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WEAK MONOTONICITY AND CHEBYSHEV TYPE INEQUALITY

JIA JIN WEN, JOSIP PEČARIĆ AND TIAN YONG HAN ∗

(Communicated by I. Franjić)

Abstract. The weak monotonic function is defined in this paper. We will study the relationship
between the weak monotonic function and the Schur-function. We show that a Schur-convex
function is a weak increasing function under the proper hypotheses. By means of the theory of
weak monotonic function with appropriate assumptions, we have established a Chebyshev type
inequality as follows:

〈a,b〉
〈a∗,b∗〉 � ‖a‖p

‖a∗‖p
· ‖b‖q

‖b∗‖q
.

As the application of the inequality, a new proof of Marshall’s inequality is obtained.

1. Introduction

There are many approaches to prove inequalities (see [1, 2, 3, 4, 6, 7, 8, 9, 10, 11,
12, 13]). The use of monotonicity to prove inequalities is one of the basic approaches.

There are many different types of monotonicity. In the references [1] and [2], the
authors studied the problems of monotonicity as follows: Let x = (x1, · · · ,xn) ∈ In ,
where I is an interval and n � 2, be a monotonic n -tuple and p = (p1, · · · , pn) a real
n -tuple such that

0 � Pk � Pn, k = 1, · · · ,n−1, Pn > 0 (1)

hold. Then for a convex function f : I → R we have

F
(
[x]1
)

� · · · � F
(
[x]k
)

� F
(
[x]k+1

)
� · · · � F ([x]n) = 0, (2)

and
F ([x]1) � · · · � F ([x]k) � F ([x]k+1) � · · · � F ([x]n) = 0, (3)

where (2) is given in [1] and (3) is given in [2] and

Pk =
k

∑
i=1

pi, k = 1,2, · · · ,n,
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F : In → R, F(x) � 1
Pn

n

∑
i=1

pi f (xi)− f

(
1
Pn

n

∑
i=1

pixi

)
, (4)

[x]k = (x1,x2, · · · ,xn−k,xn−k+1,xn−k+1, · · · ,xn−k+1︸ ︷︷ ︸
k

),

[x]k = (xk,xk, · · · ,xk︸ ︷︷ ︸
k

,xk+1,xk+2, · · · ,xn). (5)

In other words, the sequences{
F
(
[x]k
)}n

k=1
and {F ([x]k)}n

k=1

are monotonically decreasing.
In this paper, we will introduce a new approach to prove inequalities by means of

the theory of weak monotonic function. This approach was first used by Guang Xing Li
and Ji Cheng (see [3]). Unfortunately, Li and Cheng did not generalize the approach.

In Section 2, we will define the weak monotonic function, as well as study some
basic properties of the weak monotonic function. In Section 3, we will study the rela-
tionship between the weak monotonic function and the Schur-function. We show that a
Schur-convex function is a weak increasing function under the proper hypotheses. As
the application of the theory of weak monotonic function, in Section 4, we will estab-
lish a Chebyshev type inequality. As an application of the Chebyshev type inequality,
in Section 5, we will give a new proof of Marshall’s inequality.

2. Theory of weak monotonic function

The following notations will be used throughout the paper:

R = (−∞,∞), R+ = [0,∞), R++ = (0,∞),

In = I×·· ·× I︸ ︷︷ ︸
n

, x = (x1, · · · ,xn) ∈ R
n, e = (1, · · · ,1) ∈ R

n,

[x]
′
k = (x

′
k,x

′
k, · · · ,x

′
k︸ ︷︷ ︸

k

,xk+1,xk+2, · · · ,xn) ∈ R
n,

Ω ↓= {x ∈ Ω ⊆ R
n|x1 � · · · � xn} , Ω ↑= {x ∈ Ω ⊆ R

n|x1 � · · · � xn} ,

and we assume that n � 2 throughout the paper.
We first define the weak monotonic function as follows.

DEFINITION 2.1. Let Ω ⊂ R
n be a symmetrical and convex set. If the function

f : Ω → R satisfies the conditions:

[x]k ∈ Ω ↓, [x]
′
k ∈ Ω ↓, xk � x

′
k ⇒ f ([x]k) � f

(
[x]

′
k

)
, k = 1,2, · · · ,n−1, (6)
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where [x]k is defined in (5), then we call f : Ω → R a weak increasing function. If
− f is a weak increasing function, then we call f : Ω → R a weak decreasing function.
A weak increasing function or a weak decreasing function is called a weak monotonic
function.

