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Abstract. Let s,t be two given real numbers, s �= t and m ∈ N . We determine the coefficients
aj(s,t) in the asymptotic expansion of integral (or differential) mean of polygamma functions
ψ (m)(x) :

1
t− s

∫ t

s
ψ (m)(x+u)du ∼ ψ (m)

(
x

∞

∑
j=0

aj(s,t)
x j

)
, x → ∞.

We derive the recursive relations for polynomials aj(t,s) , and also as polynomials in intrinsic
variables α = 1

2 (s + t − 1) , β = 1
4 [1− (t − s)2] . We derive also the main properties of these

polynomials and as a consequence the asymptotic formula for shifted variables.

1. Introduction

Euler’s gamma function:

Γ(x) =
∫ ∞

0
tx−1e−tdt, x > 0

is one of the most important functions in mathematical analysis and its applications in
various diverse areas. The logarithmic derivative of the gamma function:

ψ(x) =
Γ′(x)
Γ(x)

or logΓ(x) =
∫ x

1
ψ(t)dt

is known as the psi (or digamma) function. The successive derivatives of the psi func-
tion ψ(x) :

ψ(n)(x) :=
dn

dxn {ψ(x)}, n ∈ N := {1,2,3, . . .}
are called the polygamma functions.

In 1959, Gautschi [8] presented the remarkable inequality:

n1−s <
Γ(n+1)
Γ(n+ s)

< exp
(
(1− s)ψ(n+1)

)
(1.1)
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for 0 < s < 1 and n ∈ N . In 1983, Kershaw [10] gave the following closer bounds:

(
x+

s
2

)1−s
<

Γ(x+1)
Γ(x+ s)

<

(
x− 1

2
+

√
s+

1
4

)1−s

, (1.2)

exp[(1− s)ψ(x+
√

s)] <
Γ(x+1)
Γ(x+ s)

< exp

[
(1− s)ψ

(
x+

s+1
2

)]
(1.3)

for real x > 0 and 0 < s < 1.
In 2005, Kershaw [11] proved a more general result:

ψ(x+
√

st) <
1

t− s
ln

Γ(x+ t)
Γ(x+ s)

< ψ
(

x+
s+ t
2

)
(1.4)

for x � 0 and 0 < s � t , which includes the inequality (1.3) as its special cases, but the
better bound was already proved in [6]:

ψ(x+ Iψ(s,t)) <
1

t− s
ln

Γ(x+ t)
Γ(x+ s)

< ψ
(

x+
s+ t
2

)
, (1.5)

where

Iψ(s,t) = ψ−1
(

1
t − s

∫ t

s
ψ(u)du

)

is integral ψ -mean of s and t , ψ−1 denotes the inverse function of ψ .
The reader can find further information on these inequalities in [12, 13, 15]. In

[13] it is pointed out that the Gautschi’s result and its generalization to real positive x
and any positive parameter s is a very simple consequence of the mean value theorem.
It is also observed that the lower bound of Gautschi is an old inequality due to Wendel
[17].

In [7] it is proved that

Iψ(x+ s,x+ t)− x→ s+ t
2

as x → ∞,

which implies that

1
t− s

ln
Γ(x+ t)
Γ(x+ s)

∼ ψ
(

x+
s+ t
2

)
as x → ∞. (1.6)

Stolarsky’s mean Sp(a,b) of two positive numbers a,b is defined in [16] for a = b
by Sp(a,b) = a and for a �= b by

Sp(a,b) =
(

bp−ap

p(b−a)

)1/(p−1)

, p �= 0, 1;

S0(a,b) =
b−a

lnb− lna
= L(a,b);
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S1(a,b) =
1
e

(
bb

aa

)1/(b−a)

= I(a,b).

Clearly,

S2(a,b) = A(a,b), S−1(a,b) = G(a,b).

Where A , G , L , I are arithmetic, geometric, logarithmic and identric means, respec-
tively. It is known that Sp(a,b) for a �= b is a strictly increasing function of p . Clearly,
for a �= b ,

G(a,b) < L(a,b) < I(a,b) < A(a,b).

It was shown [7, Lemma 1] that for s,t > 0,

ψ(L(s,t)) <
logΓ(t)− logΓ(s)

t− s
< ψ(A(s,t)). (1.7)

N. Batir [2, Theorem 2.7] established an extended form of (1.7) as follows:

(−1)nψ(n+1)
(

x+ y
2

)
<

(−1)n[ψ(n)(x)−ψ(n)(y)]
x− y

< (−1)nψ(n+1) (S−(n+1)(x,y)
)
.

