/2

[
k2 − J(t)

]
, (2.17)

where

J(t) =
3− t2

3t4−2t2 +3
=
[
3

(
3− t2 +

8
3− t2

)
−16

]−1

. (2.18)

Equation (2.18) leads to
J(0) = 1, (2.19)

J(1) = 1/2, (2.20)

and J(t) is strictly increasing in (0,
√

2−1] and strictly decreasing in [
√

2−1,1) .
We divide the proof into two subcases.
Subcase 2.1 0 � k �

√
2/2. Then from (2.17), (2.19), (2.20) and the piecewise

monotonicity of J(t) we clearly see that gk(t) is strictly decreasing in (0,1)
Therefore, gk(t) > 0 follows from (2.16) and the monotonicity of gk(t) .
Subcase 2.2

√
2/2 < k < 1. Then from (2.17), (2.19), (2.20) and the piecewise

monotonicity of J(t) we know that there exists unique t1 ∈ (0,1) such that gk(t) is
strictly decreasing in (0,t1] and strictly increasing in [t1,1) .

Equations (2.15) and (2.16) together with the piecewise monotonicity of gk(t)
lead to the conclusion that there exists unique μ = μ(k) ∈ (0,t1) such that gk(t) > 0
for t ∈ (0,μ) and gk(t) < 0 for t ∈ (μ ,1) . �

LEMMA 2.7. Let t ∈ (0,1) , k ∈ [0,1] , and

hk(t) = cn−1(t,k)− t
√

1− t2

(t2 − t +1)
√

1− k2 + k2t2
.

Then hk(t) > 0 for all t ∈ (0,1) if and only if k �
√

2/2 , and there exists η = η(k) ∈
(0,1) such that hk(t) > 0 for t ∈ (0,η) and hk(t) < 0 for t ∈ (η ,1) if

√
2/2 < k � 1 .

Proof. We divide the proof into two cases.
Case 1 k = 1. Then we clearly see that

h1(t) = cn−1(t,1)−
√

1− t2

(t2 − t +1)
= log(1+

√
1− t2)− logt−

√
1− t2

(t2 − t +1)
,

h1(0+) = +∞, (2.21)
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h1(1−) = 0, (2.22)

h1
′(t) =

(1− t)(2t3−1)
t
√

1− t2(t2 − t +1)2
. (2.23)

Equation (2.23) implies that h1(t) is strictly decreasing in (0, 3
√

4/2) and strictly
increasing in ( 3

√
4/2,1) . From (2.21) and (2.22) together with the piecewise mono-

tonicity of h1(t) we clearly see that there exists unique η ∈ (0, 3
√

4/2) such that h1(t) >
0 for t ∈ (0,η) and h1(t) < 0 for t ∈ (η ,1) .

Case 2 0 � k < 1. Then simple computations lead to

hk(0+) = K (k) > 0, (2.24)

hk(1−) = 0, (2.25)

hk
′(t) =− 1√

(1− t2)(1− k2 + k2t2)
− (t6 −3t4 +3t2−1)k2 + t3−3t2 +1√

1− t2(1− t + t2)2(1− k2 + k2t2)3/2

=
(1− t)(2t5− t3− t2 +2)√

1− t2(1− t + t2)2(1− k2 + k2t2)3/2

[
k2− I(t)

]
, (2.26)

where

I(t) =
2− t3

2t5− t3− t2 +2
,

I(0) = 1, (2.27)

I(1) =
1
2
, (2.28)

I′(t) =
t(4t6−19t3 +4)

(2t5− t3− t2 +2)2 . (2.29)

From (2.29) we know that I(t) is strictly increasing in (0, 3
√

(19−3
√

33)/8) and

strictly decreasing in ( 3
√

(19−3
√

33)/8,1) .
We divide the proof into two subcases.
Subase 2.1 0 � k �

√
2/2. Then from (2.26)–(2.28) and the piecewise mono-

tonicity of I(t) we clearly see that hk(t) is strictly decreasing in (0,1) .
Therefore, hk(t) > 0 for all t ∈ (0,1) follows from (2.25) and the monotonicity of

hk(t) .
Subcase 2.2

√
2/2 < k < 1. Then equations (2.26)–(2.28) and the piecewise

monotonicity of I(t) lead to the conclusion that there exists unique t2 ∈
( 3
√

(19−3
√

33)/8,1) such that hk(t) is strictly decreasing in (0,t2] and strictly in-
creasing in [t2,1) .