By Definition 2.1 it is easy to get

PROPOSITION 2.1. If f : Ω → R is a weak increasing function, then for any x ∈
Ω ↓ we have

f (x) = f ([x]1) � f ([x]2) � · · · � f ([x]n) = f (xne) . (7)

By Definition 2.1 and some facts of mathematical analysis we easily get

PROPOSITION 2.2. Let Ω ⊂ R
n be a symmetrical and convex domain, and let

f : Ω → R be a differentiable function. If

∂ f ([x]k)
∂xk

� 0, k = 1,2, · · · ,n−1 (8)

for any x ∈ Ω ↓, then f : Ω → R is a weak increasing function.

PROPOSITION 2.3. Let Ω ⊂ R
n
++ be a symmetrical and convex domain, and let

f : Ω → R be a homogeneous of degree γ (γ ∈ R) and symmetrical function , as well
as let f (e) � 0 . If there is a symmetric function f∗ : Ω → R++ such that the function
f∗ f is a weak increasing function, then

f (x) � 0, ∀x ∈ Ω. (9)

Proof. Since f : Ω → R is a symmetric function, we can assume that x ∈ Ω ↓ in
(9). Since f : Ω → R is a homogeneous function of degree γ, we have

f (tx) ≡ tγ f (x), where t ∈ R++ and x, tx ∈ Ω. (10)

By Definition 2.1, (10) and (7) in Proposition 2.1 we have

f∗(x) f (x) � f∗ (xne) f (xne) = (xn)γ f∗ (xne) f (e) � 0. (11)

From (11) and f∗ (x) > 0,∀x ∈ Ω we get (9). This completes the proof of Proposition
2.3. �

THEOREM 2.1. Let the function f : I →R be a differentiable convex function and
let (1) hold. Then the function F : In → R , defined in (4), is a weak increasing function.
That is to say,

[x]k ∈ In ↓, [x]
′
k ∈ In ↓, xk � x

′
k ⇒ F ([x]k) � F

(
[x]

′
k

)
, k = 1,2, · · · ,n−1. (12)
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Proof. Let x ∈ In ↓ . Then

x1 � x2 � · · · � xn. (13)

According to Proposition 2.2, we just need to prove that

∂F ([x]k)
∂xk

� 0, k = 1,2, · · · ,n−1. (14)

Note that

F([x]k) =
1
Pn

[
Pk f (xk)+

n

∑
i=k+1

pi f (xi)

]
− f

[
1
Pn

(
Pkxk +

n

∑
i=k+1

pixi

)]
, (15)

and
∂F ([x]k)

∂xk
=

Pk

Pn

{
f
′
(xk)− f

′
[

1
Pn

(
Pkxk +

n

∑
i=k+1

pixi

)]}
. (16)

From (13) and f : I → R being a differentiable convex function we get

xk � 1
Pn

(
Pkxk +

n

∑
i=k+1

pixi

)
∈ I, (17)

and

f
′
(xk) � f

′
[

1
Pn

(
Pkxk +

n

∑
i=k+1

pixi

)]
. (18)

Combining with (1), (16) and (18) we get the inequalities (14).
According to Proposition 2.2 and (14) we know that the function F is a weak

increasing function.
This completes the proof of Theorem 2.1. �

REMARK 2.1. Proposition 2.3 gives a new approach to prove inequalities. We
call the function f∗ : Ω →∈ R++ in Proposition 2.3 a weak increasing function factor
of the function f : Ω → R .

REMARK 2.2. Theorem 2.1 gives a new proof of the inequalities (3). Indeed,
according to Theorem 2.1 and Proposition 2.1 we know that the inequalities (3) hold
for x ∈ In ↓ . If x ∈ In ↑ , then the inequalities (14) are reversed by the above proof.
from the inequalities xk � xk+1, k = 1,2, · · · ,n−1 we get F ([x]k) � F ([x]k+1) , k =
1,2, · · · ,n− 1, hence the inequalities (3) still hold. So we have the following Jensen
inequality

1
Pn

n

∑
i=1

pi f (xi) � f

(
1
Pn

n

∑
i=1

pixi

)
, ∀x ∈ In ↓ or In ↑ (19)

under the assumption (1), where the function f : I → R is a differentiable convex func-
tion.
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REMARK 2.3. ZhongLie Wang in [4] has proved the sequence {Fk(x, p)}n
k=1 is

also monotonically decreasing, i.e.