(1.8)

where x and y are positive real numbers and n is a positive integer.
Recently, Burić and Elezović [3, Theorem2.1] gave the following complete asymp-

totic expansion for the Wallis power function

[
Γ(x+ t)
Γ(x+ s)

]1/(t−s)

∼
∞

∑
n=0

Pn(t,s)x−n+1, (1.9)

where Pn(t,s) are polynomials of order n defined by

P0(t,s) = 1,

Pn(t,s) =
1
n

n

∑
k=1

(−1)k+1 Bk+1(t)−Bk+1(s)
(k+1)(t− s)

Pn−k(t,s), n ∈ N.
(1.10)

Here Bk(t) stands for the Bernoulli polynomials.
Polynomials Pn(t,s) have complicated form so by the change of variables

α =
s+ t−1

2
, β =

1− (t− s)2

4
,

authors in [3, Theorem 5.1] presented the following expansion for (1.9):

[
Γ(x+ t)
Γ(x+ s)

]1/(t−s)

∼ x+
∞

∑
n=0

Qn+1(α,β )
1
xn , (1.11)
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where Qn(α,β ) is a polynomial obtained from Pn(t,s) and has much more natural form
than Pn(t,s) . Moreover, the authors gave an efficient recursive formula for determining
the coefficients Qn(α,β ) and finally derived closed form for polynomials Qn(α,β ) .

Very recently, Chen et al. [5] extended the formula (1.6) and obtained full asymp-
totic expansion of the form

1
t− s

ln
Γ(x+ t)
Γ(x+ s)

∼ ψ

(
x+

∞

∑
j=0

a j(s,t)x− j

)
, x → ∞. (1.12)

Moreover, the authors gave a relation for successively determining the coefficients
a j(s,t) . This paper is a continuation of our earlier work [5], we extend the formula
(1.12) and obtain full asymptotic expansion of the form

ψ(m−1)(x+ t)−ψ(m−1)(x+ s)
t− s

∼ ψ(m)

(
x+

∞

∑
j=0

β j(s,t)x− j

)
(1.13)

for x → ∞ and m ∈ N (see Theorem 2.1).
The following lemma is required in the sequel.

LEMMA 1.1. (see [9, 5]) Let a0 �= 0 and let g(x) be a function with asymptotic
expansion

g(x) ∼
∞

∑
n=0

anx
−n, x → ∞.

Then for all real r it holds

[g(x)]r ∼
∞

∑
n=0

Pn(r)x−n, x → ∞,

where
P0(r) = ar

0,

Pn(r) =
1

na0

n

∑
k=1

[k(1+ r)−n]akPn−k(r), n ∈ N.
(1.14)

2. Main Result

Let us prove the main theorem of this paper.

THEOREM 2.1. Let m ∈ N and

1
t− s

∫ t

s
ψ(m)(x+u)du = ψ(m)

(
x

∞

∑
j=0

a j(s, t)
x j

)
, x → ∞. (2.1)

Then the coefficients an can be calculated by following recursive formula:

a0 = 1,
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an = (−1)n+m (n+m−1)!
b0mn!

Δn +
1

b0m

n−1

∑
j=0

bn− jPj(−n+ j−m)

+
1

mn

n−1

∑
k=1

[k(1−m)−n]akPn−k(−m), n ∈ N,

where

Δn(t,s) =
Bn+1(t)−Bn+1(s)

(n+1)(t− s)
,

bk = (−1)k+m−1 (k+m−1)!
k!

Bk,

and Pn are connected with (an) by (1.14) .

Proof. The proof of this theorem is based on calculating asymptotic expansion of
the left and right sides and then equating coefficients of equal powers of x . Asymptotic
expansion of polygamma function is known:

ψ(m)(x+ t)∼
∞

∑
n=0

(−1)m+n−1 (m+n−1)!
n!

Bn(t)x−(n+m)

and

ψ(m)(x) ∼ x−m
∞

∑
k=0

bkx
−k.

