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CONVERSES OF COPSON’S INEQUALITIES ON TIME SCALES

S. H. SAKER, D. O’REGAN AND R. P. AGARWAL

(Communicated by M. Bohner)

Abstract. In this paper, we will prove some new dynamic inequalities on a time scale T . These
inequalities when T = N contain the discrete inequalities due to Bennett and Leindler which are
converses of Copson’s inequalities. The main results will be proved using the Hölder inequality
and Keller’s chain rule on time scales.

1. Introduction

The classical Hardy inequality states that for f � 0 and integrable over any finite
interval (0,x) and f p is integrable and convergent over (0,∞) and p > 1, then

∫ ∞

0

(
1
x

∫ x

0
f (t)dt

)p

dx �
(

p
p−1

)p∫ ∞

0
f p(x)dx. (1.1)

The constant (p/(p−1))p is the best possible. This inequality was proved by Hardy
in 1925 and it is the continuous version of a discrete inequality discovered by Hardy in
1920

∞

∑
n=1

(
1
n

n

∑
i=1
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)p

�
(

p
p−1

)p ∞

∑
n=1

ap
n , p > 1. (1.2)

For generalizations and applications of these inequalities in the literature we refer the
reader to the books [1, 19, 20, 26] and the papers [4, 10, 16, 17, 18, 22, 23, 24, 25, 28,
29] Copson in [8, Theorem 1.1, 2.1] proved that if p > 1, λ (n) > 0 ∀n and c > 1, then

∞

∑
n=1

λ (n)
Λc(n)

(
n

∑
i=1

a(i)λ (i)

)p

�
(

p
c−1

) ∞

∑
n=1

λ (n)Λp−c(n)ap(n), (1.3)

where Λn = ∑n
i=1 λ (i) , and if p > 1 and 0 � c < 1, then
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∑
n=1

λ (n)
Λc(n)
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∞

∑
i=n

λ (i)a(i)

)p

�
(

p
1− c

)p ∞

∑
n=1

λ (n)Λp−c(n)ap(n). (1.4)
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An interesting variant of the Hardy-Copson inequalities was given by Leindler [21] (see
also Bennett [2]). Leindler in [21] proved that if ∑∞

i=n λ (i) < ∞ , p > 1 and 0 � c < 1,
then

∞

∑
n=1

λ (n)
(Λ∗(n))c

(
n

∑
i=1

λ (i)a(i)

)p

�
(

p
1− c

)p ∞

∑
n=1

λ (n)(Λ∗(n))p−cap(n), (1.5)

where Λ∗
n = ∑∞

i=n λ (i) , and if 1 < c � p , then

∞

∑
n=1

λ (n)
(Λ∗(n))c

(
∞

∑
i=n

λ (i)a(i)

)p

�
(

p
c−1

)p ∞

∑
n=1

λ (n)(Λ∗(n))p−cap(n). (1.6)

Bennett [3] and Leindler [21] proved converses of the inequalities (1.3) and (1.4). In
particular they proved that if c � 0 < p < 1, then

∞

∑
n=1

λ (n)
(Λn)c

(
∞

∑
i=n

λ (i)g(i)

)p

�
(

p
1− c

)p ∞

∑
n=1

λ (n)

(
n

∑
i=1

λ (i)

)p−c

gp(n), (1.7)

and if c > 1 > p > 0 and if Λn → ∞ , then

∞

∑
n=1

λ (n)
(Λn)

c

(
n

∑
i=1

λ (i)g(i)

)p

�
(

pL
c−1

)p ∞

∑
n=1

λ (n)(Λn)
p−c gp(n), (1.8)

where L = inf λ (n)
λ (n+1) .

Dynamic inequalities of Hardy type were established in [27, 30, 31] on a time scale
T , which is an arbitrary closed subset of the real numbers R . In this paper, without loss
of generality, we assume that supT = ∞ , and define the time scale interval [t0,∞)T by
[t0,∞)T := [t0,∞)∩T. For more details of time scale analysis, we refer the reader to the
two books by Bohner and Peterson [5], [6] which summarize and organize much of the
time scale calculus.

