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ON SOLUTIONS OF A COMPOSITE TYPE FUNCTIONAL INEQUALITY

ELIZA JABLONSKA

(Communicated by Z. Pdles)

Abstract. In the paper we consider a composite type inequality f(x+ f(x)y) < f(x)f(y) in the
class of real continuous functions. Our paper refers to the paper [12].

In 1985 W. Sander [16] considered the following composite type functional equa-
tion:

f(F(x,y)) = H(g(x),h(y)), (1)

which “connected” the well-known Pexider equations:
fx+y) = g(x) +h(y),

fx+y) =gx)h(y)

(for information on it we refer the reader to [10, Chapter XIII §3] or [2, pp. 42-46]),
with the pexiderized Gotab-Schinzel equation

fx+g(x)y) = H(h(x),k(y)) 2)

introduced by E. Vincze [17] in 1966.
The Gotgb-Schinzel equation

O+ fx)y) =Fx)f0), 3)

has been introduced in [6] in connection with looking for subgroups of the centroaffine
group of a field. This equation and its generalizations have also others applications,
especially in algebra ([3], [4], [11]), as well as in differential equations in meteorology
and fluid mechanics [9] and in the theory of geometric objects [1] (an extensive bibli-
ography concerning the Gotab-Schinzel equation, its generalizations and applications
can be found in [5] and [8]).

The inequality

f(F(x,y)) < H(g(x),h(y)) @)

Mathematics subject classification (2010): 39B62, 26A06.
Keywords and phrases: Gotab—Schinzel equation, Gotab—Schinzel inequality, functional inequality.
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is a generalization of functional inequalities fulfilled by convex or subadditive func-
tions. This inequality has applications in the theory of generalized convex or subaddi-
tive functions, as well as in the theory of semi-groups of linear operators in the strong
operator topology (see [7], [12], [13]).

For the first time such composite type functional inequality has been introduced
by C. Ionescu Tulcea [7] in 1960. In fact he studied a special case of the inequality (4),
ie.

F(F(x,)) < g(x) +h(y).

W. Sander [12] was first who studied more general inequality (4).
In the paper we consider the Gotab-Schinzel inequality

fx+fx)y) < f)f), (5)

which is also a special case of the inequality (4).
S. Gotab and A. Schinzel [6] proved that real continuous not constant solutions of
(3) have one of the following forms:

f(x)=cx+1 for xeR, or f(x)=max{0,cx+1} for xeR
witha ¢ € R\ {0}. It means that £~!({0}) is equal to one of the following sets:
o {—1} witha c e R\ {0};
o [—1 ) witha ¢ <0;
o (—oo,—1] witha ¢>0.

Here, we prove that the set f~!({0}) has to be one of these three forms even if
we assume that f: R — R is a nonconstant solution of the Gotab-Schinzel inequality
such that 0 € f(R). Moreover, we show that then f satisfies one of the following four
conditions:

(i) f1({0}) =[-1,4e) and f(x) > cx+1 for x < —1 witha ¢ <0;
(i) f1({0}) = (—,—1] and f(x) > cx+1 for x> —1 witha ¢ > 0;

i) f71({0}) = {1}, f(x) =cx+1 for x> —1 and f(x) > cx+1 for x < -1
with some ¢ < 0;

(iv) {0} ={-1}, f(x) =ex+1forx< -1 and f(x) > ex+1 for x> -1
with some ¢ > 0.

In the whole paper we use the following notation:

G=f"'({0}), F=R\G.
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1. Preliminaries

REMARK 1. Clearly, if f: R — R is a constant function satisfying inequality (5),
then f = ¢ withany ¢ € (—e,0]U[1, +e0). That is why we study nonconstant solutions
of (5).

Let us start with some basic properties of functions satisfying (5).

LEMMA 1. Let f: R — R be a nonconstant function satisfying inequality (5).
Then one of the following conditions holds:

@ f<0;
(i) f(0)>1and f>0;
(i) f(0) =1 and there is an xy € R with f(xg) < 0.

Proof. Setting x =y = 0 in (5), we obtain that either f(0) <0, or f(0) > 1.
Moreover, setting y = 0 in (5), we have

f(x) < f(x)f(0) foreach x € R. (6)

If £(0) <0, then condition (i) holds. To see it, contrary suppose that there is an
xo € R with f(xo) > 0. Then, by (6), f(xo) < f(0)f(x0) <0, what is a contradiction.

Now, let f(0) > 1. Then either f > 0 and condition (ii) holds, or there is an
Xo € R such that f(xo) < 0. But in this case, using (6) for x = xo we obtain f(0) < 1.
Consequently, f(0) =1 and condition (iii) holds. O

REMARK 2. Everyone can easily see that an arbitrary real function, which does
not take any positive values, satisfies (5). That is why the case (i) of Lemma 1 is not
interesting for us.