We can write (2.1) in the form

ψ(m−1)(x+ t)−ψ(m−1)(x+ s)
t− s

= ψ(m)

(
x

∞

∑
j=0

a j

x j

)
,

wherefrom it follows:

∞

∑
k=0

bk

(
x

∞

∑
j=0

a j

x j

)−k−m

=
∞

∑
j=1

(−1) j+m ( j +m−2)!
j!

Bj(t)−Bj(s)
t− s

x− j−m+1,

∞

∑
k=0

bkx
−k−m

∞

∑
j=0

Pj(−k−m)x− j

=
∞

∑
j=0

(−1) j+m−1 ( j +m−1)!
j!

Bj+1(t)−Bj+1(s)
( j +1)(t− s)

x− j−m,

∞

∑
n=0

n

∑
j=0

bn− jPj(−n+ j−m)x−n =
∞

∑
n=0

(−1)n+m−1 (n+m−1)!
n!

Δnx
−n,
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n

∑
j=0

bn− jPj(−n+ j−m) = (−1)n+m−1 (n+m−1)!
n!

Δn.

Coefficient an is contained in Pn . For n = 0 we obtain a0 = 1, and for n � 1 we have

n−1

∑
j=0

bn− jPj(−n+ j−m)+b0Pn(−m) = (−1)n+m−1 (n+m−1)!
n!

Δn

and

Pn(−m) =
1
n

n

∑
k=1

[k(1−m)−n]akPn−k(−m)

=
1
n

n−1

∑
k=1

[k(1−m)−n]akPn−k(−m)−manP0(−m).

Combining last two equalities yields

n−1

∑
j=0

bn− jPj(−n+ j−m)+
b0

n

n−1

∑
k=1

[k(1−m)−n]akPn−k(−m)−b0man

= (−1)n+m−1 (n+m−1)!
n!

Δn,

whence

an = (−1)n+m (n+m−1)!
b0mn!

Δn +
1

b0m

n−1

∑
j=0

bn− jPj(−n+ j−m)

+
1

mn

n−1

∑
k=1

[k(1−m)−n]akPn−k(−m),

which had to be proved. �
The first few coefficients in this expansions are

a0 = 1,

a1 = 1
2 (s+ t),

a2 = − 1
24 (m+1)(s− t)2 ,

a3 = 1
48 (1+m)(s− t)2(s+ t −1),

a4 = 1
5760 (1+m)(s− t)2(20+20m+120s−73s2 −5ms2 +2m2s2

+120t −94st +10mst −4m2st−73t2 −5mt2 +2m2t2),

a5 = − 1
3840 (1+m)(s− t)2(−1+ s+ t)(20+20m+40s−33s2 −5ms2 +2m2s2

+40t −14st +10mst −4m2st −33t2 −5mt2 +2m2t2),

a6 = − 1
2903040 (1+m)(s− t)2(−10248−3192m+3192m2 +168m3 +30240s

+30240ms+19404s2 −16128ms2 −2016m2s2 +252m3s2



ASYMPTOTIC EXPANSIONS 261

−49896s3 −7560ms3 +3024m2s3 +18125s4 +4270ms4 −1629m2s4

−70m3s4 +16m4s4 +30240t +30240mt +21672st −28224mst

+4032m2st−504m3st−71064s2t +7560ms2t −3024m2s2t

+27292s3t −1960ms3t +468m2s3t +280m3s3t −64m4s3t

+19404t2 −16128mt2 −2016m2t2 +252m3t2−71064st2 +7560mst2

−3024m2st2 +30126s2t2 −4620ms2t2 +2322m2s2t2−420m3s2t2

+96m4s2t2 −49896t3 −7560mt3 +3024m2t3 +27292st3 −1960mst3

+468m2st3 +280m3st3−64m4st3

+18125t4 +4270mt4 −1629m2t4 −70m3t4 +16m4t4).

The coefficients an will have much simpler form if we introduce variables a = s+t
2

and b = t−s
2 . Let bk(a,b) = ak(s,t) . Then

b0 = 1,

b1 = α,

b2 = − 1
6 (m+1)β 2,

b3 = 1
12 (m+1)(2α −1)β 2,

b4 = 1
360 (m+1)(β 2(2m2 −5m−13)−60α(α −1)+5m−5)β 2 ,

b5 = − 1
240 (m+1)(2α −1)(β 2(2m2 −5m−13)−20α(α −1)+5m+5)β 2 ,

b6 = − 1
90720 (m+1)β 2

(
21(m3+19m2−19m−61)+7560α(α−1)(2α2−2α−m−1)

+126β 2(m3 −8m2 −4m+17)−1512αβ 2 (α −1)(2m2 −5m−13)

+2β 4(16m4 −70m3 −117m2 +490m+737)
)
.