A natural question now is to ask if it is possible to prove new dynamic inequalities
on time scales which contain the inequalities (1.7) and (1.8). The main aim of this paper
is to give an affirmative answer to this question. In particular we prove the converse of
(1.5) and (1.6) on time scales and we establish the time scale versions of the inequalities
(1.7) and (1.8). It is worth remarking that converses of the inequalities (1.5) and (1.6)
were not considered in the literature when T = N . The main results will be proved by
using Hölder’s inequality and Keller’s chain rule on time scales. The technique in our
paper is different from the techniques used by Bennett and Leindler to prove their main
results.
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2. Main results

For completeness, before we prove the main results, we recall the following con-
cepts related to the notion of time scales. A time scale T is an arbitrary nonempty
closed subset of the real numbers R . Without loss of generality, we assume that
supT = ∞ , and define the time scale interval [a,b]T by [a,b]T := [a,b]∩T. The three
most popular examples of calculus on time scales are differential calculus, difference
calculus, and quantum calculus, i.e, when T = R, T = N and T = qN0 = {qt : t ∈ N0}
where q > 1. We assume throughout that T has the topology that it inherits from the
standard topology on the real numbers R. The forward jump operator and the backward
jump operator are defined by:

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},
where sup /0 = infT . A point t ∈ T, is said to be left–dense if ρ(t) = t and t > infT,
is right–dense if σ(t) = t, is left–scattered if ρ(t) < t and right–scattered if σ(t) > t.
A function g : T → R is said to be right–dense continuous (rd–continuous) provided g
is continuous at right–dense points and at left–dense points in T, left hand limits exist
and are finite. The set of all such rd–continuous functions is denoted by Crd(T).

The graininess function μ for a time scale T is defined by μ(t) := σ(t)− t , and
for any function f : T → R the notation f σ (t) denotes f (σ(t)). Fix t ∈ T and let
x : T → R . Define xΔ(t) to be the number (if it exists) with the property that given any
ε > 0 there is a neighborhood U of t with

|[x(σ(t))− x(s)]− xΔ(t)[σ(t)− s]| � ε|σ(t)− s|, for all s ∈U.

In this case, we say xΔ(t) is the (delta) derivative of x at t and that x is (delta) differen-
tiable at t . We will frequently use the following results due to Hilger [15]. Throughout
the paper will assume that g : T → R and let t ∈ T .

(i) If g is differentiable at t , then g is continuous at t .
(ii) If g is continuous at t and t is right-scattered, then g is differentiable at t with

gΔ(t) = g(σ(t))−g(t)
μ(t) .

(iii) If g is differentiable and t is right-dense, then gΔ(t) = lims→t
g(t)−g(s)

t−s .

(iv) If g is differentiable at t , then g(σ(t)) = g(t)+ μ(t)gΔ(t) .
Note that if T = R then

σ(t) = t, μ(t) = 0, f Δ(t) = f ′(t),
∫ b

a
f (t)Δt =

∫ b

a
f (t)dt

if T = Z , then

σ(t) = t +1, μ(t) = 1, f Δ(t) = Δ f (t),
∫ b

a
f (t)Δt =

b−1

∑
t=a

f (t),

if T =hZ , h > 0, then σ(t) = t +h, μ(t) = h, and

yΔ(t) = Δhy(t) :=
y(t +h)− y(t)

h
,

∫ b

a
f (t)Δt =

b−a−h
h

∑
k=0

f (a+ kh)h,
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and if T = {t : t = qk , k ∈ N0 , q > 1}, then σ(t) = qt, μ(t) = (q−1)t,

xΔ(t) = Δqx(t) =
(x(qt)− x(t))

(q−1)t
,

∫ ∞

t0
f (t)Δt =

∞

∑
k=n0

f (qk)μ(qk),

where t0 = qn0 , and if T = N
2
0 := {n2 : n ∈ N0}, then σ(t) = (

√
t +1)2 ,

μ(t) = 1+2
√

t, ΔNy(t) =
y((

√
t +1)2)− y(t)
1+2

√
t

.