F1(x, p) � · · · � Fk(x, p) � Fk+1(x, p) � · · · � Fn(x, p) = 0, (20)

where

Fk(x, p) =
n

∑
i=k

pi f (xi)−Pk f

(
1

Pk

n

∑
i=k

pixi

)
, Pk =

n

∑
i=k

pi,

x ∈ In, pk > 0, k = 1,2, · · · ,n and f : I → R is a convex function. If f : I → R is a
differentiable convex function, then we can give a new proof of the inequalities (20) as
follows: Set

x =
1
Pn

n

∑
i=1

pixi ∈ I, x
′
1 =

1

P2

n

∑
i=2

pixi ∈ I.

If we set k = 1 in (16), then we get

∂F ([x]1)
∂x1

=
p1

Pn

[
f
′
(x1)− f

′
(x)
]
. (21)

Since f
′
is increasing, pk > 0, k = 1,2, · · · ,n and

x1 > x
′
1 ⇒ x1 > x ⇒ ∂F ([x]1)

∂x1
� 0,

x1 < x
′
1 ⇒ x1 < x ⇒ ∂F ([x]1)

∂x1
� 0,

we have
F1(x, p) = F (x1,x2, · · · ,xn) � F

(
x
′
1,x2, · · · ,xn

)
= F2(x, p). (22)

That is to say, the inequalities (20) hold for k = 1. Similarly, we can prove that the
inequalities (20) hold for k = 1,2, · · · ,n−1. This ends the proof.

REMARK 2.4. The reference [5] gives the applications of the function F : In →R ,
defined in (4) and where Pn = 1, in statistics and space science.

3. The relationship between the weak monotonic function and Schur-function

Let x,y ∈ R
n be such that x[1] � · · · � x[n] and y[1] � · · · � y[n]. If

k

∑
i=1

x[i] �
k

∑
i=1

y[i], k = 1, · · · ,n−1 and
n

∑
i=1

x[i] =
n

∑
i=1

y[i],

then we say x is majorized by y and denote this by x ≺ y, where [1], · · · , [n] is a
permutation of 1, · · · ,n.
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DEFINITION 3.1. (see [1], [6], [10] and [12]) Let Ω ⊂ R
n be a symmetrical and

convex set, and let f : Ω → R be a symmetric function. If

x, y ∈ Ω and x ≺ y ⇒ f (x) � f (y),

then we call f : Ω → R a Schur-convex function. If − f is a Schur-convex function,
then we call f : Ω →R a Schur-concave function. A Schur-convex function or a Schur-
concave function is called a Schur-function.

LEMMA 3.1. (see [6, p. 57]) Let Ω ⊂ R
n be a symmetrical and convex domain,

and let f : Ω → R be a symmetrical and differentiable function. Then f : Ω → R is a
Schur-convex function if and only if

(xi− x j)
[

∂ f (x)
∂xi

− ∂ f (x)
∂x j

]
� 0, i, j = 1,2, · · · ,n (23)

for all x ∈ Ω.

In this section, our main result is as follows.

THEOREM 3.1. Let Ω ⊂ R
n
++ be a symmetrical and convex domain, and let f :

Ω → R be a homogeneous of degree γ � 0 , symmetrical and differentiable function.
If f : Ω → R is a Schur-convex function and f (e) � 0 , then f : Ω → R is a weak
increasing function.

Proof. Assume that f : Ω → R is a Schur-convex function and f (e) � 0. Since
f : Ω → R is a homogeneous function, (10) holds. From (10) we see that

γtγ−1 f (x) =
∂ f (tx)

∂ t
=

n

∑
i=1

∂ f (tx)
∂ (txi)

∂ (txi)
∂ t

=
n

∑
i=1

xi
∂ f (tx)
∂ (txi)

(24)

holds for any t ∈ R++, x ∈ Ω and tx ∈ Ω. Set t = 1 in (24), we get

γ f (x) =
n

∑
i=1

xi f
′
i (x), (25)

where

f ′i (x) � ∂ f (x)
∂xi

, i = 1,2, · · · ,n.

