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Abstract. In our previous paper [15], using s -convex stochastic ordering [4], we investigate
Hermite-Hadamard-Fejér type inequalities in the case of higher order convex functions. In the
present paper, our aim is to extend this investigation from convex to delta-convex functions of
higher order [8]. We offer some useful tools for obtaining and proving of various forms of
the Hermite-Hadamard-Fejér type inequalities for delta-convex functions of higher order, that
generalizes results of Dragomir et al. [5]. These results are applied to derive some inequalities
between quadrature operators. We define also and study strong delta-convexity of n -th order
that generalizes strong n -convexity studied in [14] and [9].

1. Introduction

Delta-convex functions of n -th order are extensions of delta-convex functions,
which are functions representable as a difference of two convex functions (see [17]).
The notion of a delta-convex function of n -th order is a particular case of the notion
of a delta-convex mapping of n -th order between two normed linear spaces. The latter
were introduced in R. Ger (1994) [8] as an extension of delta-convex mappings (see
[19]). Delta-convex functions of n -th order are functions that are representable as a
difference of two n -convex functions (see [8]).

In the following, let n be a fixed positive integer. Let I ⊆ R be an open interval.
It is well known that continuous solutions f : I → R of the functional inequality

Δn+1
h f (x) � 0, (1.1)

where x ∈ I , h > 0, x + (n + 1)h ∈ I , and Δn+1
h stands for the (n + 1)-th iterate of

the difference operator Δh f (x) = f (x + h)− f (x) , are just Cn−1 – functions whose
derivatives f (n−1)(x) are convex (see e.g. M. Kuczma [11, Chapter XV]). Therefore,
the continuous solutions of (1.1) are used to be called n-convex functions.

If f is n -convex, then the right derivative of n -th order f (n)
R (x) exist for all x ∈ I .

Henceforth we drop the subscript R , and f (n)(x) will be used to denote f (n)
R (x) .
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PROPOSITION 1.1. A function f : I → R is n-convex if and only if f (n) is non-
decreasing.

PROPOSITION 1.2. Let f : I → R be a function of the class Cn+1 in I . Then f
is n-convex if and only if f (n+1)(x) � 0 for all x ∈ I .

Let Πn be the family of all polynomials of degree at most n . Recall that, for
x ∈ R , we have x+ = max{x,0} and xn

+ = (x+)n . The integral representation of n -
convex functions given in [14] (p.740, Theorem 2.10) can be written in the following
form.

PROPOSITION 1.3. ([14]) Let f : (a,b) → R be a function and let ξ ∈ (a,b) .
Then f is n-convex if and only if f has the representation

f (x) =
∫

(a,ξ )
(−1)n+1 [−(x−u)]n+

n!
μ(n)(du)+

∫
[ξ ,b)

(x−u)n
+

n!
μ(n)(du)+Qξ (x), (1.2)

where μ(n) is a Borel measure on B ((a,b)) such that μ(n)((c,d)) < ∞ for all a < c <
d < b, and Qξ ∈ Πn . Moreover, we have that

μ(n)(du) = d f (n)(u). (1.3)

The measure μ(n) is unique, i.e. if ξ1 , ξ2 ∈ (a,b) and two triplets (ξ1,μ(n),1,Qξ1
) and

(ξ2,μ(n),2,Qξ2
) correspond to f in the representation (1.2), then μ(n),1 = μ(n),2 .

PROPOSITION 1.4. Let f1 and f2 be two n-convex functions with the triplets
(ξ1,μ(n),1,Qξ1

) and (ξ2,μ(n),2,Qξ2
) , respectively, in the representation (1.2). Then

f1 − f2 ∈ Πn if and only if μ(n),1 = μ(n),2 .

DEFINITION 1.1. We will call the measure μ(n) , which we have introduced in
Proposition 1.3, the n-spectral measure of the n -convex function f .

REMARK 1.1. ([14]) Note that, by (1.3), f (n)(x) is a distribution function cor-
responding to the n -spectral measure μ(n) . Furthermore, the measure μ(n) can be
regarded as the measure of n -th order convexity of the function f . Moreover, if f is
of the class Cn+1 in (a,b) then

μ(n)(du) = f (n+1)(u)du. (1.4)

Conversely, if μ(n) is of the form (1.4), then f is of the class Cn+1 in (a,b) .

DEFINITION 1.2. ([8]) A function f : (a,b) → R is called delta-convex of n-th
order, if there exists an n -convex function g such that, for all x,y ∈ (a,b) ,

x � y ⇒
∣∣∣∣Δn+1

y−x
n+1

f (x)
∣∣∣∣ � Δn+1

y−x
n+1

g(x). (1.5)
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PROPOSITION 1.5. ([8]) A function f : (a,b) → R is delta-convex of n-th order
if and only if f is a difference of two n-convex functions on (a,b) .

PROPOSITION 1.6. ([8]) Every Cn+1 -function f : (a,b) → R is delta-convex of
n-th order.

DEFINITION 1.3. Every function g satisfying (1.5) is called a control function
for f , or we say that the function f is a delta-convex function of n-th order with
the control function g , as well as we say that f is g -convex dominated of n-th order
(briefly delta-convex or g -convex dominated when n = 1).

It is not difficult to prove the following lemma (see [8]).

LEMMA 1.1. Let g : (a,b) → R be an n-convex function and let f : (a,b) → R

be a function. Then the following statements are equivalent:

(a) f is delta-convex of n-th order with the control function g,

(b) the functions g− f and g+ f are n-convex on (a,b) ,

(c) there exist two n-convex functions ϕ1,ϕ2 : (a,b) → R such that

f = ϕ1 −ϕ2 and g = ϕ1 + ϕ2.

The following integral representation of a delta-convex function f (in the case of
f ′(x) of bounded variation) can be found in [17].

PROPOSITION 1.7. ([17]) A function f : [a,b] → R is delta-convex having the
decomposition f = ϕ1−ϕ2 , where ϕ1,ϕ2 : [a,b] → R are both convex and have finite
endpoint derivatives, if and only if f (x) = f (a)+

∫ x
a r(u)du, for some r : [a,b]→ R of

bounded variation.