LEMMA 2. Let f:R — R be a nonconstant function satisfying inequality (5) such
that f(x) >0 for some x € R. Then

! (%) > FO) ()

Sorevery x,y € R with f(x) > 0.

Proof. Take any x,y € R with f(x) > 0. Setting z = ;(;Xx and using (5) we have

Z

F0) = e+ 902) < £ = 107 (5 ).

Since f(x) > 0, we obtain the thesis. [
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2. Continuous solutions
In further considerations we study continuous solutions of (5).

PROPOSITION 1. Let f: R — R be a nonconstant continuous function satisfying
inequality (5). If 0 ¢ f(R), then either f <0, or f > 1.

Proof. By Lemma 1 and continuity of f, we obtain that either f < 0, or f > 0.
Butif f > 0, then:

(=) =1 (o) <100 (=7

for each x € R with f(x) # 1. Consequently, since f (%) >0, f(x) > 1 for
x € R, what ends the proof. [

Now, we give some farther information on solutions of (5). By Lemma 1, in view
of Remark 2, we consider two “types” of functions satisfying (5) (in two theorems).

THEOREM 1. Let f: R — R be a continuous function satisfying inequality (5)
such that f(0) > 1, f >0 and 0 € f(R). Then one of the following conditions holds:

(i) G = [xp,+o°) withan xy > 0;
(il) G = (—oo,x0] with an xo <0

and f(x) 2 —-+1 for x€F.

Proof. Since f is continuous, the set G is closed. First we prove that either there
exists maxG N (—e0,0) =y < 0, or there is minGN (0,%) =z > 0. Contrary suppose
that both of them exist. Since f(0) > 1 and f(u) # 0 foreach u € (y,2),

f(u) >0 for u € (y,z). (7

In view of (5),
0< f(x+ f(x)r) <O forevery xe R, r € G. (8)

Hence x+ f(x)y € G for x e R; i.e.
either x+ f(x)y >z, or x+ f(x)y <y 9)
for each x € R. Thus, for x € R, the following condition holds:
either f(x)}—f—i-l, or f(x)é—f—i-g. (10)
y y oy
Now, we prove that

flx) > —g—f—l for each x € (y,7). (11)
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Contrary suppose that
fv) < —yy—o + 1 for some yo € (y,2).

Then, since y < 0 and yg < z, by (10) we obtain
0o z

f(y0)< _-))_+_ <O7
y oy

what contradicts (7). Consequently (11) holds.
Now, take a sequence (x,),cn C (,2) such that lim, ... x, = z. Then, by (11),

F) > —241 for neN
y
and thus, by the continuity of f,

0=f(x) = —+1,
y
what contradicts y < 0 < z.

In this way we proved that either there exists max G N (—e,0) =y < 0, or there is
minG N (0,e) =z > 0. Now, assume that there exists minG N (0,) = minG = xy > 0
(the case, when xp = maxG N (—e,0) = maxG < 0 is analogous). Define a function
g [x0,%0) — [x0,0) as follows:

g(x) =x+ f(x)xo for x € [xg,0).

Since f >0, g(x) > x for each x > xo. Hence g is a continuous surjection. It means
that for each y > x there is an x; > x¢ such that y = g(x;) = x; + f(x1)xo. Con-
sequently, by (8), f(y) =0 for each y > xo, i.e. G = [xp,) (in the case, when
X0 =maxG N (—e,0) = maxG < 0, we obtain that G = (—oo,x¢]).

Then, by (8), x+ f(x)xo = xo for each x € F, what ends the proof. [

THEOREM 2. Let f: R — R be a continuous function satisfying inequality (5)
such that f(0) =1 and f(x) <0 for some x € R. Then one of the following conditions
holds:

(i) G={x}, flx) = —)Cio—i-lforeachx}xo and f(x) > —xio—l—lforeachx<xo
with some xqo > 0,

(i) G={x}, flx)= —xio—i-lforeachxéxo and f(x) > —xio—l—lforeachx>xo
with some xo < 0.

Proof. Since f is continuous, the set G is closed. First we prove that either there
exists maxG N (—e,0) =y < 0, or there is min G N (0,00) =z > 0.

Contrary suppose that both of them exist. Since f(0) =1 and f(u) # 0 for each
u € (y,z), condition (7) holds. In view of (5)

fx+ f(x)t) <0 forevery xeR, t € G. (12)
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Hence either x+ f(x)r <y, or x+ f(x)t > z forevery x € R and 7 € G. Thus (9) holds
for x € R and, in the same way as in the proof of Theorem 1 (using (7)), we obtain a
contradiction.

