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Abstract. In this note, we precisely evaluate the operator norm of the fractional Hardy operator
Hβ from Lp(Rn) to Lq(Rn) , where 0 < β < n , 1 < p < q < ∞ and 1/p−1/q = β/n . By this
we extend the result of Bliss [1] to the case of high dimension and improve our result in [7].

1. Introduction

Recall that, for a nonnegative locally integrable function f on R
n , the n -dimensional

fractional Hardy operator Hβ is defined by

Hβ f (x) =
1

|B(0, |x|)|1− β
n

∫
|y|<|x|

f (y)dy, x ∈ R
n \ {0}, (1)

where 0 < β < n (cf. [4]). Given 0 < β < n and a locally integrable function f on
R

n , the fractional Hardy operator is closely related to the fractional Hardy-Littlewood
maximal operator Mβ defined by

Mβ f (x) = sup
r>0

1

|B(x,r)|1− β
n

∫
|y−x|<r

| f (y)|dy, x ∈ R
n,

and to the Riesz potential Iβ defined by

Iβ f (x) =
∫

Rn

f (y)
|x− y|n−β , x ∈ R

n.

It is then easy to see that

Mβ f (x) = sup
y∈Rn

(Hβ (| f (·+ x)|))(y), x ∈ R
n,
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and

Hβ (| f |)(x) � 2n−β Mβ ( f )(x) � 2n−β |B(0,1)| β
n −1Iβ (| f |)(x), x ∈ R

n \ {0}.
Let us note some results of the fractional Hardy operator. For the one-dimensional

case, Bliss in [1] worked out the best possible constant C0 in the inequality

‖Hβ f‖Lq(R+) � C0‖ f‖Lp(R+),

where 0 < β < 1, 1 < p < ∞, 1
p − 1

q = β , C0 =
(

p′
q

)1/q(
1

qβ ·B
(

1
qβ , 1

q′β

))−β
, and

R+ = (0,∞) . A natural question is to consider the case of high dimension. As we
know, the theory in higher dimensions is perceived to be much more difficult and in-
deed there are significant problems in higher dimensions for which the one-dimensional
techniques are not adequate. For the n -dimensional case, we in [7] showed that C1 , the

bound of operator Hβ from L1(Rn) to L
n

n−β ,∞(Rn) , is 1, and the constant C1 is best
possible. We also worked out that the constant C2 , the bound of the operator Hβ from
from Lp(Rn) to Lq(Rn) , satisfies(

p
q

)1/q( p
p−1

)1/q( q
q−1

)1−1/q(
1− p

q

)1/p−1/q

� C2 �
(

p
p−1

) p
q

,

with 0 < β < n , 1 < p < q < ∞ and 1/p− 1/q = β/n . For more information about
the fractional Hardy operator, we refer to ([2], [3], [6], [8]) and references therein.

The purpose of this note is to completely fix the gap in [7], and give the norm of
‖Hβ‖Lp(Rn)→Lq(Rn) . Our result is:

THEOREM 1. Suppose that 0 < β < n, 1 < p < q < ∞ and 1
p − 1

q = β
n . If f ∈

Lp(Rn) , then we have
‖Hβ f‖Lq(Rn) � A‖ f‖Lp(Rn). (2)

Moreover,
‖Hβ‖Lp(Rn)→Lq(Rn) = A,

where

A =
(

p′

q

)1/q( n
qβ

·B
(

n
qβ

,
n

q′β

))−β/n

.

It is worth mentioning that the proof from [5] is not applicable to the fractional
Hardy operator. Although our idea partly come from [1], there are some essential diffi-
culties. The first difficulty is how to deal with the high-dimensional case. In this paper,
we shall use the rotation method as in [5] to reduce the n -dimensional case to the
one-dimensional case. The second difficulty here is how to reconstruct some auxiliary
functions to achieve the sharp bound, which is quite different from [1].