Since f : Ω → R is a Schur-convex function and from Lemma 3.1 we know that the
inequalities (23) hold for any x ∈ Ω ↓ . That is

f ′1(x) � f ′2(x) � · · · � f ′n(x), ∀x ∈ Ω ↓ . (26)

By (25) and (26) we know that for any x ∈ Ω ↓ and any k : 1 � k � n−1 we have

γ f (x) =
n

∑
i=1

xi f
′
i (x) �

k

∑
i=1

xi f
′
i (x)+

n

∑
i=k+1

xi f
′
k(x). (27)
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Set x �→ [x]k in (27). Since f : Ω → R is a symmetric function and x1 = x2 = · · · = xk

we get

∂ f ([x]k)
∂xk

=
k

∑
i=1

∂ f ([x]k)
∂xi

∂xi

∂xk
=

k

∑
i=1

f ′i ([x]k), k = 1,2, · · · ,n−1, (28)

f ′1([x]k) = · · · = f ′k([x]k) =
1
k

∂ f ([x]k)
∂xk

, k = 1,2, · · · ,n−1, (29)

γ f ([x]k) �
k

∑
i=1

xi f
′
i ([x]k)+

n

∑
i=k+1

xi f
′
k([x]k)

= xk
∂ f ([x]k)

∂xk
+

n

∑
i=k+1

xi
1
k

∂ f ([x]k)
∂xk

=
1
k

(
kxk +

n

∑
i=k+1

xi

)
∂ f ([x]k)

∂xk
, k = 1,2, · · · ,n−1.

(30)

Note that (see [6]) (
1
n

n

∑
i=1

xi

)
e ≺ x, ∀x ∈ Ω and f (e) � 0. (31)

Since f : Ω → R is a Schur-convex function and from (31) we get

f (x) � f

[(
1
n

n

∑
i=1

xi

)
e

]
=

(
1
n

n

∑
i=1

xi

)γ

f (e) � 0, ∀x ∈ Ω. (32)

From (32) we get

f ([x]k) � 0, ∀x ∈ Ω ↓, k = 1,2, · · · ,n−1. (33)

By (30), (33) and Ω ↓⊂ Ω ⊂ R
n
++ we get

∂ f ([x]k)
∂xk

� γ f ([x]k)

[
1
k

(
kxk +

n

∑
i=k+1

xi

)]−1

� 0

for any x ∈ Ω ↓ and k ∈ {1,2, · · · ,n−1} . By Proposition 2.2, the function f : Ω → R

is a weak increasing function. The proof of Theorem 3.1 is completed. �

REMARK 3.1. Theorem 3.1 shows that the class of weak monotonic functions is
more extensive than the class of Schur-functions.
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4. A Chebyshev type inequality

The following notations (see [7, 8]) will be used in this section:

a = a1, ap =
(
ap

1 , · · · ,ap
n

)
, Cn = {te|t ∈ R} ,

‖a‖p =

⎧⎨
⎩(∑n

i=1 |ai|p)1/p , if 0 < p < ∞
max
1�i�n

{|ai|} , if p = ∞ ,

ab = (a1b1, · · · ,anbn) ,
a
b

=
(

a1

b1
, · · · , an

bn

)
, 〈a, b〉 =

n

∑
i=1

aibi,

where 〈a,b〉 is the inner product of the vectors a and b .

DEFINITION 4.1. (See [7] and [13]) Two row vectors x∈ R
n and y∈R

n are said
to be similarly ordered, denoted by x ↑ y, if and only if for any i, j : 1 � i, j � n we
have

(xi − x j)(yi − y j) � 0.

If the inequality is reversed, then x and y are said to oppositely ordered, denoted by
x ↓ y .

A well-known Chebyshev’s inequality in R
n states (see [7, 8]):

Let a,b ∈ R
n . If a ↑ b , then

〈a,b〉
〈e,e〉 � 〈e,a〉

〈e,e〉 ·
〈e,b〉
〈e,e〉 . (34)

The inequality is reversed if a ↓ b . The equality in (34) holds if and only if a ∈Cn or
b ∈Cn.