It follows from (2.24) and (2.25) together with the piecewise monotonicity of hk(t)
that there exists η = η(k) ∈ (0,t2) such that hk(t) > 0 for t ∈ (0,η) and hk(t) < 0 for
t ∈ (η ,1) . �
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3. Main Results

THEOREM 3.1. The elliptic Neuman mean Nk(x,y) is strictly Schur convex on
R

2
+ if and only if k �

√
2/2 , and strictly Schur concave on R

2
+ if and only if k � k0 ∈

(0.897,0.898) . Here, k0 is the unique solution of the equation K (k)−1/
√

1− k2 = 0 .

Proof. Since Nk(x,y) is symmetric and homogeneous of degree 1, without loss of
generality, we assume that x < y . Let t = x/y ∈ (0,1) , then

Nk(x,y) = yNk(t,1),
∂ t
∂y

= − x
y2 ,

∂ t
∂x

=
1
y
, (3.1)

∂Nk(x,y)
∂y

= Nk(t,1)− t
dNk(t,1)

dt
,

∂Nk(x,y)
∂x

=
dNk(t,1)

dt
. (3.2)

Note that

dNk(t,1)
dt

= − t√
1− t2cn−1(t,k)

+
1

(cn−1(t,k))2
√

1− k2 + k2t2
. (3.3)

It follows from (3.2) and (3.3) that

∂Nk(x,y)
∂y

− ∂Nk(x,y)
∂x

=Nk(t,1)− (t +1)
dNk(t,1)

dt

=
1+ t√

1− t2 [cn−1(t,k)]2

(
cn−1(t,k)−

√
1− t2√

1− k2 + k2t2

)
. (3.4)

Therefore, Theorem 3.1 follows from Lemmas 2.1 and 2.5 together with equation
(3.4). �

THEOREM 3.2. The elliptic Neuman mean Nk(x,y) is strictly Schur multiplica-
tively convex on R

2
+ if and only if k �

√
2/2 , and Nk(x,y) is not Schur multiplicatively

concave on R
2
+ for any

√
2/2 < k � 1 .

Proof. We follow the lines of proof in Theorem 3.1. Let t = x/y ∈ (0,1) , then
from (3.2) and (3.3) we have

y
∂Nk(x,y)

∂y
− x

∂Nk(x,y)
∂x

=y

(
Nk(t,1)−2t

dNk(t,1)
dt

)

=
y(1+ t2)√

1− t2 [cn−1(t,k)]2

(
cn−1(t,k)− 2t

√
1− t2

(1+ t2)
√

1− k2 + k2t2

)
. (3.5)

Therefore, Theorem 3.2 follows directly from Lemmas 2.2 and 2.6 together with
equation (3.5). �
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THEOREM 3.3. The elliptic Neuman mean Nk(x,y) is strictly Schur harmonic
convex on R

2
+ if and only if k �

√
2/2 , and Nk(x,y) is not Schur harmonic concave on

R
2
+ for any

√
2/2 < k � 1 .

Proof. Let t = x/y ∈ (0,1) , then from (3.2) and (3.3) we have

y2 ∂Nk(x,y)
∂y

− x2 ∂Nk(x,y)
∂x

=y2
(

Nk(t,1)− t(t +1)
dNk(t,1)

dt

)

=
y2(1+ t3)√

1− t2 [cn−1(t,k)]2

(
cn−1(t,k)− t

√
1− t2

(t2 − t +1)
√

1− k2 + k2t2

)
. (3.6)

Therefore, Theorem 3.3 follows from Lemmas 2.3 and 2.7 together with equation
(3.6). �

4. Applications

In this section, we give several sharp bounds for the arithmetic, harmonic and
geometric means in terms of the elliptic Neuman mean. But, we first establish the
following Lemma 4.1, which will be used in the proof of Theorem 4.1.

LEMMA 4.1. (1) Nk(x,y) is strictly Schur convex (or concave, respectively) on
R

2
+ if and only if the function Nk(t,1)/A(t,1) is strictly decreasing (or increasing,

respectively) in (0,1);
(2) Nk(x,y) is strictly Schur multiplicatively convex (or concave, respectively) on

R
2
+ if and only if the function Nk(t,1)/G(t,1) is strictly decreasing (or increasing,

respectively) in (0,1);
(3) Nk(x,y) is strictly Schur harmonic convex (or concave, respectively) on R

2
+ if

and only if the function Nk(t,1)/H(t,1) is strictly decreasing (or increasing, respec-
tively) in (0,1) .