In this paper, we will refer to the (delta) integral which we can define as follows.
If GΔ(t) = g(t) , then the Cauchy (delta) integral of g is defined by

∫ t
a g(s)Δs :=

G(t)−G(a). It can be shown (see [5]) that if g ∈ Crd(T), then the Cauchy integral
G(t) :=

∫ t
t0

g(s)Δs exists, t0 ∈ T , and satisfies GΔ(t) = g(t) , t ∈ T. An infinite integral

is defined as
∫ ∞
a f (t)Δt = limb→∞

∫ b
a f (t)Δt. We will make use of the following product

and quotient rules for the derivative of the product f g and the quotient f/g (where
ggσ 	= 0, here gσ = g ◦σ ) of two differentiable function f and g

( f g)Δ = f Δg+ f σgΔ = f gΔ + f Δgσ , and

(
f
g

)Δ
=

f Δg− f gΔ

ggσ . (2.1)

We say that a function p : T → R is regressive provided 1+ μ(t)p(t) 	= 0, t ∈ T. The
chain rule formula that we will use in this paper is

(xγ (t))Δ = γ
1∫

0

[hxσ +(1−h)x]γ−1 dhxΔ(t), (2.2)

which is a simple consequence of Keller’s chain rule [5, Theorem 1.90]. The integration
by parts formula is given by

∫ b

a
u(t)vΔ(t)Δt = [u(t)v(t)]ba−

∫ b

a
uΔ(t)vσ (t)Δt. (2.3)

To prove the main results, we will use the following Hölder inequality [5, Theorem
6.13]. Let a , b ∈ T . For u, v ∈ Crd(T , R), we have

∫ b

a
|u(t)v(t)|Δt �

[∫ b

a
|u(t)|q Δt

] 1
q
[∫ b

a
|v(t)|p Δt

] 1
p

, (2.4)

where p > 1 and 1
p + 1

q = 1.
Throughout the paper, we will assume that the functions in the statements of the

theorems are nonnegative and rd-continuous functions and the integrals considered are
assumed to exist.

In the following theorem we will prove a converse of the inequality (1.5) due to
Leindler on time scales.
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THEOREM 2.1. Let T be a time scale with a ∈ (0,∞)T and c � 0 < p < 1 . Let
Ω(t) =

∫ ∞
t λ (s)Δs, and Ψ(t) =

∫ t
a λ (s)g(s)Δs. Then

∫ ∞

a

λ (t)
Ωc(t)

(Ψσ (t))pΔt �
(

p
1− c

)p [∫ ∞

a
λ (t)(Ω(t))p−c gp(t)Δt

]
. (2.5)

Proof. Integrating the left hand side of (2.5) by the parts formula (2.3) with uΔ(t)=
λ (t)/Ωc(t) and vσ (t) = (Ψσ (t))p , we obtain

∫ ∞

a

λ (t)
Ωc(t)

(Ψσ (t))pΔt = u(t)Ψp(t)|∞a +
∫ ∞

a
(−u(t))(Ψp(t))ΔΔt, (2.6)

where u(t) = −∫ ∞
t

λ (s)
Ωc(s)Δs. Using Ψ(a) = 0 and u(∞) = 0 in (2.6), we have that

∫ ∞

a

λ (t)
Ωc(t)

(Ψσ (t))pΔt = −
∫ ∞

a
u(t)(Ψp(t))ΔΔt. (2.7)

Applying the chain rule ([5, Theorem 1.87]) f Δ(δ (t)) = f
′
(δ (d))δ Δ(t) , where d ∈

[t,σ(t)], we see that there exists d ∈ [t,σ(t)] such that

(Ψp(t))Δ =
p

Ψ1−p(d)
(ΨΔ(t)) =

pg(t)λ (t)
Ψ1−p(d)

. (2.8)