A large number of generalizations and applications of the inequality (34) had been
obtained in [7, 8, 9, 10, 11, 12]. An interesting generalization of (34) was given by Wen
and Wang under the proper hypotheses in [11]:

per(A�B)
n!

� perA
n!

· perB
n!

, (35)

and
perA

∏n
i=1 ∑n

j=1 ai, j
� perB

∏n
i=1 ∑n

j=1 bi, j
, (36)

where A,B ∈ R
n×n
++ are two matrices.

In this section, we will generalize the inequality (34). Our main result is as follows.
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THEOREM 4.1. Let a, b, a∗, b∗ ∈ R
n
++. If

a∗ ↑ a
a∗

, b∗ ↑ b
b∗ , a∗ ↑ b∗, (p,q) ∈ (0,1]2,

then
〈a, b〉
〈a∗, b∗〉 � ‖a‖p

‖a∗‖p
· ‖b‖q

‖b∗‖q
. (37)

The equality in (37) holds if and only if

a
a∗

,
b
b∗ ∈Cn or p = 1, b, b∗ ∈Cn or q = 1, a, a∗ ∈Cn. (38)

Proof. Set

x =
a
a∗

, y =
b
b∗ ⇔ a = a∗x, b = b∗y.

Without loss of generality, we can assume

a∗, x, b∗, y ∈ R
n
++ ↓ . (39)

Then the inequality (37) is equivalent to

〈a∗x,b∗y〉
〈a∗,b∗〉 � ‖a∗x‖p

‖a∗‖p
· ‖b

∗y‖q

‖b∗‖q
. (40)

We define an auxiliary function F : R
n
++×R

n
++ → R as follows:

F(x,′ y) � ln
〈a∗x,b∗y〉

‖a∗x‖p · ‖b∗y‖q

= ln〈a∗x,b∗y〉− ln(‖a∗x‖p · ‖b∗y‖q)

= ln

(
n

∑
i=1

a∗i b
∗
i xiyi

)
− 1

p
ln

(
n

∑
i=1

a∗p
i xp

i

)
− 1

q
ln

(
n

∑
i=1

b∗qi yq
i

)
.

It follows from the above that the inequality (40) is equivalent to

F(x,y) � F(e,e). (41)

For any fixed y ∈ R
n
++ ↓ , we prove that the auxiliary function

f : R
n
++ ↓→ R, f (x) = F(x, y)

is a weak increasing function.



226 J. J. WEN, J. PEČARIĆ AND T. Y. HAN

Set

A �
(

k

∑
i=1

a∗i b
∗
i yi

)(
xp
k

k

∑
i=1

a∗p
i +

n

∑
i=k+1

a∗p
i xp

i

)

−
(

xp−1
k

k

∑
i=1

a∗p
i

)(
xk

k

∑
i=1

a∗i b
∗
i yi +

n

∑
i=k+1

a∗i b
∗
i xiyi

)

=

(
k

∑
i=1

a∗i b
∗
i yi

)(
n

∑
i=k+1

a∗p
i xp

i

)
−
(

xp−1
k

k

∑
i=1

a∗p
i

)(
n

∑
i=k+1

a∗i b
∗
i xiyi

)

=
n

∑
j=k+1

k

∑
i=1

a∗p
j xp

j a
∗
i b

∗
i yi −

n

∑
j=k+1

k

∑
i=1

a∗jb
∗
j x jy jx

p−1
k a∗p

i

=
n

∑
j=k+1

k

∑
i=1

(
a∗p

j xp
j a

∗
i b

∗
i yi−a∗jb

∗
jx jy jx

p−1
k a∗p

i

)

=
n

∑
j=k+1

k

∑
i=1

a∗jb
∗
j x jy jx

p−1
k a∗p

i

(
a∗p

j xp
j a

∗
i b

∗
i yi

a∗jb
∗
j x jy jx

p−1
k a∗p

i

−1

)

=
n

∑
j=k+1

k

∑
i=1

a∗jb
∗
j x jy jx

p−1
k a∗p

i

[(
a∗j
a∗i

)p−1

·
(

x j

xk

)p−1

· b∗i
b∗j

· yi

y j
−1

]
,

and

B �
(

xk

k

∑
i=1

a∗i b
∗
i yi +

n

∑
i=k+1

a∗i b
∗
i xiyi

)(
xp
k

k

∑
i=1

a∗p
i +

n

∑
i=k+1

a∗p
i xp

i

)
.