In this paper we give an analogous integral representation for n -th order delta-
convex functions f , in general case, without any additional assumptions on f (n)(x)
(see Section 2). Our characterization is constructive. We give explicit formulas for
an n -spectral signed measure corresponding to f in this representation. This integral
representation will be applied to obtain a characterization of control functions corre-
sponding to f , to define some canonical decomposition of f , and to show the existence
and to study properties of a minimal control function for f (which generalizes results
of Hartman [10] for convex functions). We find the minimum and maximum of two
control functions corresponding to f (in the sense defined in the paper). We give also
a simpler proof of Ger’s theorem [8] (see Proposition 1.6) on delta-convexity of higher
orders of functions of the class Cn+1 . The strength of the representation developed
in Section 2 is exploited in the rest of the paper. It is used to further study of n -th
order delta-convexity, to define and study relative delta-convexity relation and strong
delta-convexity of higher order, among others.
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In Section 3 we define the relative delta-convexity relation of n -th order (the n -
delta-convexity relation), which is a generalization of the n -convexity relation intro-
duced in [14]). This relation induces a partial ordering on some equivalence classes
of delta-convex functions of n -th order. We give a characterization of the n -delta-
convexity relation in terms of minimal control functions, in terms of n -spectral signed
measures, as well as in terms of derivatives of (n + 1)-th order (which exist almost
everywhere with respect to the Lebesgue measure). We define and study the notion of
strong delta-convexity of n -th order that generalizes strong n -convexity studied in [14]
and [9]. We give a characterization of strong delta-convexity of n -th order in general
case, without any additional assumptions of differentiability of functions (which extend
results in [14] concerning strong n -convexity).

In Section 4 we study Hermite-Hadamard-Fejér type inequalities concerning delta-
convex functions of n -th order. We give a probabilistic characterization of 1-delta-
convexity (i.e. usual delta-convexity), which is a generalization of the well known
Jensen inequality concerning convex functions. Using this probabilistic characteriza-
tion we obtain some Jensen-type inequalities for delta-convex functions. We give also
an extension of very useful criterion for the verification of the s-convex order, which
is given by Denuit, Lefèvre and Shaked in [4], from convex to delta-convex functions
of higher order. Our theorem provides a useful tool for obtaining and proving of var-
ious forms of the Hermite-Hadamard-Fejér type inequalities concerning delta-convex
functions of higher order. Then, considering some particular cases of random vari-
ables occurring in our criterion, we obtain a generalization of the well known results
of Dragomir, Pearce and Pečarić [5] concerning delta-convex functions, and results ob-
tained in [15] for convex functions of higher order.

Finally, in Section 5, our results are applied to obtain some inequalities between
quadrature operators for delta-convex functions of n -th order.

2. Integral representation

In the following theorem we give an integral representation of a delta-convex func-
tion f of n -th order. This representation is a generalization and extension of Proposi-
tion 1.7 to the higher order convex functions.

THEOREM 2.1. Let f : (a,b) → R be a function and let ξ ∈ (a,b) . Then f is
delta-convex of n-th order if and only if f has the representation

f (x) =
∫

(a,ξ )
(−1)n+1 [−(x−u)]n+

n!
τ(n)(du)+

∫
[ξ ,b)

(x−u)n
+

n!
τ(n)(du)+Qξ (x), (2.1)

where τ(n) is a signed measure on B ((a,b)) such that −∞ < τ(n)((c,d)) < ∞ for
all a < c < d < b, and Qξ ∈ Πn . Moreover, the measure τ(n) is unique, i.e. if ξ1 ,
ξ2 ∈ (a,b) and two triplets (ξ1,τ(n),1,Qξ1

) and (ξ2,τ(n),2,Qξ2
) correspond to f in the

representation (2.1), then τ(n)1 = τ(n)2 . If f = ϕ1 − ϕ2 , where ϕ1,ϕ2 : (a,b) → R

are both n-convex, then τ(n) = μ(n)1 − μ(n)2 , μ(n)1(du) = dϕ(n)
1 (u) and μ(n)2(du) =

dϕ(n)
2 (u) .
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Proof. ⇐ . Let f be of the form (2.1) with a signed measure τ(n) and a polynomial
Qξ ∈ Πn . Taking any measures μ(n)1 and μ(n)2 such that

τ(n) = μ(n)1− μ(n)2,

we obtain that f can be written in the form f = ϕ1 −ϕ2 , where

ϕ1(x) =
∫

(a,ξ )
(−1)n+1 [−(x−u)]n+

n!
μ(n)1(du)+

∫
[ξ ,b)

(x−u)n
+

n!
μ(n)1(du)+Qξ (x),

ϕ2(x) =
∫

(a,ξ )
(−1)n+1 [−(x−u)]n+

n!
μ(n)2(du)+

∫
[ξ ,b)

(x−u)n
+

n!
μ(n)2(du).

By Proposition 1.3, ϕ1 and ϕ2 are both n -convex, consequently f is delta-convex of
n -th order.

⇒ . Let f be delta-convex of n -th order. Then f = ϕ1−ϕ2 , where ϕ1,ϕ2 : (a,b)→
R are both n -convex. By Proposition 1.3, the functions ϕi , are of the form (1.2) with

ϕi , μ(n)i(du) = dϕ(n)
i (u) and Qξ ,i , in place of f , μ(n) and Qξ , respectively, i = 1,2.

Consequently, taking τ(n) = μ(n)1−μ(n)2 and Qξ = Qξ ,1−Qξ ,2 , we obtain that f is of
the form (2.1) with the signed measure τ(n) and Qξ ∈ Πn , which was to be proved.

The uniqueness of the measure τ(n) in the representation (2.1) follows from the
uniqueness of the n -spectral measure in the representation (1.2) of an n -convex func-
tion. Let ξ1 , ξ2 ∈ (a,b) . Let the function f be delta-convex of n -th order. Then
f = ϕ1 − ϕ2 , where ϕ1,ϕ2 : (a,b) → R are both n -convex. Let (ξ1,μ(n),1,Qξ1,1) ,
(ξ2,μ(n),1,Qξ2,1) and (ξ1,μ(n),2,Qξ1,2) , (ξ2,μ(n),2,Qξ2,2) , be two triplets correspond-
ing to ϕ1 and ϕ2 , respectively, in the representation (1.2). Then we obtain that to f
there correspond two triplets in the representation (2.1): (ξ1,τ(n),1,Qξ1

) , (ξ2,τ(n),2,Qξ2
) ,

where τ(n),1 = τ(n),2 = μ(n),1− μ(n),2 , Qξ1
= Qξ1,1−Qξ1,2 , Qξ2

= Qξ2,1 −Qξ2,2 . Thus
the uniqueness of the measure τ(n) in the representation (2.1) is proved. �

DEFINITION 2.1. We will call τ(n) the n-spectral signed measure of a delta con-
vex function f of n -th order.

