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ASYMPTOTIC EXPANSIONS OF INTEGRAL

MEAN OF POLYGAMMA FUNCTIONS

CHAO-PING CHEN, NEVEN ELEZOVIĆ AND LENKA VUKŠIĆ

Abstract. Let s,t be two given real numbers, s �= t and m ∈ N . We determine the coefficients
aj(s,t) in the asymptotic expansion of integral (or differential) mean of polygamma functions
ψ (m)(x) :

1
t− s

∫ t

s
ψ (m)(x+u)du ∼ ψ (m)

(
x

∞

∑
j=0

aj(s,t)
x j

)
, x → ∞.

We derive the recursive relations for polynomials aj(t,s) , and also as polynomials in intrinsic
variables α = 1

2 (s + t − 1) , β = 1
4 [1− (t − s)2] . We derive also the main properties of these

polynomials and as a consequence the asymptotic formula for shifted variables.
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