3. Asymptotic expansions using intrinsic variables

Coefficients of asymptotic expansion of polygamma functions are expressed in
terms of Bernoulli polynomials. Integral mean of polygamma functions are in the same
time differential mean:

ψ(m−1)(t)−ψ(m−1)(s)
t− s

∼ ψ(m)

(
x

∞

∑
j=0

a j(s,t)
x j

)
, x → ∞. (3.1)

Therefore coefficients of these expansions will be connected with the difference

Δn(t,s) =
Bn+1(t)−Bn+1(s)

(n+1)(t− s)
(3.2)
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as explained in [3]. This function has natural expression through inner variables ob-
tained through substitution:

α =
1
2
(s+ t−1), β =

1
4
[1− (s− t)2]. (3.3)

In this section we will analyse coefficients in the expansion (3.1) through variables
α and β For the convenience of the reader we give here the first few coefficients from
the table above. Denoting ck(α,β ) = ak(s,t) we have

c0 = 1,

c1 = 1
2 +α,

c2 = 1
24 (m+1)(4β −1),

c3 = − 1
24 (m+1)α(4β −1),

c4 = 1
5760 (m+1)(4β −1)(−27−15m−2m2 +240α2 +4β (2m2 −5m−13)),

c5 = − 1
1920 (1+m)α(4β −1)(−27−15m−2m2 +80α2 +4β (2m2 −5m−13)),

c6 = 1
2903040 (1+m)(4β −1)(7625+7630m+2571m2 +350m3 +16m4

−81648α2 −45360mα2 −6048m2α2 +120960α4 +16280β +15232mβ

+2952m2β −448m3β −128m4β −157248α2β −60480mα2β

+24192m2α2β +11792β 2 +7840mβ 2 −1872m2β 2 −1120m3β 2 +256m4β 2).

Denote

G(x) ∼
∞

∑
n=0

cn(α,β )x−n+1. (3.4)

Then (2.1) reads as

H(x,α,β ) :=
1

t− s

∫ t

s
ψ(m)(x+u)du = ψ(m) (G(x)) , x → ∞. (3.5)

THEOREM 3.1. It holds

1.
∂cn(α,β )

∂α
= −(n−2)cn−1(α,β ), for n � 2. (3.6)

2.

cn(α,β ) =
n

∑
k=2

(−1)n−k
(

n−2
n− k

)
ck(0,β )αn−k, for n � 2. (3.7)

Proof. For proving (1) it suffices to see that the function H is of the form

H̃(x+ α,β ) =
1

2β

∫ x+t

x+s
ψ(m)(u)du
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since we have

x+ s = x+ α +
1
2
−
√

1−4β , x+ t = x+ α +
1
2

+
√

1−4β .

Hence it holds
∂H
∂x

=
∂H
∂α

,

which implies

∂
∂x

(
∞

∑
k=0

ck(α,β )x−k+1

)
=

∂
∂α

(
∞

∑
k=0

ck(α,β )x−k+1

)
,

that is
∞

∑
k=0

ck(α,β )(−k+1)x−k =
∞

∑
k=0

∂ck+1(α,β )
∂α

x−k,

wherefrom follows (1).
Explicit formula for coefficient cn easily follows from (1) and Taylor expansion

of cn(α,β ) :

cn(α,β ) =
∞

∑
k=0

1
k!

∂ kcn(α,β )
∂αk

∣∣∣∣
α=0

αk

=
n−2

∑
k=0

(n−2)!
j!(n−2− k)!

cn−k(0,β )αk

=
n−2

∑
k=0

(−1)k
(

n−2
k

)
cn−k(0,β )αk. �

THEOREM 3.2. Let dn(β ) = cn(0,β ) . Then function G has the following asymp-
totic expansion

G(x) ∼ (x+ α)+ 1
2 +

∞

∑
k=1

d2k(β )(x+ α)−2k+1. (3.8)

Coefficients dn satsfy following recursive relation

d0(β ) = 1,

dn(β ) = (−1)n+m (n+m−1)!
b0mn!