REMARK 2.1. Note that, by Remark 1.1, if the delta-convex function f of n -th
order is of the class Cn+1 in (a,b) , and τ(n) is the signed measure that appears in
Theorem 2.1, then

τ(n)(du) = f (n+1)(u)du.

In the following lemma we show that the set of n -convex functions of the class
Cn+1 in (a,b) is dense in the set of n -convex functions in (a,b) .

LEMMA 2.1. Let f : (a,b) → R be an n-convex function. Then there exist a se-
quence { fk} of n-convex functions of the class Cn+1 in (a,b) , such that limk→∞ fk(x)=
f (x) (x ∈ (a,b)) .

Proof. Let ξ ∈ (a,b) . Let f : (a,b)→ R be an n -convex function with the triplet
(ξ ,μ(n),Qξ ) in the representation (1.2). Let {aN} , {bN} be two sequences of real
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numbers such that a < aN < bN < b (N ∈ N ), aN ↓ a and bN ↑ b as N → ∞ . It
suffices to prove the lemma for the function f(N) : (a,b)→ R with the spectral measure
μ(n),(N) = μ(n) |AN concentrated on the set AN = (a+ aN ,b− bN) (N ∈ N) , and then
letting N → ∞ we conclude the lemma for the function f with the spectral measure
μ(n) . Similarly, it suffices to consider the case when both a,b ∈ R . Note that all the
measures μ(n),(N) (N ∈ N) are finite.

Fix N ∈ N . Let
{

μ(n),(N),k
}

be the sequence of measures absolutely continuous
with respect to the Lebesgue measure such that they all are concentrated on the set AN ,
μ(n),(N),k(AN) = μ(n),(N)(AN) (k ∈ N) and μ(n),(N),k ⇒ μ(n),(N) as k → ∞ (μ(n),(N),k
converges weakly to μ(n),(N) as k → ∞) . Let f(N),k : (a,b)→ R be the n -convex func-
tions given by (1.2) with the triplet (ξ ,μ(n),(N),k,Qξ ) in the representation (1.2). By
Remark 1.1, the functions f(N),k (k ∈ N) are of the class Cn+1 in (a,b) . Note that

both the functions f1,x(u) = (−1)n+1 [−(x−u)]n+
n! μ(n)(du) and f2,x(u) = (x−u)n+

n! are real
functions which are bounded and continuous. Then by the theorem on weak conver-
gence of probability measures (the theorem is applied to the measures μ(n),(N),k and
μ(n),(N) after norming), we obtain that limk→∞ f(N),k(x) = f(N)(x) (x ∈ (a,b)) (see [2]).
This completes the proof of the lemma for the function f(N) with the n -spectral mea-
sure μ(n),(N) . The lemma is proved. �

As a corollary we obtain that the set of delta-convex functions of n -th order of the
class Cn+1 in (a,b) is dense in the set of delta-convex functions of n -th order in (a,b) .

COROLLARY 2.1. Let f : (a,b) → R be a delta-convex function of n-th order.
Then there exist a sequence { fk} of delta-convex functions of n-th order of the class
Cn+1 in (a,b) , such that limk→∞ fk(x) = f (x) (x ∈ (a,b)) .

Proof. Let f : (a,b) → R be a delta-convex function of n -th order. Then f =
ϕ1 −ϕ2 , where ϕ1,ϕ2 : (a,b) → R are both n -convex. From Lemma 2.1 there exist
two sequences

{
ϕ1,k
}

,
{

ϕ2,k
}

of delta-convex functions of n -th order of the class Cn+1

in (a,b) , such that limk→∞ ϕ1,k(x) = ϕ1(x) (x ∈ (a,b)) and limk→∞ ϕ2,k(x) = ϕ2(x)
(x ∈ (a,b)) . Then it suffices to take fk = ϕ1,k −ϕ2,k (k ∈ N) . This completes the
proof of the corollary. �

It is worth noting, that in Hartman (1959) [10] one can find a discussion on mini-
mal control functions for delta-convex functions. We will extend Hartman’s findings to
delta-convexity of higher orders.

Note, that if f : (a,b) → R is a delta-convex function of n -th order of the form
f = ϕ1 −ϕ2 with the control function g = ϕ1 + ϕ2 , where ϕ1,ϕ2 are both n -convex,
then for any n -convex function ϕ , the function f can be trivially written as f = (ϕ1 +
ϕ)− (ϕ2 + ϕ) with the control function gϕ = ϕ1 + ϕ2 +2ϕ . Since ϕ is n -convex, by
(1.1), Δn+1

h ϕ(x) � 0 (x ∈ (a,b)). Consequently, we have∣∣∣∣Δn+1
y−x
n+1

f (x)
∣∣∣∣� Δn+1

y−x
n+1

g(x) � Δn+1
y−x
n+1

gϕ(x)

for all x,y ∈ (a,b) such that x < y .
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This observation suggests the following question: given a delta-convex function
f of n -th order, does there exist a control function g for f such that the difference
operator Δn+1

y−x
n+1

g(x) is minimal? We give an affirmative answer to this question.

DEFINITION 2.2. Let f : (a,b) → R be a delta-convex function of n -th order.
Let f be of the form f = ϕ∗

1 −ϕ∗
2 , where ϕ∗

1 , ϕ∗
2 are both n -convex functions. We say

that ϕ∗
1 and ϕ∗

2 are minimal n-convex functions in the representation of the function
f as a difference of two n -convex functions (shortly minimal n -convex functions), if
for any other two n -convex functions ϕ1 and ϕ2 such that f = ϕ1 −ϕ2 , we have that
ϕ1−ϕ∗

1 and ϕ2 −ϕ∗
2 are both n -convex.

We say that g∗ : (a,b) → R is a minimal control function for f , if∣∣∣∣Δn+1
y−x
n+1

f (x)
∣∣∣∣� Δn+1

y−x
n+1

g∗(x),

and for any function g : (a,b) → R , which is a control function for f , we have

Δn+1
y−x
n+1

g∗(x) � Δn+1
y−x
n+1

g(x) (2.2)

for all x,y ∈ (a,b) such that x < y .

THEOREM 2.2. Let f : (a,b) → R be a delta-convex function of n-th order and
let g∗ be a minimal control function corresponding to f . Then for any other control
function g corresponding to f , the function g−g∗ is n-convex.