Throughout the note, we use the following notation. The definition of the usual
beta function is defined by B(z,w) =

∫ 1
0 tz−1(1− t)w−1dt , where z and w are complex

numbers with positive real parts. The set B(0, |x|) denotes a ball with center at the
original point and radius |x| , and |B(0, |x|)| denotes the volume of the ball B(0, |x|) . For
a real number p , 1 < p < ∞ , p′ is the conjugate number of p , that is, 1/p+1/p′ = 1.
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2. Preliminaries

To reduce the dimension of function space, we need the following lemma which
was obtained in [7, p. 7].

LEMMA 1. For a function f ∈ Lp(Rn) , let

g f (y) =
1

ωn

∫
|ξ |=1

| f (|y|ξ )|dξ , y ∈ R
n,

where ωn = 2π
n
2 /Γ( n

2) . Then

Hβ (| f |)(x) = Hβ (g f )(x)

and
‖g f‖Lp(Rn) � ‖ f‖Lp(Rn).

REMARK 1. It follows from the above lemma that

‖Hβ ( f )‖Lq(Rn)

‖ f‖Lp(Rn)
�

‖Hβ (g f )‖Lq(Rn)

‖g f‖Lp(Rn)
.

Therefore, the norm of the operator Hβ from Lp(Rn) to Lq(Rn) is equal to the norm
that Hβ restricts to radial functions.

In order to prove Theorem 1, we need to construct an auxiliary function W (x,y,z)
and study the continuity and differentiability of the function W (x,y,z) . These proper-
ties will be applied in Section 3. In order to show the properties of W (x,y,z) , we first
introduce another auxiliary function φ(u) , which is closely related with the function
W (x,y,z) .

Assume that f is a nonnegative continuous function on R . By Hölder’s inequality,

∫ s

0
f (r)rn−1dr �

(∫ s

0
f p(r)rn−1dr

)1/p

s
n(p−1)

p n(1−p)/p.

If we denote y = n
∫ s
0 f (r)rn−1dr and z = n

∫ ∞
s f p(r)rn−1dr , then

lim
s→0

s−
n(p−1)

p y = 0. (3)

Let φ(u) be the function defined by the equation

φ(u) = up
∫ 1

0

ηq−2(
1−u+uηqβ/n

)n/β dη =
1

[(1−u)up−1]
n

qβ

∫ U

0

ζ q−2(
1+ ζ qβ/n

)n/β dζ , (4)

where U = [u/(1−u)]n/qβ .
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In order to easily describe the point in the three-dimensional rectangular coordi-
nate system, we shall use x instead of s . For each point (x,y,z) in the octant R of
xyz-space where x > 0, y > 0, z > 0, the equation

φ(u) = xn(p−1)y−pz (5)

has a unique solution u(x,y,z) , since

φ(0) = 0, φ(1) = ∞, φ ′(u) > 0 for 0 < u < 1. (6)

If (x,y,z) approaches a point (x1,0,1) , where x1 > 0, along a continuous curve in
R , then by (6), we know that u(x,y,z) approaches 1. It follows from the second form
of φ(u) , (6), (5) and (3) that

lim
x→x1

x(p−1)n

yp (1−u)
n

qβ =
∫ ∞

0

ζ q−2

(1+ ζ
qβ
n )n/β

dζ =
n

qβ
·

Γ( n
qβ )Γ((1− 1

q ) n
β )

Γ( n
β )

. (7)

If (x,y,z) approaches a point (x2,y2,0) , where x2 > 0, y2 > 0, along a continuous
curve in R . It follows from the first form of φ(u) , (5) and (6) that u(x,y,z) → 0 and

lim
x→x2

up

z
= (q−1)

x(p−1)n
2

yp
2

. (8)

Let W (x,y,z) be the function defined by the equation

W (x,y,z) =
n

q(β −n)+n

(
1

1−u
· yq

xq(n−β )−n
+

z
(1−u)up−1 ·

yq−p

xn(q−p)−qβ

)
,

where the function W (x,y,z) is determined when u is replaced by the function u(x,y,z)
in (4).