Since ΨΔ(t) = λ (t)g(t) � 0, and σ(t) � d , we see that Ψσ (t) � Ψ(d) , and then

p
Ψ1−p(d)

� p
(Ψσ (t))1−p (note p < 1). (2.9)

Combining (2.8) and (2.9), we have that

(Ψp(t))Δ � pg(t)λ (t)
(Ψσ (t))1−p . (2.10)

Next note ΩΔ(t) = −λ (t) � 0. By the chain rule (2.2) , we see that (note c � 0)

(
Ω1−c(t)

)Δ
= (1− c)

∫ 1

0

ΩΔ(t)
[hΩσ (t)+ (1−h)Ω(t)]c

dh

= −(1− c)
∫ 1

0

λ (t)
[hΩσ (t)+ (1−h)Ω(t)]c

dh

� −(1− c)
∫ 1

0

λ (t)
[hΩ(t)+ (1−h)Ω(t)]c

dh

= −(1− c)
λ (t)

(Ω(t))c .

This implies that

(Ω(t))−c λ (t) � −1
1− c

(
Ω1−c(t)

)Δ
,
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and then, we have

−u(t) =
∫ ∞

t

λ (s)
(Ω(s))c Δs � −1

1− c

∫ ∞

t

(
Ω1−c(s)

)Δ Δs =
1

(1− c)Ωc−1(t)
. (2.11)

Substituting (2.11), (2.10) into (2.7) yields

(∫ ∞

a

λ (t)
Ωc(t)

(Ψσ (t))p Δt

)p

�
(

p
1− c

)p
⎡
⎣∫ ∞

a

(
gp(t)λ p(t)

(Ω(t))p(c−1) (Ψσ (t))p(1−p)

)1/p

Δt

⎤
⎦

p

.

(2.12)
Applying the Hölder inequality

∫ b

a
F(t)G(t)Δt �

[∫ b

a
Fq(t)Δt

] 1
q
[∫ b

a
Gh(t)Δt

] 1
h

,

on the term ⎡
⎣∫ ∞

a

(
gp(t)λ p(t)

(Ω(t))p(c−1) (Ψσ (t))p(1−p)

)1/p

Δt

⎤
⎦

p

,

with indices q = 1/p > 1, h = 1/(1− p) (note that 1
q + 1

h = 1, where q > 1) and

F(t) =
gp(t)λ p(t)

(Ω(t))p(c−1) (Ψσ (t))p(1−p)
, and G(t) =

(
λ (t)
Ωc(t)

)1−p

(Ψσ (t))p(1−p),

we see that

(∫ ∞

a
F1/p(t)Δt

)p

=

⎡
⎣∫ ∞

a

(
gp(t)λ p(t)

(Ω(t))p(c−1) (Ψσ (t))p(1−p)

)1/p

Δt

⎤
⎦

p

�
∫ ∞
a F(t)G(t)Δt[∫ ∞

a (G(t))
1

1−p Δt
]1−p =

[∫ ∞

a

gp(t)(λ (t)Ω−c(t))1−p λ p(t)(Ψσ (t))p(1−p)Δt

(Ω(t))p(c−1) (Ψσ (t))p(1−p)

]

×
[∫ ∞

a

(( λ (t)
Ωc(t)

)1−p
(Ψσ (t))p(1−p))

) 1
1−p Δt

]p−1

=

[∫ ∞

a

λ (t)gp(t)

(Ω(t))p(c−1) (Ωc(t))1−p
Δt

][∫ ∞

a

λ (t)
Ωc(t)

(Ψσ (t))pΔt

]p−1

=
[∫ ∞

a

gp(t)λ (t)
(Ω(t))c−p Δt

]
1[∫ ∞

a
λ (t)

Ωc(t) (Ψσ (t))pΔt
]1−p .