Proof. From (2.2) we obtain

Δn+1
y−x
n+1

(g(x)−g∗(x)) � 0

for all x,y ∈ (a,b) such that x < y , which, by (1.1), yields that the function g− g∗ is
n -convex. The theorem is proved. �

THEOREM 2.3. Let a < ξ < b and let f : (a,b) → R be a delta-convex function
of n-th order with a signed measure τ(n) and a polynomial Qξ ∈ Πn in the representa-
tion (2.1). Let ϕ∗

1 , ϕ∗
2 be the n-convex functions given by the formulas (2.6) and (2.7),

respectively. Then f can be written in the form

f = ϕ∗
1 −ϕ∗

2 . (2.3)

Moreover, ϕ∗
1 and ϕ∗

2 are minimal n-convex functions and the function g∗ given by the
formula

g∗ = ϕ∗
1 + ϕ∗

2

is a minimal control function corresponding to f .
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Proof. Let a < ξ < b and let f : (a,b) → R be delta-convex of n -th order with
a signed measure τ(n) and a polynomial Qξ ∈ Πn in the representation (2.1). Consider
the Hahn-Jordan decomposition of the signed measure τ(n)

τ(n) = τ+
(n)− τ−(n), (2.4)

where τ+
(n) and τ−(n) are (non-negative) measures on B ((a,b)) (see [2]), which are

concentrated on two disjoint sets P , N ∈ B ((a,b)) (P∪N = (a,b)), respectively,
such that

τ+
(n) = τ(n) |P and − τ−(n) = τ(n) |N .

The decomposition (2.4) is called the canonical decomposition of τ(n) . The measure
var
(
τ(n)
)
= τ+

(n) +τ−(n) is called the variation of τ(n) . Then, for any measures ν1,ν2 on

B ((a,b))
τ(n) = ν1 −ν2 ⇒ (ν1 � τ+

(n) and ν2 � τ−(n)). (2.5)

By (2.1) and (2.4), f can be written as f = ϕ∗
1 −ϕ∗

2 , with the control function g∗ =
ϕ∗

1 + ϕ∗
2 , where

ϕ∗
1 (x) =

∫
(a,ξ )

(−1)n+1 [−(x−u)]n+
n!

τ+
(n)(du)+

∫
[ξ ,b)

(x−u)n
+

n!
τ+
(n)(du)+Qξ (x), (2.6)

ϕ∗
2 (x) =

∫
(a,ξ )

(−1)n+1 [−(x−u)]n+
n!

τ−(n)(du)+
∫
[ξ ,b)

(x−u)n
+

n!
τ−(n)(du). (2.7)

Let f be of the form f = ϕ1 −ϕ2 with the control function g = ϕ1 + ϕ2 , where
ϕ1,ϕ2 are two n -convex functions with the measures μ(n)1,μ(n)2 and the polynomials
Qξ ,1,Qξ ,2 , respectively, in the representation (1.2). Then τ(n) = μ(n)1−μ(n)2 and Qξ =
Qξ ,1 −Qξ ,2 . Taking into account (2.4) and (2.5), we obtain that there exists a measure
ν on B ((a,b)) such that μ(n)1 = τ+

(n) + ν and μ(n)2 = τ−(n) + ν . Then we have that

ϕ1 = ϕ∗
1 + ϕ +Qξ ,1−Qξ , ϕ2 = ϕ∗

2 + ϕ +Qξ ,2, (2.8)

g = ϕ1 + ϕ2 = ϕ∗
1 + ϕ∗

2 +2ϕ = g∗ +2ϕ , (2.9)

where ϕ is the n -convex function of the form (1.2) with ν in place of μ(n) and Qξ = 0.
Taking into account that g∗ is the control function for f and that ϕ is n -convex, by
(2.9), we obtain ∣∣∣∣Δn+1

y−x
n+1

f (x)
∣∣∣∣ � Δn+1

y−x
n+1

g∗(x) � Δn+1
y−x
n+1

g(x)

for all x,y ∈ (a,b) such that x < y . This implies that g∗ is a minimal control function
for f . Moreover, by (2.8), we obtain that ϕ∗

1 and ϕ∗
2 are minimal n -convex functions.

The theorem is proved. �

DEFINITION 2.3. We will say that the decomposition (2.3) is the canonical de-
composition of a delta-convex function f of n -th order.
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In the next three theorems we give a characterization of control functions and
minimal control functions.

THEOREM 2.4. Let g : (a,b) → R be an n-convex function with the measure
μ(n) in the representation (1.2), and let f : (a,b) → R be a delta-convex function of
n-th order with a signed measureτ(n) in the representation (2.1). Then the following
statements are equivalent:

a) f is controlled by g,

b) μ(n)− τ(n) � 0 and μ(n) + τ(n) � 0 ,

c)
∣∣τ(n)

∣∣� μ(n) ,

d)
∣∣∣ f (n+1)(x)

∣∣∣ � g(n+1)(x) (x ∈ (a,b)) when f and g are both of the class Cn+1 in

(a,b) .

Proof. Let ξ ∈ (a,b) . Let f and g have the representations (1.2) and (2.1) with
the triplets (ξ ,τ(n),Qξ ) and (ξ ,μ(n),Pξ ) , respectively. By Lemma 1.1, f is controlled
by g if and only if g− f and g+ f are n -convex. Note that g− f and g+ f have the
representation (2.1) with the triplets (ξ ,μ(n) − τ(n),Pξ −Qξ ) and (ξ ,μ(n) + τ(n),Pξ +
Qξ ) , respectively. Thus g− f and g + f are n -convex if and only if μ(n) − τ(n) � 0
and μ(n) + τ(n) � 0. This proves that the statement a) is equivalent to b). The statement
b) is equivalent to c) obviously. The equivalence of c) and d) follows immediately from
Remarks 1.1 and 2.1. This completes the proof. �

THEOREM 2.5. Let g : (a,b) → R be an n-convex function with the n-spectral
measure μ(n) in the representation (1.2), and let f : (a,b) → R be a delta-convex
function of n-th order with the n-spectral signed measure τ(n) in the representation
(2.1). Then the following statements are equivalent:

a) g is a minimal control function for f ,

b) var
(
τ(n)
)

= μ(n) ,

c)
∣∣∣ f (n+1)(x)

∣∣∣ = g(n+1)(x) (x ∈ (a,b)) when f and g are both of the class Cn+1 in

(a,b) .

d) g = g∗ up to a polynomial of degree at most n, where g∗ is the minimal control
function which we have introduced in Theorem 2.3.