From

f ([x]k) = F(xk,xk, · · · ,xk︸ ︷︷ ︸
k

,xk+1,xk+2, · · · ,xn,y)

= ln

(
xk

k

∑
i=1

a∗i b
∗
i yi +

n

∑
i=k+1

a∗i b
∗
i xiyi

)

− 1
p

ln

(
xp
k

k

∑
i=1

a∗p
i +

n

∑
i=k+1

a∗p
i xp

i

)
− 1

q
ln

(
n

∑
i=1

b∗qi yq
i

) (42)

we get

∂ f ([x]k)
∂xk

= ∑k
i=1 a∗i b∗i yi

xk ∑k
i=1 a∗i b∗i yi + ∑n

i=k+1 a∗i b∗i xiyi
− xp−1

k ∑k
i=1 a∗p

i

xp
k ∑k

i=1 a∗p
i + ∑n

i=k+1 a∗p
i xp

i

=
A
B

.

(43)

Since 0 < p � 1, 1 � i � k < j � n with (39), we have that(
a∗j
a∗i

)p−1

� 1,

(
x j

xk

)p−1

� 1,
b∗i
b∗j

� 1,
yi

y j
� 1, (44)
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(
a∗j
a∗i

)p−1

·
(

x j

xk

)p−1

· b
∗
i

b∗j
· yi

y j
−1 � 0. (45)

Hence
A � 0, B > 0. (46)

From (43) and (46) we get

∂ f ([x]k)
∂xk

� 0, ∀x ∈ R
n
++ ↓, k = 1,2, · · · ,n−1. (47)

From (47) and Proposition 2.2 we know that the function

f : R
n
++ ↓→ R, f (x) = F(x,y)

is a weak increasing function.
By (7) in Proposition 2.1 we get

F(x,y) = f (x) � f (xne) = F(e,y). (48)

Similarly, we can prove that the auxiliary function

g : R
n
++ ↓→ R, g(y) = F(e,y)

is also a weak increasing function.
Indeed, if we use the following exchange:

a∗ ↔ b∗, x ↔ y, p ↔ q

in the proof of the above, and set x = Ce,C ∈ R++, we get

∂g([y]k)
∂yk

=
A∗

B∗ ,

where

A∗ =
n

∑
j=k+1

k

∑
i=1

b∗j a
∗
jy jx jy

q−1
k b∗qi

[(
b∗j
b∗i

)q−1

·
(

y j

yk

)q−1

· a
∗
i

a∗j
· xi

x j
−1

]
� 0,

and

B∗ =

(
yk

k

∑
i=1

b∗i a
∗
i xi +

n

∑
i=k+1

b∗i a
∗
i yixi

)(
yq
k

k

∑
i=1

b∗qi +
n

∑
i=k+1

b∗qi yq
i

)
> 0.

Hence the auxiliary function

g : R
n
++ ↓→ R, g(y) = F(e,y)

is also a weak increasing function by the above proof.
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By (7) in Proposition 2.1 and (48) we get

F(x,y) � F(e,y) = g(y) � g(yne) = F(e,e). (49)

that is, (41) holds.
We will discuss the equality condition of the inequality (37) as follows.
Based on the above analysis, these conditions should be

x ∈Cn and y ∈Cn, or
∂ f ([x]k)

∂xk
≡ 0, or

∂g([y]k)
∂yk

≡ 0, k = 1,2, · · · ,n−1, (50)

that is (38) hold.
Indeed, assume that the equality in (37) holds. If x ∈Cn does not hold, then

∂ f ([x]k)
∂xk

≡ 0, k = 1,2, · · · ,n−1 ⇔ p = 1, b, b∗ ∈Cn (51)

by the above prove. If y ∈Cn does not hold, then

∂g([y]k)
∂yk

≡ 0, k = 1,2, · · · ,n−1⇔ q = 1, a, a∗ ∈Cn (52)

by the above prove. hence (50) hold, i.e. (38) hold.
Assume that the (50) hold, i.e. (38) hold, we can easily prove that the equality in

(37) holds.
This completes the proof of Theorem 4.1. �

REMARK 4.1. We remark here if p = q = 1,a∗ = b∗ = e, then the inequality (37)
can be rewritten as inequality (34). Therefore, the inequality (37) is a generalization of
the inequality (34).

