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ON SOLUTIONS OF A COMPOSITE TYPE FUNCTIONAL INEQUALITY

ELIZA JABŁOŃSKA

(Communicated by Z. Páles)

Abstract. In the paper we consider a composite type inequality f (x+ f (x)y) � f (x) f (y) in the
class of real continuous functions. Our paper refers to the paper [12].

In 1985 W. Sander [16] considered the following composite type functional equa-
tion:

f (F(x,y)) = H(g(x),h(y)), (1)

which ”connected” the well-known Pexider equations:

f (x+ y) = g(x)+h(y),

f (x+ y) = g(x)h(y)

(for information on it we refer the reader to [10, Chapter XIII §3] or [2, pp. 42–46]),
with the pexiderized Goła̧b-Schinzel equation

f (x+g(x)y) = H(h(x),k(y)) (2)

introduced by E. Vincze [17] in 1966.
The Goła̧b-Schinzel equation

f (x+ f (x)y) = f (x) f (y), (3)

has been introduced in [6] in connection with looking for subgroups of the centroaffine
group of a field. This equation and its generalizations have also others applications,
especially in algebra ([3], [4], [11]), as well as in differential equations in meteorology
and fluid mechanics [9] and in the theory of geometric objects [1] (an extensive bibli-
ography concerning the Goła̧b-Schinzel equation, its generalizations and applications
can be found in [5] and [8]).

The inequality
f (F(x,y)) � H(g(x),h(y)) (4)
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is a generalization of functional inequalities fulfilled by convex or subadditive func-
tions. This inequality has applications in the theory of generalized convex or subaddi-
tive functions, as well as in the theory of semi-groups of linear operators in the strong
operator topology (see [7], [12], [13]).

For the first time such composite type functional inequality has been introduced
by C. Ionescu Tulcea [7] in 1960. In fact he studied a special case of the inequality (4),
i.e.

f (F(x,y)) � g(x)+h(y).

W. Sander [12] was first who studied more general inequality (4).
In the paper we consider the Goła̧b-Schinzel inequality

f (x+ f (x)y) � f (x) f (y), (5)

which is also a special case of the inequality (4).
S. Goła̧b and A. Schinzel [6] proved that real continuous not constant solutions of

(3) have one of the following forms:

f (x) = cx+1 for x ∈ R, or f (x) = max{0,cx+1} for x ∈ R

with a c ∈ R\ {0} . It means that f−1({0}) is equal to one of the following sets:

• {− 1
c} with a c ∈ R\ {0} ;

• [− 1
c ,∞) with a c < 0;

• (−∞,− 1
c ] with a c > 0.

Here, we prove that the set f−1({0}) has to be one of these three forms even if
we assume that f : R → R is a nonconstant solution of the Goła̧b-Schinzel inequality
such that 0 ∈ f (R) . Moreover, we show that then f satisfies one of the following four
conditions:

(i) f−1({0}) = [− 1
c ,+∞) and f (x) � cx+1 for x < − 1

c with a c < 0;

(ii) f−1({0}) = (−∞,− 1
c ] and f (x) � cx+1 for x > − 1

c with a c > 0;

(iii) f−1({0}) = {− 1
c} , f (x) = cx + 1 for x � − 1

c and f (x) � cx + 1 for x < − 1
c

with some c < 0;

(iv) f−1({0}) = {− 1
c} , f (x) = cx + 1 for x � − 1

c and f (x) � cx + 1 for x > − 1
c

with some c > 0.

In the whole paper we use the following notation:

G = f−1({0}), F = R\G.
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1. Preliminaries

REMARK 1. Clearly, if f : R → R is a constant function satisfying inequality (5),
then f = c with any c∈ (−∞,0]∪ [1,+∞) . That is why we study nonconstant solutions
of (5).

Let us start with some basic properties of functions satisfying (5).

LEMMA 1. Let f : R → R be a nonconstant function satisfying inequality (5).
Then one of the following conditions holds:

(i) f � 0 ;

(ii) f (0) � 1 and f � 0 ;

(iii) f (0) = 1 and there is an x0 ∈ R with f (x0) < 0 .