In this way we proved that either there exists maxGN (—e,0) =y < 0, or there
is minG N (0,00) =z > 0. Now assume that there exists minG N (0,e0) = minG =
X0 > 0 (the case, when xgp = maxG N (—e,0) = maxG < 0 is analogous). Contrary
suppose that G # {xg}. By assumption f(x) < 0 for some x € R, so, using (12),
f(x+f(x)y) <0 foreach y € G. Since xo =minG >0, f is continuous and f(0) =1,
we obtain that f(x) > 0 for each x < xp and x + f(x)y > xo. Consequently

X0 — X
f(x)
It means that G is upper bounded, i.e. there is a maxG = yy > xo. Moreover, one of

the following two conditions holds:

y< for y e G.

f(t) <0 foreach > yg, or f(t) >0 foreach 7> yj.

First consider the case, when f(¢) > 0 for each 7 > yy. Since f(¢) > 0 for each
t <xo, f1((—=°,0]) C [x0,y0]. Thus, by (12),

xo <x+ f(x)xo < yo and xo <x+ f(x)yo < Yo
for each x € R. Hence
—E I f) < R4,
{—yio+;‘—g <) <=5 +1
for x € R. Consequently, for each x < 0 we have

L ¥ ) F R )
Xo Yo Xo
a contradiction.
Next consider the case, when f(r) < 0 foreach 7 > yg. Since f(¢) > 0 for t < x,
£71([0,%0)) C (=20, y0]. Then, by Lemma 2,

0z 1= x < Xp.
f( 0 ) > f(vo)f(x)~' =0 for x < xg

Hence
—X
Y—x <y for x < xo

f(x)
and, consequently,

flx) > ~ 211 for x < Xp.
Yo

Now, take a sequence (x,),cn C (0,x9) such that lim, .. x, = xo. Then

Fa) > —241 for neN
Yo
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and thus, by the continuity of f,

0=f(x0) > -2 +1,
Yo

what contradicts xp < yg.
Hence G = {xo}. Since xo > 0, f is continuous and f(0) = 1, we obtain that
Sf(x) > 0 for each x < xy. Thus, by (12), x+ f(x)xo = xo for x € R and hence

f(x)>—=+1 for xeR. (13)
X0
Now we prove that f(x) = — Xio + 1 for x > x¢. Contrary suppose that there is a
Z0 > xo such that
0>f(zo)>—fc—0+l. (14)
0

First we show that there is a sequence (y,),eny C R such that lim,_.. y, = oo, and

fim £0) _ 1 (15)

= Yn X0

Take an arbitrary sequence (x,),en such that lim,_..x, = . According to (5)
20 fo) 1 _ fzo+ f(20)%n)

and (13),
Ly L St ki) o g L)

X0Xn X0 Xn Xn Xn

Hence

@) limsupf(zo)f(xn). (16)

0 n— n

On the other hand, by (13), we have

iming 0 5 L
n—o00 xn 'xO
Consequently, since f(z9) <0,
limSqu(Zo)f(xn) = f(zo)limin’fM < D)
n—oo Xn n—oo Xn X0

and, in view of (16),

limsup, ... f(20) 2 = f(z0) liminf, ., L2} = — [0)
It means that
imingd O _ 1

Hence there is a subsequence (yn)uen Of (x)nen such that lim, ..y, = oo and (15)
holds.
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Now, by (13) and (5), we obtain

20 FO0 4y ¢ o ) < FOn) ),
Thus
< f ( +fzo>
Xo
and, consequently,
1L fow ( +fzo)
X0 Yn Yn

Whence, in view of (15),

1 1 (
o3 )
X0 X0 \ X0

In this way we obtain that f(zo) < — )ZT?) + 1, what contradicts (14) and ends the proof
of theorem. [

REMARK 3. Clearly, there exist continuous functions f : R — R satisfying one
of the following conditions:
(i) G = [xp,+o°) with an xp >0 and f(x) > —xio +1 forxeF;
(ii) G = (—oo,x0] with an xy <0 and f(x) > —xio +1 forxeF;
(i) G={xo}, f(x)= —xio—i-l for x > x¢ and f(x) > —Xio+l for x < xo with some
xo > 0;

(iv) G={xo}, f(x)=—++1forx<xand f(x) > —++1 for x> x with some
xp <0

and such that the inequality (5) does not hold.
For example, fix xo = 1. Let f: R — R be a continuous function, such that:

'f(o)zl’f(l)zg’f() sf(lo) 25’
e f(x)>—x+1foreach x< 1,
e cither f(x) = —x+1 forx> 1, or f\[lﬁm) =0.

Then, for x = % and y = % we have:

10 =1 (75) = 55 > 55 = FO0).
EXAMPLE 1. We can check that function f: R — R given by
—2x+1 for x < 0;
f(x)={ —x>+1 for x€[0,1);
glx) forx>1,

where either g(x) =0 for x > 1, or g(x) = —x+ 1 for x > 1, satisfy inequality (5).
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