In order to calculate the derivatives of W with respect to x , y and z , we need to
give some necessary estimates. It follows from the second form for φ(u) that

φ ′(u) =
n

qβ

(
1+ pu− p
u(1−u)

· x
n(p−1)z

yp +
up−1

1−u

)
.

When W is treated as a function of x , y , z , u , the partial derivative of W with
respect to u is

∂W
∂u

=
n

q(β −n)+n

{
1

(1−u)2 ·
yq

xq(n−β )−n

+
yq−pz

xn(q−p)−qβ

(
1

(1−u)2up−1 −
(p−1)up−2

(1−u)u2(p−1)

)}

=
n

q(β−n)+n

{
1

(1−u)2 ·
yq

xq(n−β )−n
+

yq−pz

xn(q−p)−qβ

(
1

1−u
− p−1

u

)
1

(1−u)up−1

}
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=
qβ

q(β −n)+n
· 1
(1−u)up−1 ·

yq

xq(n−β )−n

{
up−1

1−u
+

xn(p−1)

yp · z · 1+ pu− p
u(1−u)

}
n

qβ

=
qβ

q(β −n)+n
· 1
(1−u)up−1 ·

yq

xq(n−β )−n
φ ′(u).

In view of (5), we have

x =
(
ypz−1φ(u)

) 1
n(p−1) , y = x

n(p−1)
p z

1
p φ(u)−

1
p , z = x−n(p−1)ypφ(u).

Then
∂x
∂u

=
1

n(p−1)
y

p
n(p−1) z

− 1
n(p−1) (φ(u))

1
n(p−1)−1φ ′(u),

∂y
∂u

= − 1
p
x

n(p−1)
p z

1
p (φ(u))−

1
p−1φ ′(u),

∂ z
∂u

= x−n(p−1)ypφ ′(u).

Using the above calculations and (5), we can get the derivatives of W with respect to
x , y and z as follows:

Wx =
∂W
∂x

+
∂W
∂u

∂u
∂x

=
n

q(β −n)+n

(
(n−q(n−β ))

yq

1−u
xn−q(n−β )−1

+
qβ −n(q− p)
(1−u)up−1 · yq−pz

xn(q−p)−qβ+1

)

− pβ
(1−u)up−1 ·

yq−pz

xn(q−p)−qβ+1

=
nyq

1−u
· 1

xq(n−β )−n+1
,

and analogously,

Wy =
p

1− p
· yq−1

(1−u)xq(n−β )−n
, Wz =

1
1− p

· 1
(1−u)up−1 ·

yq−p

xq(n−β )−np
.

Let λ = 1
1−p · 1

(1−u)up−1 · yq−p

xq(n−β)−np and g = yu
xn . Then Wx, Wy, Wz can be rewritten

as
Wx = nxn−q(n−β )−1yq −n(p−1)λgpxn−1, Wy = pλgp−1, Wz = λ .

When (x,y,z) approaches (x1,0,1) or (x2,y2,0) , the expressions (7) and (8) show
that

lim
x→x1

W = −A, lim
x→x2

W =
n

q(β −n)+n
· yq

2

xq(n−β )−n
2

. (9)
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3. Proof of Theorem 1

It follows from Lemma 1 that the norm of the operator Hβ from Lp(Rn) to Lq(Rn)
is equal to the norm that Hβ restricts to radial functions. Consequently, without loss
of generality, it suffices to carry out the proof of the theorem by assuming that f is a
nonnegative, radial, smooth function with compact support on R

n .
Using the polar coordinate transformation, we can rewrite (2) as

n
∫ ∞

0

(
n
∫ s

0
f (r)rn−1dr

)q

sq(β−n)sn−1ds � Aq
(

n
∫ ∞

0
f p(r)rn−1dr

)q/p

. (10)

It reduces to prove that the (10) holds.
Without loss of generality, we assume that n

∫ ∞
0 f p(r)rn−1dr = 1.