Proof. To prove that a) implies d), assume that g is a minimal control function for
f . Since g and g∗ are the control functions for f , and g∗ is minimal, we have

Δn+1
y−x
n+1

g∗(x) � Δn+1
y−x
n+1

g(x),

and taking into account that g is minimal we obtain

Δn+1
y−x
n+1

g(x) � Δn+1
y−x
n+1

g∗(x),
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which implies
Δn+1

y−x
n+1

g∗(x) = Δn+1
y−x
n+1

g(x) (2.10)

for all x,y ∈ (a,b) such that x < y . The equality (2.10) means that g = g∗ up to a
polynomial of degree at most n . This proves that the statement a) implies d). Similarly
can be proved that d) implies a).

Since var
(
τ(n)
)

is the n -spectral measure corresponding to g∗ , from Proposition
1.4 we obtain the equivalence of b) and d). The equivalence of b) and c) follows imme-
diately from Remarks 1.1 and 2.1. This completes the proof. �

COROLLARY 2.2. Any two minimal control functions corresponding to a delta-
convex function f : (a,b) → R of n-th order, differ by a polynomial of degree at most
n.

THEOREM 2.6. Let f : (a,b) → R be a delta-convex function of n-th order and
let g be a minimal control function. Then∣∣∣ f (n+1)(x)

∣∣∣= g(n+1)(x) for x ∈ (a,b) λ a.e. (2.11)

(i.e. almost everywhere with respect to the Lebesgue measure λ ).

Proof. Let a < ξ < b and let f : (a,b) → R be a delta-convex function of n -th
order with a signed measure τ(n) and a polynomial Qξ ∈ Πn in the representation (2.1).
Then, by Theorem 2.3, f can be written in the form

f = ϕ∗
1 −ϕ∗

2 , (2.12)

with the minimal control function g∗ given by the formula

g∗ = ϕ∗
1 + ϕ∗

2 , (2.13)

where ϕ∗
1 and ϕ∗

2 are given by the formulas

ϕ∗
1 (x) =

∫
(a,ξ )

(−1)n+1 [−(x−u)]n+
n!

τ+
(n)(du)+

∫
[ξ ,b)

(x−u)n
+

n!
τ+
(n)(du)+Qξ (x), (2.14)

ϕ∗
2 (x) =

∫
(a,ξ )

(−1)n+1 [−(x−u)]n+
n!

τ−(n)(du)+
∫
[ξ ,b)

(x−u)n
+

n!
τ−(n)(du), (2.15)

the signed measure τ(n) has the Hahn-Jordan decomposition τ(n) = τ+
(n) − τ−(n) with

measures τ+
(n) and τ−(n) on B ((a,b))), which are concentrated on two disjoint sets

P , N ∈ B ((a,b)) (P∪N = (a,b)), respectively, such that τ+
(n) = τ(n) |P , −τ−(n) =

τ(n) |N . Note that the measures τ+
(n) and τ−(n) can be written in the form where τ+

(n) =
τ+
(n)cont + τ+

(n)sing + τ+
(n)pp and τ−(n) = τ−(n)cont + τ−(n)sing + τ−(n)pp , where τ+

(n)cont , τ−(n)cont

are absolutely continuous (with respect to the Lebesgue measure) , τ+
(n)sing , τ−(n)sing are
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singular continuous and τ+
(n)pp,τ

−
(n)pp are discrete. Let P1 ⊆ P , N1 ⊆ N are the Borel

sets of the Lebesgue measure zero such that τ+
(n)sing + τ+

(n)pp and τ−(n)sing + τ−(n)pp are
concentrated on P1 and N1 , respectively. Then ϕ∗

1 and ϕ∗
2 can be written in the form

ϕ∗
1 = ϕ∗

1c + ϕ∗
1s, ϕ∗

2 = ϕ∗
2c + ϕ∗

2s, (2.16)

where ϕ∗
1c and ϕ∗

1s are of the form (2.14) with τ+
(n)cont and τ+

(n)sing + τ+
(n)pp in place of

τ+
(n) , respectively, and with Qξ (x) = 0 in the case of ϕ∗

1s , and similarly, ϕ∗
2c and ϕ∗

2s are

of the form (2.15) with τ−(n)cont and τ−(n)sing + τ−(n)pp in place of τ−(n) , respectively. Then

ϕ∗
1c and ϕ∗

2c are of the class Cn+1 and by Remark 1.1 ϕ∗(n+1)
1c (x)dx = τ+

(n)cont(dx) and

ϕ∗(n+1)
2c (x)dx = τ−(n)cont(dx) . By Remark 1.1, ϕ∗(n)

1s (x) and ϕ∗(n)
2s (x) can be regarded as

distribution functions of the measures τ+
(n)sing +τ+

(n)pp and τ−(n)sing +τ−(n)pp , respectively.
Since these measures are concentrated on the sets P1 and N1 , respectively, without loss

of generality we may conclude that ϕ∗(n+1)
1s (x) = 0 for x ∈ (a,b)\P1 and ϕ∗(n+1)

2s (x) =
0 for x ∈ (a,b)\N1 . Taking into account (2.16), we obtain that

ϕ∗(n+1)
1 (x) = ϕ∗(n+1)

1c (x) f or x ∈ P\P1,

ϕ∗(n+1)
2 (x) = ϕ∗(n+1)

2c (x) f or x ∈ N \N1,

Since the sets P and N are disjoint, by (2.12) and (2.13), we obtain that

f (n+1)(x) = ϕ∗(n+1)
1 (x)χP\P1

(x)−ϕ∗(n+1)
2 (x)χN\N1

(x),

g∗(n+1)(x) = ϕ∗(n+1)
1 (x)χP\P1

(x)+ ϕ∗(n+1)
2 (x)χN\N1

(x),

consequently we have∣∣∣ f (n+1)(x)
∣∣∣= g∗(n+1)(x) = ϕ∗(n+1)

1 (x)χP\P1
(x)+ ϕ∗(n+1)

2 (x)χN\N1
(x),

where χB(x) = 1 if x ∈ B and χB(x) = 0 if x /∈ B (B ⊂ R) . This implies that∣∣∣ f (n+1)(x)
∣∣∣= g∗(n+1)(x) for x ∈ (a,b) λ a.e. (2.17)

From Theorem 2.5, for any other minimal control function g we have that g = g∗ up to
a polynomial of degree at most n , thus (2.17) yields (2.11). The theorem is proved. �

Now we are going to give a new proof of Proposition 1.6.