This implies that⎡
⎣∫ ∞

a

(
gp(t)λ p(t)

(Ω(t))p(c−1) (Ψσ (t))p(1−p)

)1/p

Δt

⎤
⎦

p

�
∫ ∞
a gp(t)Ωp−c(t)λ (t)Δt[∫ ∞
a

λ (t)
Ωc(t) (Ψ

σ (t))pΔt
]1−p . (2.13)
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Substituting (2.13) into (2.12) yields(∫ ∞

a

λ (t)
Ωc(t)

(Ψσ (t))pΔt

)p

�
(

p
1− c

)p ∫ ∞
a λ (t)(Ω(t))p−c gp(t)Δt[∫ ∞

a
λ (t)

Ωc(t) (Ψσ (t))pΔt
]1−p .

This implies that
∫ ∞

a

λ (t)
Ωc(t)

(Ψσ (t))pΔt �
(

p
1− c

)p [∫ ∞

a
λ (t)(Ω(t))p−c gp(t)Δt

]
,

which is the desired inequality (2.5). The proof is complete. �

REMARK 1. As a special case of (2.5), when T = R and c � 0 < p < 1 and a = 1,
we have the following inequality of Leindler type

∫ ∞

1

λ (t)
Ωc(t)

(∫ t

1
λ (s)g(s)ds

)p

dt �
(

p
1− c

)p ∫ ∞

1
λ (t)Ωp−c(t)gp(t)dt ,

where Ω(t) =
∫ ∞
t λ (s)ds.

REMARK 2. As a special case of (2.5), when T = N and c � 0 < p < 1 and a = 1,
we have the following discrete inequality of Leindler type

∞

∑
n=1

λ (n)
Ωc(n)

(
n

∑
k=1

λ (k)g(k)

)p

�
(

p
1− c

)p ∞

∑
n=1

λ (n)

(
∞

∑
k=n

λ (k)

)p−c

gp(n),

where Ω(n) =
∞
∑

k=n
λ (k).

In the following, we will prove the time scale version of a converse of the inequal-
ity (1.6) due to Leindler on time scales.

THEOREM 2.2. Let T be a time scale with a ∈ (0,∞)T and 0 < p < 1 < c. Let
Ω(t) be defined as in Theorem 2.1 such that

K = inf
t∈T

Ωσ (t)
Ω(t)

> 0, (2.14)

and define Ψ(t) :=
∫ ∞
t λ (s)g(s)Δs. Then

∫ ∞

a

λ (t)
Ωc(t)

(Ψ(t))pΔt �
(

pKc

c−1

)p [∫ ∞

a
(Ω(t))p−c gp(t)λ (t)Δt

]
. (2.15)

Proof. Integrating the left hand side of (2.15) by the parts formula (2.3) with
vΔ(t) = λ (t)/Ωc(t) and u(t) =

(
Ψ(t)

)p
, we obtain

∫ ∞

a

λ (t)
Ωc(t)

(Ψ(t))pΔt = v(t)Ψp(t)
∣∣∣∞
a

+
∫ ∞

a
(vσ (t))(−Ψp(t))ΔΔt,
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where v(t) =
∫ t
a

λ (s)
Ωc(s)Δs. This with Ψ(∞) = 0 and v(a) = 0 imply that

∫ ∞

a

λ (t)
Ωc(t)

(Ψ(t))pΔt =
∫ ∞

a
vσ (t)(−Ψp(t))ΔΔt. (2.16)

Applying the chain rule ([5, Theorem 1.87]) f Δ(δ (t)) = f
′
(δ (d))δ Δ(t) , where d ∈

[t,σ(t)], we see that there exists d ∈ [t,σ(t)] such that

(−Ψp(t))Δ =
p

Ψ1−p(d)
(−ΨΔ(t)) =

pg(t)λ (t)

Ψ1−p(d)
. (2.17)

Since ΨΔ(t) = −λ (t)g(t) � 0, and d � t , we see that Ψ(t) � Ψ(d) , and then

p

Ψ1−p(d)
� p

(Ψ(t))1−p
(note 0 < p < 1). (2.18)

Combining (2.17) and (2.18), we have that

(−Ψp(t))Δ � pg(t)λ (t)
(Ψ(t))1−p

. (2.19)