If n
∫ ∞
0 f p(r)rn−1dr �= 1, we can replace f by (n

∫ ∞
0 f p(r)rn−1dr)−1 f .

Consider the curve C in xyz-space defined by the equations y = n
∫ x
0 f (r)rn−1dr ,

z = n
∫ ∞
x f p(r)rn−1dr and z(0) = 1. For such a curve there exists a smallest interval

(x1,x2) , such that
0 � x1 < x2 � ∞,

y(x) ≡ 0, z(x) ≡ 1 on 0 � x � x1,

y(x) ≡ const., z(x) ≡ 0 on x2 � x < ∞.

Considering the function W (x,y(x),z(x)) , we get the derivative of W with respect
to x , W ′(x) ,

W ′(x) = nxn−1
{

x−q(n−β )yq−λ
(
(p−1)hp− php−1 f + f p)} .

Let ψ(h, f ) = (p−1)hp− php−1 f + f p . Since h � 0 and f � 0, then ψ(h, f ) is always
positive except at its root h = f . And W ′(x) can be rewritten as

W ′(x) = nxn−1x−q(n−β )yq−nxn−1λ ψ(h, f ).

Let I = n
∫ ∞
0

(∫ x
0 f (r)rn−1dr

)q
xq(β−n)+n−1dx and x2 < ∞ , then on the sub-curves

C01 , C12 , C2∞ of C corresponding to the intervals (0,x1), (x1,x2), (x2,∞) ,

I(C01) = 0, I(C2∞) = − n
q(β −n)+n

· yq
2

xq(n−β )−n
2

,

In view of (9), we get

I(C12) =
∫ x2

x1

dW + λ
∫ x2

x1

nxn−1ψ(h, f )dx

= W (x2)−W(x1)+ λ
∫ x2

x1

nxn−1ψ(h, f )dx

= A+
n

q(β −n)+n
· yq

2

xq(n−β )−n
2

+ λ
∫ x2

x1

nxn−1ψ(h, f )dx,
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where y2 = y(x2) . It follows from λ < 0 and ψ(h, f ) � 0 that

I(C) = I(C12)+ I(C2∞) � A.

When x2 = ∞ , the value of I(C) can be calculated by taking the limit. We omit
the details.

Therefore, by the the equivalence of (2) and (10) we obtain

‖Hβ‖Lp(Rn)→Lq(Rn) = sup
‖ f‖Lp(Rn) �=0

‖Hβ f‖Lq(Rn)

‖ f‖Lp(Rn)
� A.

On the other hand, take f̃ (x) = 1

(1+|x|qβ)
1+ n

qβ
. It follows from

n
∫ s

0
f̃ (r)rn−1dr =

sn(
1+ sqβ

) n
qβ

that the left side of (10) is n
qβ ·B

(
n

qβ +1, n
q′β −1

)
. It is easy to verify that

n
∫ ∞

0
f̃ p(r)rn−1dr =

n
qβ

·B
(

n
qβ

,
n

q′β

)
.

Therefore,

‖Hβ‖Lp(Rn)→Lq(Rn) = sup
‖ f‖Lp(Rn) �=0

‖Hβ f‖Lq(Rn)

‖ f‖Lp(Rn)
�

‖Hβ f̃ ‖Lq(Rn)

‖ f̃‖Lp(Rn)
= A,

which completes the proof. �

REMARK 2. If a modified form was as follows:

H̃β f (x) =
1

|B(0, |x|)|1− β
n

∫
|y|<|x|

f (y)dy, x ∈ R
n \ {0},

where 0 < β < n and f is a locally integrable function on R
n . In view of |H̃β f | �

Hβ (| f |) and Lemma 1, Theorem 1 still holds for the operator H̃β .
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