Proof. Let f : (a,b) → R be a Cn+1 - function. Put h(x) = f (n+1)(x) . Then,
taking F to be a delta-convex function of order n that has the form (2.1) with some
ξ ∈ (a,b) , Qξ ∈ Πn and τ(n)(du) = h(u)du , by Remark 2.1 we have F (n+1)(x) = h(x)
(x ∈ (a,b)) . Since also f (n+1)(x) = h(x) (x ∈ (a,b)) , we obtain f = F + pn , where
pn ∈ Πn . Consequently f is delta-convex of n -th order, which was to be proved. �
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3. Relative delta-convexity of n -th order. Strong delta-convexity of n -th order.

First recall the definition of the relative n -convexity relation (see [14]).

DEFINITION 3.1. ([14]) Let h : (a,b)→ R be an n -convex function. We say that
a function f : (a,b)→ R is n-convex with respect to h if f −h is n -convex, and denote
it by f n h .

PROPOSITION 3.1. ([14]) Let f ,h : (a,b) → R be n-convex functions with n-
spectral measures μ(n) and ν(n) , respectively. Then f is n-convex with respect to h if
and only if

μ(n) � ν(n).

DEFINITION 3.2. Let f : (a,b)→ R be an n -convex function with the n -spectral
measure μ(n) . The measure μ f

(n) = μ(n) is called the measure of n-th order convexity
of f (or shortly the n-convexity measure).

PROPOSITION 3.2. ([14]) Let f ,h : (a,b) → R be n-convex functions with the
n-convexity measures μ f

(n) and μh
(n) , respectively. Then the following conditions are

equivalent:

a) f n h,

b) μ f
(n) � μh

(n) ,

c) f (n+1)(x) � h(n+1)(x) (x ∈ (a,b)) when f and h are both of the class Cn+1 in
(a,b) .

COROLLARY 3.1. Let f ,h : (a,b) → R be n-convex functions. Then if f n h
then f (n+1)(x) � h(n+1)(x) for x ∈ (a,b) λ a.e.

DEFINITION 3.3. We shall say that functions f ,g : (a,b)→ R are of modulo Πn ,
or that they are members of the same modulo Πn class, if they differ by a polynomial
Q ∈ Πn (see [14]) .

The relation modulo Πn is an equivalence relation and hence it defines equivalence
classes. For n -convex functions f and g : (a,b) → R that are members of the same
modulo Πn class we therefore have that f (n)(x) and g(n)(x) differ by a constant.

PROPOSITION 3.3. ([14])

f = g (mod Πn) if and only if μ f
(n) = μg

(n).

PROPOSITION 3.4. ([14]) The relative n-convexity relation induces a partial or-
dering on modulo Πn equivalence classes of n-convex functions.

Now we are going to define the relative delta-convexity relation of higher order.
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DEFINITION 3.4. Let f ,h : (a,b) → R be delta-convex functions of n -th order
with the minimal control functions g∗f and g∗h , respectively. We say that a function
f : (a,b) → R is delta-convex of n-th order with respect to h (shortly n -delta-convex
with respect to h ), if

Δn+1
y−x
n+1

g∗f (x) � Δn+1
y−x
n+1

g∗h(x)

for all x,y ∈ (a,b) such that x < y , and denote it by f dcn h .

DEFINITION 3.5. We shall say that functions f ,h : (a,b) → R which are delta-
convex functions of n -th order (with the minimal control functions g∗f and g∗h , respec-
tively) are of modulo Mdcn , or that they are members of the same modulo Mdcn class,
if

Δn+1
y−x
n+1

g∗f (x) = Δn+1
y−x
n+1

g∗h(x)

for all x,y ∈ (a,b) such that x < y , and denote it by f = h(modMdcn) .

The relation modulo Mdcn is an equivalence relation and hence it defines equiva-
lence classes. By Proposition 3.4, it is not difficult to prove that this relation induces a
partial ordering (we omit the proof).

THEOREM 3.1. The relative n-delta-convexity relation induces a partial ordering
on modulo Mdcn equivalence classes of delta-convex functions of n-th order.

DEFINITION 3.6. Let f : (a,b) → R be a delta -convex function of n -th order
with the n -spectral signed measure τ(n) . We will call the measure var

(
τ(n)
)

a mea-
sure of delta-convexity of n-th order of the function f (or shortly an n-delta-convexity
measure).

THEOREM 3.2. Let f ,h : (a,b)→ R be delta-convex functions of n-th order with

the n-delta-convexity measures var
(

τ f
(n)

)
and var

(
τh
(n)

)
, the minimal control func-

tions g∗f and g∗h , the n-convexity measures μ
g∗f
(n) and μg∗h

(n) corresponding to the minimal
control functions g∗f , g∗h ,respectively. Then the following statements are equivalent:

a) f dcn h ,

b) Δn+1
y−x
n+1

g∗f (x) � Δn+1
y−x
n+1

g∗h(x) , for all x,y ∈ (a,b) such that x < y,

c) var
(

τ f
(n)

)
� var

(
τh
(n)

)
,

d)
∣∣∣ f (n+1)(x)

∣∣∣ � ∣∣∣h(n+1)(x)
∣∣∣ (x ∈ (a,b)) when f and h are both of the class Cn+1 in

(a,b) ,

e) g∗f n g∗h ,

f) μ
g∗f
(n) � μg∗h

(n) ,
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g) g∗(n+1)
f (x) � g∗(n+1)

h (x) (x ∈ (a,b)) when f and h are both of the class Cn+1 in
(a,b) .

Proof. The equivalence of a) and b) this is just definition. Note that the condition
b) means the n -convexity of g∗f − g∗h , and by the definition of the relative relation n

this is equivalent to the condition e). From Proposition 3.2 it follows the equivalence

of e), f) and g). By Theorem 2.5, we have that var
(

τ f
(n)

)
= μ

g∗f
(n) and var

(
τh
(n)

)
=

μg∗h
(n) , consequently the condition f) is equivalent to c). By Remark 2.1, we obtain the

equivalence of c) and d). The theorem is proved. �

THEOREM 3.3. Let f ,h : (a,b)→ R be delta-convex functions of n-th order with
the minimal control functions g∗f and g∗h . Then

a) there exists an n-convex function gmax , which is a control function for f and h,
such that

gmax n g∗f , gmax n g∗h,

and for every n-convex function k

(k n g∗f and k n g∗h) ⇒ k n gmax,

b) there exists an n-convex function gmin such that

g∗f n gmin, g∗h n gmin,

and for every n-convex function k

(g∗f n k and g∗h n k) ⇒ gmin n k,

c) if g∗f n g∗h and g∗f �= g∗h(mod Πn) , then there exists an n-convex function w such
that g∗f �= w(mod Πn) , g∗h �= w(mod Πn) and

g∗f n w n g∗h.