Substituting (2.19) into (2.16) and using the fact that vΔ(t) � 0, we have that∫ ∞

a

λ (t)
Ωc(t)

(Ψ(t))pΔt � p
∫ ∞

a
v(t)

g(t)λ (t)
(Ψ(t))1−p

Δt. (2.20)

By (2.14) and the chain rule (2.2), since (Ω(t))Δ = −λ (t) � 0 and c > 1, we see that

(
(Ω(t))1−c)Δ

= (1− c)
∫ 1

0

−λ (t)
[hΩσ (t)+ (1−h)Ω(t)]c

dh

= (c−1)
∫ 1

0

λ (t)
[hΩσ (t)+ (1−h)Ω(t)]c

dh

� (c−1)
λ (t)

[Ωσ(t)]c

= (c−1)
λ (t)

[Ω(t)]c
[Ω(t)]c

[Ωσ (t)]c

� (c−1)
Kc

λ (t)
[Ω(t)]c

.

This implies that

v(t) =
∫ t

a

λ (s)
(Ω(s))c Δs �

(
Kc

c−1

)∫ t

a

(
Ω1−c(s)

)Δ Δs =
(

Kc

c−1

)
(Ω(t))1−c . (2.21)

Substituting (2.21) into (2.20) yields

(∫ ∞

a

λ (t)
Ωc(t)

(
Ψ(t)

)p Δt

)p

�
(

pKc

c−1

)p
⎡
⎣∫ ∞

a

(
gp(t)λ p(t)

(Ω(t))p(c−1) (Ψ(t))p(1−p)

)1/p

Δt

⎤
⎦

p

.
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The rest of the proof is similar to the proof of Theorem 2.1 and hence is omitted. The
proof is complete. �

REMARK 3. As a special case of (2.15), when T = R and 0 < p < 1 < c and
a = 1, we have the following inequality of Leindler type (note that in R we have
Ωσ (t) = Ω(t) and so K = 1)∫ ∞

1

λ (t)
Ωc(t)

(∫ ∞

t
λ (s)g(s)ds

)p

dt �
(

p
c−1

)p∫ ∞

1
λ (t)Ωp−c(t)gp(t)dt ,

where Ω(t) =
∫ ∞
t λ (s)ds.

REMARK 4. Assume that T = N in Theorem 2.2 and 0 < p � 1 < c and a = 1.
In this case inequality (2.15) becomes the following Leindler type discrete inequality

∞

∑
n=1

λ (n)
Ωc(n)

(
∞

∑
k=n

λ (k)g(k)

)p

�
(

pKc

c−1

)p ∞

∑
n=1

λ (n)

(
∞

∑
k=n

λ (k)

)p−c

gp(n),

where Ω(n) =
∞
∑

k=n
λ (k) and K = infn∈N Ω(n+1)/Ω(n).

In the following theorem, we will prove a time scale version of the Bennett-
Leindler inequality (1.7) on time scales.

THEOREM 2.3. Let T be a time scale with a ∈ (0,∞)T and c � 0 < p < 1 . Let
Λ(t) =

∫ t
a λ (s)Δs, and

Ψ(t) =
∫ ∞

t
λ (s)g(s)Δs. (2.22)

Then ∫ ∞

a

λ (t)
(Λσ (t))c (Ψ(t))pΔt �

(
p

1− c

)p∫ ∞

a
λ (t)(Λσ (t))p−cgp(t)Δt. (2.23)

Proof. Integrating the left hand side of (2.23) by the parts formula (2.3) with
vΔ(t) = λ (t)/(Λσ (t))c , and u(t) =

(
Ψ(t)

)p
, we obtain∫ ∞

a

λ (t)
(Λσ (t))c (Ψ(t))pΔt = v(t)Ψp(t)

∣∣∣∞
a

+
∫ ∞

a
(vσ (t))(−Ψp(t))ΔΔt, (2.24)

where v(t) =
∫ t
a

λ (s)
(Λσ (s))c Δs. From the inequality (2.24) and Ψ(∞) = v(a) = 0, we have

∫ ∞

a

λ (t)
(Λσ (t))c (Ψ(t))pΔt =

∫ ∞

a
vσ (t)(−Ψp(t))ΔΔt. (2.25)