Proof. Setting x = y = 0 in (5), we obtain that either f (0) � 0, or f (0) � 1.
Moreover, setting y = 0 in (5), we have

f (x) � f (x) f (0) for each x ∈ R. (6)

If f (0) � 0, then condition (i) holds. To see it, contrary suppose that there is an
x0 ∈ R with f (x0) > 0. Then, by (6), f (x0) � f (0) f (x0) � 0, what is a contradiction.

Now, let f (0) � 1. Then either f � 0 and condition (ii) holds, or there is an
x0 ∈ R such that f (x0) < 0. But in this case, using (6) for x = x0 we obtain f (0) � 1.
Consequently, f (0) = 1 and condition (iii) holds. �

REMARK 2. Everyone can easily see that an arbitrary real function, which does
not take any positive values, satisfies (5). That is why the case (i) of Lemma 1 is not
interesting for us.

LEMMA 2. Let f : R→R be a nonconstant function satisfying inequality (5) such
that f (x) > 0 for some x ∈ R . Then

f

(
y− x
f (x)

)
� f (y) f (x)−1

for every x,y ∈ R with f (x) > 0 .

Proof. Take any x,y ∈ R with f (x) > 0. Setting z = y−x
f (x) and using (5) we have

f (y) = f (x+ f (x)z) � f (x) f (z) = f (x) f

(
y− x
f (x)

)
.

Since f (x) > 0, we obtain the thesis. �



210 ELIZA JABŁOŃSKA

2. Continuous solutions

In further considerations we study continuous solutions of (5).

PROPOSITION 1. Let f : R → R be a nonconstant continuous function satisfying
inequality (5). If 0 �∈ f (R) , then either f < 0, or f � 1 .

Proof. By Lemma 1 and continuity of f , we obtain that either f < 0, or f > 0.
But if f > 0, then:

f

(
x

1− f (x)

)
= f

(
x+ f (x)

x
1− f (x)

)
� f (x) f

(
x

1− f (x)

)

for each x ∈ R with f (x) �= 1. Consequently, since f
(

x
1− f (x)

)
> 0, f (x) � 1 for

x ∈ R , what ends the proof. �
Now, we give some farther information on solutions of (5). By Lemma 1, in view

of Remark 2, we consider two ”types” of functions satisfying (5) (in two theorems).

THEOREM 1. Let f : R → R be a continuous function satisfying inequality (5)
such that f (0) � 1 , f � 0 and 0 ∈ f (R) . Then one of the following conditions holds:

(i) G = [x0,+∞) with an x0 > 0 ;

(ii) G = (−∞,x0] with an x0 < 0

and f (x) � − x
x0

+1 for x ∈ F .

Proof. Since f is continuous, the set G is closed. First we prove that either there
exists maxG∩ (−∞,0) = y < 0, or there is minG∩ (0,∞) = z > 0. Contrary suppose
that both of them exist. Since f (0) � 1 and f (u) �= 0 for each u ∈ (y,z) ,

f (u) > 0 for u ∈ (y,z). (7)

In view of (5),
0 � f (x+ f (x)t) � 0 for every x ∈ R, t ∈ G. (8)

Hence x+ f (x)y ∈ G for x ∈ R ; i.e.

either x+ f (x)y � z, or x+ f (x)y � y (9)

for each x ∈ R . Thus, for x ∈ R , the following condition holds:

either f (x) � −x
y

+1, or f (x) � −x
y

+
z
y
. (10)

Now, we prove that

f (x) � −x
y

+1 for each x ∈ (y,z). (11)
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Contrary suppose that

f (y0) < −y0

y
+1 for some y0 ∈ (y,z).

Then, since y < 0 and y0 < z , by (10) we obtain

f (y0) � −y0

y
+

z
y

< 0,

what contradicts (7). Consequently (11) holds.
Now, take a sequence (xn)n∈N

⊂ (y,z) such that limn→∞ xn = z . Then, by (11),

f (xn) � −xn

y
+1 for n ∈ N

and thus, by the continuity of f ,

0 = f (z) � − z
y

+1,

what contradicts y < 0 < z .
In this way we proved that either there exists maxG∩ (−∞,0) = y < 0, or there is

minG∩(0,∞) = z > 0. Now, assume that there exists minG∩(0,∞) = minG = x0 > 0
(the case, when x0 = maxG∩ (−∞,0) = maxG < 0 is analogous). Define a function
g : [x0,∞) → [x0,∞) as follows:

g(x) = x+ f (x)x0 for x ∈ [x0,∞).