Proof. Let μ
g∗f
(n) and μg∗h

(n) be the n -convexity measures corresponding to the mini-
mal control functions g∗f , g∗h , respectively. Consider the Radon-Nikodym derivatives

α = dμ
g∗f
(n)/d(μ

g∗f
(n) + μg∗h

(n)), (3.1)

β = dμg∗h
(n))/d(μ

g∗f
(n) + μg∗h

(n)). (3.2)

It is not difficult to see that it suffices to take the functions gmax and gmin of the form
(1.2) with the measures

μmax
(n) = max(α,β )(μ

g∗f
(n) + μg∗h

(n)), (3.3)
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μmin
(n) = min(α,β )(μ

g∗f
(n) + μg∗h

(n)), (3.4)

to prove parts a) and b). To prove c) assume g∗f n g∗h and g∗f �= g∗h(mod Πn) . Then

g∗f −g∗h is n -convex and g∗f −g∗h �= 0(mod Πn) . Thus it suffices to take w = g∗h + 1
2 (g∗f −

g∗h) . The theorem is proved. �

THEOREM 3.4. Let f ,h : (a,b) → R be delta-convex functions of n-th order.
Then

a) there exists a delta-convex function fmax of n-th order such that

fmax dcn f , fmax dcn h,

and for every delta-convex function k of n-th order

(k dcn f and k dcn h) ⇒ k dcn fmax,

b) there exists a delta-convex function fmin of n-th order such that

f dcn fmin, h dcn fmin,

and for every delta-convex function k of n-th order

( f dcn k and h dcn k) ⇒ fmin dcn k,

c) if f dcn h and f �= h(mod Mdcn) , then there exists a delta-convex function u of
n-th order such that f �= u(mod Mdcn) , g �= u(mod Mdcn) and

f dcn u dcn h.

Proof. Let f ,h : (a,b) → R be delta-convex functions of n -th order with the n -
spectral signed measures τ f

(n) and τh
(n) in the representation (2.1), respectively, and with

the n -convexity measures μ
g∗f
(n) and μg∗h

(n) corresponding to their minimal control func-
tions g∗f and g∗h , respectively. By Theorems 3.2 and 3.3, it suffices to take the functions

fmax , fmin and u of the form (2.1) with any signed measures τ fmax
(n) , τ fmin

(n) and τu
(n)

such that var
(

τ fmax
(n)

)
= μmax

(n) , var
(

τ fmin
(n)

)
= μmin

(n) and var
(

τu
(n)

)
= 1

2

(
μg∗h

(n) + μ
g∗f
(n)

)
,

respectively, where μmax
(n) and μmin

(n) are the measures given by (3.3) and (3.4), which we
have introduced in the proof of Theorem 3.3. The theorem is proved. �

We recall the definition of strong convexity of higher order (see [14], [9]).

DEFINITION 3.7. ([14]) Let n be a fixed positive integer and c be a positive
(fixed) real number. We say that a function f : (a,b) → R is strongly n-convex with
modulus c if the function f (x)− cx(n+1)/(n+1)! is n -convex.
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The following two propositions give a characterization of a strongly n -convex
function f with modulus c without any additional assumptions of differentiability of
f .

PROPOSITION 3.5. ([14]) Let f : (a,b)→ R be an n-convex function and c > 0 .
Then f is strongly n-convex with modulus c if and only if

f (n+1)(x) � c for x ∈ (a,b) λ a.e.

PROPOSITION 3.6. ([14]) Let f : (a,b)→ R be an n-convex function and c > 0 .
Then the following statements are equivalent:

a) f is strongly n-convex with modulus c,

b) f is of the form f (x) = cx(n+1)/(n+1)!+h(x) (x ∈ (a,b)) , where h : (a,b) → R

is an n-convex function,

c) f is of the form f (x) = fcont(x) + R(x) (x ∈ (a,b)), where fcont : (a,b) → R

is a strongly n-convex function with modulus c of the class Cn+1 in (a,b) , and
R : (a,b) → R is an n-convex function such that R(n+1)(x) = 0 for x ∈ (a,b) λ
a.e.

COROLLARY 3.2. ([14]) Let c > 0 and let f : (a,b) → R be an n-convex with
modulus c function, which is of the class Cn+1 in (a,b) . Then f is strongly n-convex
with modulus c if and only if

f (n+1)(x) � c

for all x ∈ (a,b) .

We now turn to defining the strong delta-convexity of higher order.

DEFINITION 3.8. Let c > 0 and let f : (a,b)→ R be a delta -convex function of
n -th order. We say that f is a strongly delta-convex function of n-th order with modulus
c if all control functions corresponding to f are strongly n -convex with modulus c .

LEMMA 3.1. Let c > 0 and let f : (a,b)→ R be a delta -convex function of n-th
order. If there exists a minimal control function g corresponding to f , such that g is
strongly n-convex with modulus c, then all minimal control functions corresponding to
f are strongly n-convex with modulus c.

Proof. Let g be a minimal control function corresponding to f , such that g is
strongly n -convex with modulus c . By Corollary 2.2, any two minimal control func-
tions corresponding to f , differ by a polynomial of degree at most n , then for any other
control function h corresponding to f we have the equality: g = h up to a polynomial
of degree at most n . Consequently, h is also strongly n -convex with modulus c . The
lemma is proved. �
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THEOREM 3.5. Let c > 0 . Let f : (a,b) → R be a delta-convex function of n-
th order and let g∗ be a minimal control function corresponding to f . Then f is a
strongly delta-convex function of n-th order with modulus c if and only if g∗ is strongly
n-convex with modulus c.

Proof. By the definition of strong delta-convexity of higher order, the necessity is
obvious. We now prove the sufficiency. Let g∗ be a minimal control function corre-
sponding to f , which is strongly n -convex with modulus c . Let g be any other control
function for f . From Theorem 2.2 we obtain that the function g−g∗ is n -convex. Then
we have that the function g = g∗ +(g− g∗) is a sum of two n -convex functions such
that one of them is strongly n -convex with modulus c . This implies that g is strongly
n -convex with modulus c . Consequently, f is a strongly delta-convex function of n -th
order with modulus c . The theorem is proved. �

From Theorems 2.6, 3.5, Lemma 3.1 and Proposition 3.5 we obtain the following
characterization of strong delta-convexity of n -th order.