Applying the chain rule f Δ(δ (t)) = f
′
(δ (d))δ Δ(t) , where d ∈ [t,σ(t)], we see that

there exists d ∈ [t,σ(t)] such that

− (Ψp(t))Δ =
−p

Ψ1−p(d)
(ΨΔ(t)) =

pλ (t)g(t)

Ψ1−p(d)
. (2.26)
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Since ΨΔ(t) = −λ (t)g(t) � 0, and d � t , we see that Ψ(t) � Ψ(d) , and then

pλ (t)g(t)

Ψ1−p(d)
� pλ (t)g(t)

(Ψ(t))1−p
(note 0 < p < 1).

This and (2.26) imply that

(−Ψp(t))Δ � pg(t)λ (t)
(Ψ(t))1−p

. (2.27)

By the chain rule (2.2) and the fact that (Λ(t))Δ = λ (t) � 0 and c � 0, we see that

(
(Λ(t))1−c)Δ

= (1− c)
∫ 1

0

λ (t)
[hΛσ (t)+ (1−h)Λ(t)]c

dh

� (1− c)
∫ 1

0

λ (t)
[hΛσ (t)+ (1−h)Λσ(t)]c

dh

= (1− c)
λ (t)

[Λσ(t)]c
.

This implies that

vσ (t) =
∫ σ(t)

a

λ (s)
(Λσ (s))c Δs

�
(

1
1− c

)∫ σ(t)

a

(
Λ1−c(s)

)Δ Δs

=
(

1
1− c

)
(Λσ (t))1−c. (2.28)

Substituting (2.27) and (2.28) into (2.25) yields

(∫ ∞

a

λ (t)
(Λσ (t))c

(
Ψ(t)

)p Δt

)p

�
(

p
1− c

)p
[∫ ∞

a

(
gp(t)λ p(t)

(Ψ(t))p(1−p)(Λσ (t))p(c−1)

)1/p

Δt

]p

.

The rest of the proof is similar to the proof of Theorem 2.1 and hence is omitted. The
proof is complete. �

REMARK 5. Assume that T = R in Theorem 2.3, c � 0 < p < 1 and a = 1. In
this case, we have the following integral inequality of Bennett-Leindler type (note that
when T = R , we have Λσ (t) = Λ(t) =

∫ t
a λ (s)ds)

∫ ∞

1

λ (t)
(Λ(t))c

(∫ ∞

t
λ (s)g(s)ds

)p

dt �
(

p
1− c

)p ∫ ∞

1
λ (t)(Λ(t))p−c gp(t)dt .
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REMARK 6. Assume that T = N in Theorem 2.3, c � 0 < p < 1 and a = 1. In
this case inequality (2.23) becomes the following discrete Bennett-Leindler inequality

∞

∑
n=1

λ (n)
(Λ(n))c

(
∞

∑
k=n

λ (k)g(k)

)p

�
(

p
1− c

)p ∞

∑
n=1

λ (n)

(
n

∑
k=1

λ (k)

)p−c

gp(n),

where Λ(n) =
n
∑

k=1
λ (n).

In the following theorem, we will prove a time scale version of the Bennett-
Leindler inequality (1.8) on time scales.

THEOREM 2.4. Let T be a time scale with a ∈ (0,∞)T and 0 < p < 1 < c. Let
Φ(t) :=

∫ t
a λ (t)g(s)Δs, and Λ(t) =

∫ t
a λ (s)Δs, and assume that Λ(∞) = ∞. Then

∫ ∞

a

λ (t)
(Λ(t))c (Φσ (t))pΔt �

(
p

c−1

)p ∫ ∞

a
λ (t)(Λ(t))p−cgp(t)Δt. (2.29)

Proof. Integrating the left hand side of (2.23) by the parts formula (2.3) with

uΔ(t) = λ (t)
(Λσ (t))c , and vσ (t) =

(
Φσ (t)