REMARK 4.2. Theorem 4.1 implies the following interesting result: If the four
continuous functions f ∗, f/ f ∗, g∗, g/g∗ : I → R++ , where I is an interval, are in-
creasing (or decreasing) , and (p,q) ∈ (0,1]2, then we have the following inequality:

∫
I f g∫

I f ∗g∗
�
( ∫

I f p∫
I f ∗p

)1/p

×
( ∫

I g
q∫

I g
∗q

)1/q

. (53)

5. A new proof of Marshall’s inequality

Now we give an application of Theorem 4.1 as follows.

THEOREM 5.1. (Marshall’s inequality, see [8, 13]) Let

a, a∗ ∈ R
n
++ and a∗ ↑ a

a∗
.



WEAK MONOTONICITY AND CHEBYSHEV TYPE INEQUALITY 229

If the real numbers α,β are such that α < β , then

M[α ]
n (a)

M[α ]
n (a∗)

� M[β ]
n (a)

M[β ]
n (a∗)

, (54)

the equality in (54) holds if and only if

a
a∗

∈Cn, (55)

where

M[t]
n (a) =

{(
n−1 ∑n

i=1 at
i

)1/t
, if 0 < |t| < ∞

(∏n
i=1 ai)

1/n , if t = 0
.

Proof. Since

x ↑ e, ∀x ∈ R
n, a, a∗ ∈ R

n
++ and a∗ ↑ a

a∗
,

we see that

a∗γ ↑ aγ

a∗γ , e ↑ e
e

and aγ ↑ e, ∀γ ∈ R.

(i) if 0 < α < β , then 0 < α
β < 1. Since the inequality (54) can be written as

〈aβ ,e〉
〈a∗β ,e〉 �

‖aβ‖α/β

‖a∗β‖α/β
· ‖e‖1

‖e‖1
, (56)

according to Theorem 4.1, the inequality (56) holds, hence the inequality (54) holds.
(ii) if α < β < 0, then 0 < −β < −α . According to the proof of the assertion (i)

we have

M[−β ]
n (a−1)

M[−β ]
n ((a∗)−1)

� M[−α ]
n (a−1)

M[−α ]
n ((a∗)−1)

. (57)

That is to say, the inequality (54) holds.
(iii) if α � 0 � β and α �= β , then

M[α ]
n (a)

M[α ]
n (a∗)

� M[0]
n (a)

M[0]
n (a∗)

� M[β ]
n (a)

M[β ]
n (a∗)

(58)

by the proof of the assertion (i) and the proof of the assertion (ii), hence the inequality
(54) still holds.

From Theorem 4.1 it follows that equality in (54) holds if and only if (55) holds.
The proof of Theorem 5.1 is completed. �
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REMARK 5.1. Theorem 5.1 implies the following interesting result: Let

x, y ∈ R
n
++, y ↑ x

y
.

If ∑n
i=1 xi � ∑n

i=1 yi, then we have

n

∑
i=1

xp
i �

n

∑
i=1

yp
i , ∀p ∈ (1,∞). (59)

If ∑n
i=1 xi � ∑n

i=1 yi, then we have

n

∑
i=1

xp
i �

n

∑
i=1

yp
i , ∀p ∈ (0,1). (60)
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[2] I. FRANJIĆ, S. KHALID AND J. PEČARIĆ, On the refinements of the Jensen-Steffensen’s inequality,
J. Inequal. Appl. 2011, 2011:12, 11 pp.

[3] J. CHENG AND G. X. LI, The sharpening of Erdös-Florians’s inequality, J. Ninbo Univ. 2 (2) (1989),
pp. 12–14 (in Chinese).

[4] Z. L. WANG, Inequalities of the Rado-Popoviciu type for functions and their applications, J. Math.
Anal. Appl. 100 (1984), pp. 436–446.

[5] J. J. WEN, T. Y. HAN AND S. S. CHENG, Inequalities involving Dresher variance mean, Journal of
Inequalities and Applications, 2013, 2013: 366,
http://www.journalofinequalitiesandapplications.com/content/2013/1/366.

[6] A. W. MARSHALL AND I. OLKIN, Inequalities: Theory of majorization and its applications, Aca-
demic Press, New York, 1979.
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