∇n(β )+
1

b0m

n−1

∑
j=0

bn− jPj(−n+ j−m)

+
1

mn

n−1

∑
k=1

[k(1−m)−n]dkPn−k(−m), n ∈ N,

(3.9)

where

∇2n(β ) = 0,

∇2n+1(β ) =
n+1

∑
k=0

(
2n+2

2k

)
B2k( 1

2 )
2n+2

β n−2k.
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Proof. Asymptotic expansion

G(x) ∼
∞

∑
n=0

dn(β )(x+ α)− j+1

of function G and recursive relations for coefficients are direct consequences of Theo-
rem 2.1. It remains to show that d2k+1 for k � 1. Asymptotic expansion of polygamma
function with shifted variable reads

ψ(m)(x+ r)∼
∞

∑
n=0

(−1)m+n−1 (m+n−1)!
n!

Bn(r)x−(n+m). (3.10)

On the left side of (2.1) we have

ψ(m−1)(x+ t)−ψ(m−1)(x+ s)
t− s

∼
∞

∑
n=0

(−1)m+n (m+n−2)!
n!

Bn(t−α)−Bn(s−α)
t− s

(x+ α)−(n+m−1)

∼
∞

∑
n=0

k2n+1(x+ α)−m−2n. (3.11)

On the other side we use (3.10) with r = 1
2

ψ(m)(x+ 1
2 ) ∼

∞

∑
n=0

(−1)m+n−1 (m+n−1)!
n!

Bn( 1
2 )x−(n+m)

∼
∞

∑
n=0

(−1)m−1 (m+2n−1)!
(2n)!

B2n( 1
2 )x−(2n+m)

∼
∞

∑
n=0

l2nx
−m−2n,

which gives

ψ(m)(G(x)) = ψ(m)((G(x)− 1
2)+ 1

2 )

∼
∞

∑
n=0

l2n

(
d0(β )(x+ α)+d2(β )(x+ α)−1

+d3(β )(x+ α)−2 +d4(β )(x+ α)−3 + · · ·
)−m−2n

.

(3.12)

Finally, equating (3.11) and (3.12) and including α = 0 yields

∞

∑
n=0

k2n+1x
−2n =

∞

∑
n=0

l2nx
−2n
(

d0(β )+d2(β )x−2 +d3(β )x−3 +d4(β )x−4 + · · ·
)−m−2n

.

Since there exist only even powers of x on the left side, Lemma 1.1 implies that d3

must be equal to 0. The same conclusion follows by induction for any other d2k+1 ,
k � 1. �
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The first few coefficients dn are:

d0 = 1,

d1 =
1
2
,

d2 =
1
24

(m+1)(4β −1),

d4 = − 1
5760

(m+1)(4β −1)(27+15m+2m2 +52β +20mβ −8m2β ),

d6 =
1

2903040
(m+1)(4β −1)

(
16β 2(16m4 −70m3 −117m2 +490m+737)

−8β (16m4 +56m3 −369m2 −1094m−2035)

+(m+5)(16m3 +270m2 +1221m+1525)
)
.
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[7] N. ELEZOVIĆ AND J. PEČARIĆ, Differential and integral f -means and applications to digamma
function, Math. Inequal. Appl. 3 (2000), 189–196.

[8] W. GAUTSCHI, Some elementary inequalities relating to the gamma and incomplete gamma function,
J. Math. Phys. 38 (1959), 77–81.

[9] H. W. GOULD, Coefficient identities for powers of Taylor and Dirichlet series, Amer. Math. Monthly
81 (1974), 3–14.

[10] D. KERSHAW, Some extensions of W. Gautschi’s inequalities for gamma function, Math. Comp. 41
(1983), 607–611.

[11] D. KERSHAW, Upper and lower bounds for a ratio involving the gamma function, Anal. Appl. (Sin-
gap.) 3 (2005), 293–295.

[12] A. LAFORGIA, Further inequalities for the gamma function, Math. Comp. 42 (1984), 597–600.
[13] A. LAFORGIA AND P. NATALINI, Exponential, gamma and polygamma functions: Simple proofs of

classical and new inequalities, J. Math. Anal. Appl. 407 (2013), 495–504.
[14] Y. L. LUKE, The Special Functions and their Approximations, vol. I, Academic Press, New York,

1969.



266 C.-P. CHEN, N. ELEZOVIĆ AND L. VUKŠIĆ
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