)p
, we obtain

∫ ∞

a

λ (t)
(Λ(t))c (Φσ (t))pΔt = u(t)Φp(t)

∣∣∞
a +

∫ ∞

a
(−u(t))(Φp(t))ΔΔt,

where u(t) = −∫ ∞
t

λ (s)
(Λ(s))c Δs. From Φ(a) = u(∞) = 0, we have

∫ ∞

a

λ (t)
(Λ(t))c (Φσ (t))pΔt =

∫ ∞

a
(−u(t))(Φp(t))ΔΔt. (2.30)

Applying the chain rule f Δ(δ (t)) = f
′
(δ (d))δ Δ(t) , where d ∈ [t,σ(t)], we see that

there exists d ∈ [t,σ(t)] such that

(
Φp(t)

)Δ
=

p

Φ1−p(d)
(ΦΔ(t)) =

pλ (t)g(t)

Φ1−p(d)
. (2.31)

Since ΦΔ(t) = λ (t)g(t) � 0, and σ(t) � d , we see that Φσ (t) � Φ(d) , and then

pλ (t)g(t)

Φ1−p(d)
� pλ (t)g(t)

(Φσ (t))1−p
(note 0 < p < 1).

This and (2.31) implies that

(
Φp(t)

)Δ � pλ (t)g(t)
(Φσ (t))1−p

. (2.32)
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By the chain rule (2.2) and the fact that (Λ(t))Δ = λ (t) � 0 and c > 1, we see that

(
(Λ(t))1−c)Δ

= (1− c)
∫ 1

0

λ (t)
[hΛσ (t)+ (1−h)Λ(t)]c

dh

= −(c−1)
∫ 1

0

λ (t)
[hΛσ (t)+ (1−h)Λ(t)]c

dh

� −(c−1)
∫ 1

0

λ (t)
[hΛ(t)+ (1−h)Λ(t)]c

dh

= −(c−1)
λ (t)

[Λ(t)]c
.

This and the condition Λ(∞) = ∞ imply that

u(t) = −
∫ ∞

t

λ (s)
(Λ(s))c Δs

�
(

1
c−1

)∫ ∞

t

(
Λ1−c(s)

)Δ Δs

=
(

1
c−1

)
1

Λc−1(∞)
−
(

1
c−1

)
1

Λc−1(t)

= −
(

1
c−1

)
1

Λc−1(t)
.

Then

−u(t) �
(

1
c−1

)
1

Λc−1(t)
. (2.33)

Substituting (2.33) and (2.32) into (2.30) yields

(∫ ∞

a

λ (t)
(Λ(t))c

(
Φσ (t)

)p
Δt

)p

�
(

p
c−1

)p
⎡
⎣∫ ∞

a

(
gp(t)λ p(t)

(Φσ (t))p(1−p)(Λ(t))p(c−1)

)1/p

Δt

⎤
⎦

p

.

The rest of the proof is similar to the proof of Theorem 2.1 and hence is omitted. The
proof is complete. �

REMARK 7. Assume that T = R in Theorem 2.4, 0 < p < 1 < c and a = 1. In
this case, we have the following integral inequality of Leindler type (note that when
T = R , we have Λ(t) =

∫ t
a λ (s)ds)∫ ∞

1

λ (t)
(Λ(t))c

(∫ t

a
λ (t)g(s)ds

)p

dt �
(

p
c−1

)p∫ ∞

1
λ (t)(Λ(t))p−cgp(t)dt. (2.34)

REMARK 8. Assume that T = N in Theorem 2.4, 0 < p < 1 < c and a = 1. In
this case inequality (2.29) becomes the following discrete Leindler inequality,

∞

∑
n=1

λ (n)
(Λ(n))c

(
n

∑
k=1

λ (k)g(k)

)p

Δt �
(

p
c−1

)p ∞

∑
n=1

λ (n)(Λ(n))p−cgp(n). (2.35)
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where Λ(n) =
n−1
∑

k=1
λ (n).
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