Since f � 0, g(x) � x for each x � x0 . Hence g is a continuous surjection. It means
that for each y � x0 there is an x1 � x0 such that y = g(x1) = x1 + f (x1)x0 . Con-
sequently, by (8), f (y) = 0 for each y � x0 , i.e. G = [x0,∞) (in the case, when
x0 = maxG∩ (−∞,0) = maxG < 0, we obtain that G = (−∞,x0]).

Then, by (8), x+ f (x)x0 � x0 for each x ∈ F , what ends the proof. �

THEOREM 2. Let f : R → R be a continuous function satisfying inequality (5)
such that f (0) = 1 and f (x) < 0 for some x ∈R . Then one of the following conditions
holds:

(i) G = {x0} , f (x) = − x
x0

+1 for each x � x0 and f (x) � − x
x0

+1 for each x < x0

with some x0 > 0 ,

(ii) G = {x0} , f (x) = − x
x0

+1 for each x � x0 and f (x) � − x
x0

+1 for each x > x0

with some x0 < 0 .

Proof. Since f is continuous, the set G is closed. First we prove that either there
exists maxG∩ (−∞,0) = y < 0, or there is minG∩ (0,∞) = z > 0.

Contrary suppose that both of them exist. Since f (0) = 1 and f (u) �= 0 for each
u ∈ (y,z) , condition (7) holds. In view of (5)

f (x+ f (x)t) � 0 for every x ∈ R, t ∈ G. (12)
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Hence either x+ f (x)t � y , or x+ f (x)t � z for every x ∈ R and t ∈ G . Thus (9) holds
for x ∈ R and, in the same way as in the proof of Theorem 1 (using (7)), we obtain a
contradiction.

In this way we proved that either there exists maxG∩ (−∞,0) = y < 0, or there
is minG∩ (0,∞) = z > 0. Now assume that there exists minG∩ (0,∞) = minG =
x0 > 0 (the case, when x0 = maxG∩ (−∞,0) = maxG < 0 is analogous). Contrary
suppose that G �= {x0} . By assumption f (x) < 0 for some x ∈ R , so, using (12),
f (x + f (x)y) � 0 for each y∈G . Since x0 = minG > 0, f is continuous and f (0) = 1,
we obtain that f (x) > 0 for each x < x0 and x + f (x)y � x0 . Consequently

y � x0− x
f (x)

for y ∈ G.

It means that G is upper bounded, i.e. there is a maxG = y0 > x0 . Moreover, one of
the following two conditions holds:

f (t) < 0 for each t > y0, or f (t) > 0 for each t > y0.

First consider the case, when f (t) > 0 for each t > y0 . Since f (t) > 0 for each
t < x0 , f−1((−∞,0]) ⊂ [x0,y0] . Thus, by (12),

x0 � x+ f (x)x0 � y0 and x0 � x+ f (x)y0 � y0

for each x ∈ R . Hence {− x
x0

+1 � f (x) � − x
x0

+ y0
x0

,

− x
y0

+ x0
y0

� f (x) � − x
y0

+1

for x ∈ R . Consequently, for each x < 0 we have

− x
x0

+1 � f (x) � − x
y0

+1 < − x
x0

+1,

a contradiction.
Next consider the case, when f (t) < 0 for each t > y0 . Since f (t) > 0 for t < x0 ,

f−1([0,∞)) ⊂ (−∞,y0] . Then, by Lemma 2,

f

(
y0− x
f (x)

)
� f (y0) f (x)−1 = 0 for x < x0.

Hence
y0− x
f (x)

� y0 for x < x0

and, consequently,

f (x) � − x
y0

+1 for x < x0.