Here, A(x,y) = (x+y)/2 , G(x,y) =
√

xy, and H(x,y) = 2xy/(x+y) are the clas-
sical arithmetic, geometric, and harmonic means of x and y, respectively.

Proof. Without loss of generality, we assume that x < y . Let t = x/y∈ (0,1) , then
from (3.1) and (3.2) one has

d(Nk(t,1)/A(t,1))
dt

= − 2
(t +1)2

(
Nk(t,1)− (t +1)

dNk(t,1)
dt

)
, (4.1)

d(Nk(t,1)/G(t,1))
dt

= − 1

2t3/2

(
Nk(t,1)−2t

dNk(t,1)
dt

)
, (4.2)

d(Nk(t,1)/H(t,1))
dt

= − 1
2t2

(
Nk(t,1)− t(t +1)

dNk(t,1)
dt

)
. (4.3)
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Therefore, part (1) follows from (3.4) and (4.1) together with Lemma 2.1, part (2)
follows from (3.5) and (4.2) together with Lemma 2.2, and part (3) follows from (3.6)
and (4.3) together with Lemma 2.3. �

REMARK 4.1. The results for the elliptic Neuman mans Nk(x,y) in Lemma 4.1
can be generalized to more general symmetric, homogeneous and differentiable bivari-
ate mean M(x,y) of degree 1. The proof is similar to the proof in Lemma 4.1, we omit
the details

THEOREM 4.1. Let k0 ∈ (0.897,0.898) be the unique solution of the equation
K (k)−1/

√
1− k2 = 0 , and k1 ∈ (0.802,0.803) be the unique solution of the equation

K (k) = 2 . Then the inequalities

K (
√

2/2)
2

N√
2/2(x,y) < A(x,y) < N√

2/2(x,y), (4.4)

Nk0(x,y) < A(x,y) <
K (k0)

2
Nk0(x,y) (4.5)

and
Nk1(x,y) < A(x,y) (4.6)

hold for all x,y > 0 with x �= y, Nk1(x,y) and N√
2/2(x,y) are the best possible lower

and upper elliptic Neuman mean bounds for the arithmetic mean A(x,y) , respectively.

Proof. Without loss of generality, we assume that y > x > 0. Let t = x/y∈ (0,1) ,
and Lk(t) = Nk(t,1)/A(t,1) . Then

Nk(x,y)
A(x,y)

= Lk(t), (4.7)

Lk(0) =
2

K (k)
, (4.8)

Lk(1) = 1. (4.9)

Lemma 4.1(1) and Theorem 3.1 lead to the conclusion that L√
2/2(t) is strictly

decreasing and Lk0(t) is strictly increasing in (0,1) . Therefore, inequalities (4.4) and
(4.5) follow from (4.7)–(4.9) and the monotonicities of L√

2/2(t) and Lk0(t) .

If
√

2/2 < k < k0 , then from (3.4) and (4.1) together with Subcase 2.3 in Lemma
2.5 we conclude that there exists λ ∈ (0,1) such that Lk(t) is strictly decreasing in
(0,λ ] and strictly increasing in [λ ,1) . In particular, if k1 � k < k0 , then (4.8) implies

Lk(0) � 2
K (k1)

= 1. (4.10)

Therefore, inequality (4.6) and the optimality follow from (4.9) and (4.10) together
with the piecewise monotonicity of Lk(t) . �

Similarly, from Theorems 3.2 and 3.3, and Lemma 4.1(2) and (3) we have
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THEOREM 4.2. The inequalities

G(x,y) < N√
2/2(x,y), H(x,y) < N√

2/2(x,y)

hold for all x,y > 0 with x �= y, N√
2/2(x,y) is the best possible upper elliptic Neu-

man mean bound for the geometric and harmonic means, there does not exist lower
elliptic Neuman mean bound for the geometric and harmonic means, and there does
not exist constant λ > 0 such that the inequality G(x,y) > λN√

2/2(x,y) or H(x,y) >

λN√
2/2(x,y) holds for all x,y > 0 with x �= y.
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