Now, take a sequence (xn)n∈N
⊂ (0,x0) such that limn→∞ xn = x0 . Then

f (xn) � −xn

y0
+1 for n ∈ N
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and thus, by the continuity of f ,

0 = f (x0) � −x0

y0
+1,

what contradicts x0 < y0 .
Hence G = {x0} . Since x0 > 0, f is continuous and f (0) = 1, we obtain that

f (x) > 0 for each x < x0 . Thus, by (12), x+ f (x)x0 � x0 for x ∈ R and hence

f (x) � − x
x0

+1 for x ∈ R. (13)

Now we prove that f (x) = − x
x0

+ 1 for x � x0 . Contrary suppose that there is a
z0 > x0 such that

0 > f (z0) > − z0

x0
+1. (14)

First we show that there is a sequence (yn)n∈N ⊂ R such that limn→∞ yn = ∞ , and

lim
n→∞

f (yn)
yn

= − 1
x0

. (15)

Take an arbitrary sequence (xn)n∈N such that limn→∞ xn = ∞ . According to (5)
and (13),

− z0

x0xn
− f (z0)

x0
+

1
xn

� f (z0 + f (z0)xn)
xn

� f (z0)
f (xn)
xn

.

Hence

− f (z0)
x0

� limsup
n→∞

f (z0)
f (xn)
xn

. (16)

On the other hand, by (13), we have

liminf
n→∞

f (xn)
xn

� − 1
x0

.

Consequently, since f (z0) < 0,

limsup
n→∞

f (z0)
f (xn)
xn

= f (z0) liminf
n→∞

f (xn)
xn

� − f (z0)
x0

and, in view of (16),

limsupn→∞ f (z0)
f (xn)
xn

= f (z0) liminfn→∞
f (xn)
xn

= − f (z0)
x0

.

It means that

liminf
n→∞

f (xn)
xn

= − 1
x0

.

Hence there is a subsequence (yn)n∈N of (xn)n∈N such that limn→∞ yn = ∞ and (15)
holds.
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Now, by (13) and (5), we obtain

−yn− f (yn)z0

x0
+1 � f (yn + f (yn)z0) � f (yn) f (z0).

Thus

−yn

x0
+1 � f (yn)

(
z0

x0
+ f (z0)

)
and, consequently,

− 1
x0

+
1
yn

� f (yn)
yn

(
z0

x0
+ f (z0)

)
.

Whence, in view of (15),

− 1
x0

� − 1
x0

(
z0

x0
+ f (z0)

)
.

In this way we obtain that f (z0) � − z0
x0

+ 1, what contradicts (14) and ends the proof
of theorem. �

REMARK 3. Clearly, there exist continuous functions f : R → R satisfying one
of the following conditions:

(i) G = [x0,+∞) with an x0 > 0 and f (x) � − x
x0

+1 for x ∈ F ;

(ii) G = (−∞,x0] with an x0 < 0 and f (x) � − x
x0

+1 for x ∈ F ;

(iii) G = {x0} , f (x) =− x
x0

+1 for x � x0 and f (x) �− x
x0

+1 for x < x0 with some
x0 > 0;

(iv) G = {x0} , f (x) =− x
x0

+1 for x � x0 and f (x) �− x
x0

+1 for x > x0 with some
x0 < 0

and such that the inequality (5) does not hold.
For example, fix x0 = 1. Let f : R → R be a continuous function, such that:

• f (0) = 1, f
(

1
2

)
= 3

5 , f
(

2
3

)
= 2

5 , f
(

9
10

)
= 7

25 ,

• f (x) � −x+1 for each x � 1,

• either f (x) = −x+1 for x � 1, or f |[1,∞) = 0.

Then, for x = 1
2 and y = 2

3 we have:

f (x+ f (x)y) = f

(
9
10

)
=

7
25

>
6
25

= f (x) f (y).

EXAMPLE 1. We can check that function f : R → R given by

f (x) =

⎧⎪⎨
⎪⎩

−2x+1 for x < 0;

−x2 +1 for x ∈ [0,1);

g(x) for x � 1,

where either g(x) = 0 for x � 1, or g(x) = −x+1 for x � 1, satisfy inequality (5).
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ber. II, 211, (2002), 117–136.

[10] M. KUCZMA, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s
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