THEOREM 3.6. Let c > 0 and let f : (a,b) → R be a delta-convex function of
n-th order. Then f is strongly delta-convex of n-th order with modulus c if and only if∣∣∣ f (n+1)(x)

∣∣∣� c for x ∈ (a,b) λ a.e. (3.5)

Proof. Let f : (a,b) → R be a delta -convex function of n -th order. Let g be a
minimal control function corresponding to f . By Theorem 2.6∣∣∣ f (n+1)(x)

∣∣∣= g(n+1)(x) for x ∈ (a,b) λ a.e. (3.6)

According to Theorem 3.5 and Lemma 3.1, the strong delta-convexity (with modulus
c) of n -th order of the function f is equivalent to the strong n -convexity (with modulus
c) of the function g , which is equivalent (by Proposition 3.5) to

g(n+1)(x) � c for x ∈ (a,b) λ a.e. (3.7)

Taking into account (3.6), we obtain that (3.7) is equivalent to (3.5). The theorem is
proved. �

From Proposition 1.6 and Theorem 3.6 we obtain the following corollary.

COROLLARY 3.3. Let c > 0 and let f : (a,b) → R be a function of the class
Cn+1 in (a,b) . Then f is strongly delta-convex of n-th order with modulus c if and
only if ∣∣∣ f (n+1)(x)

∣∣∣� c

for all x ∈ (a,b) .

Note, that Theorem 3.6 is a generalization of Proposition 3.5 concerning strongly
n -convex functions.
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EXAMPLE 3.1. Let c > 0. For f (x) = −cx2/2χ(−∞,0)(x)+ cx2/2χ[0,∞)(x) (x ∈
R) (χB(x) = 1 if x ∈ B and χB(x) = 0 if x �∈ B , B ⊂ R ), we have

∣∣∣ f ′′(x)∣∣∣ = c for

x �= 0. Consequently, from Theorem 3.6, taking into account that f is delta-convex, we
obtain that the function f is strongly delta-convex with modulus c .

4. Hermite-Hadamard-Fejér type inequalities.

Recall that the function f : (a,b) → R is convex, if the inequality

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)

holds for all x,y ∈ (a,b) and for all t ∈ [0,1] (see [11], [17]). Convexity has a nice
probabilistic characterization, known as Jensen’s inequality (see [2]).

PROPOSITION 4.1. A function f : (a,b) → R is convex if and only if

f (EX) � E f (X) (4.1)

for all (a,b)-valued integrable random variables X .

In the following theoremwe give a probabilistic characterization of delta-convexity.

THEOREM 4.1. Let f : (a,b) → R be a function and g : (a,b) → R be a convex
function. Then f is g-convex dominated (or delta-convex with the control function g)
if and only if

|E f (X)− f (EX)| � Eg(X)−g(EX) (4.2)

for all (a,b)-valued integrable random variables X .

Proof. By Lemma 1.1 f is g -convex dominated if and only if the functions g− f
and g+ f are convex on (a,b) . From Proposition 4.1 g− f and g+ f are convex on
(a,b) if and only if

Eg(X)−E f (X) � g(EX)− f (EX) and Eg(X)+ E f (X) � g(EX)+ f (EX) (4.3)

for all (a,b)-valued integrable random variables X . Note that (4.3) is equivalent to

E f (X)− f (EX) � Eg(X)−g(EX) and E f (X)− f (EX) �− [(Eg(X)−g(EX))] ,

which is equivalent to (4.2). The theorem is proved. �

Now let us turn our attention to some particular case of Theorem 4.1. For the ar-
bitrary t ∈ (0,1) and x1,x2 ∈ (a,b) consider the random variable X such that P(X =
x1) = t and P(X = x2) = 1− t . Then, by Theorem 4.1, we obtain the following corol-
lary.
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COROLLARY 4.1. Let f : (a,b) → R be a function and g : (a,b)→ R be a con-
vex function. Then, if f is g-convex dominated then

|t f (x1)+ (1− t) f (x2)− f (tx1 +(1− t)x2)|� tg(x1)+(1− t)g(x2)−g(tx1 +(1− t)x2)
(4.4)

for any x1,x2 ∈ (a,b) and t ∈ (0,1) .

REMARK 4.1. Note that, by the definition of a convex function, the function f
is convex if and only if the condition (4.1) is satisfied for all random variables X such
that P(X = x1) = t and P(X = x2) = 1− t , where t ∈ (0,1) and x1,x2 ∈ (a,b) . Sim-
ilarly, it is not difficult to prove that the condition (4.4) is also sufficient to guarantee
delta-convexity of f (with the control function g ). It should be noted, that in [5], this
condition is used as the definition (of f to be g -convex dominated).

The next result we state concerns the Jensen-type inequality for delta-convex func-
tions.

COROLLARY 4.2. Let f : (a,b) → R be a function and g : (a,b)→ R be a con-
vex function. Then, if f is g-convex dominated then∣∣∣∣∣

n

∑
i=1

ti f (xi)− f

(
n

∑
i=1

tixi

)∣∣∣∣∣�
n

∑
i=1

tig(xi)−g

(
n

∑
i=1

tixi

)
,

for any x1, . . . ,xn ∈ (a,b) and t1, . . . ,tn > 0 summing up to 1.

Proof. Let X be a random variable such that P(X = xi) = ti , i = 1,2, . . . ,n . Now
it is enough to use Theorem 4.1. �

THEOREM 4.2. Let f : (a,b) → R be a function and g : (a,b) → R be a convex
function.

a) If f is delta-convex, g is the control function and g∗ is the minimal control function
corresponding to f then

|E f (X)− f (EX)| � Eg∗(X)−g∗(EX), (4.5)

Eg∗(X)−g∗(EX) � Eg(X)−g(EX), (4.6)

for all (a,b)-valued integrable random variables X .

b) Conversely, if the inequality (4.2) is satisfied, then for any minimal control function
g∗ the inequalities (4.5) and (4.6) are satisfied.

Proof. a) Since g∗ is the control function, from Theorem 4.2 we obtain (4.5). By
Theorem 2.2 the function g−g∗ is convex, then from Proposition 4.1 it follows (4.6).
To prove b) assume that the inequality (4.2) is satisfied. Then from Theorem 4.1 we
obtain that f is g -convex dominated, by a) it follows that the inequalities (4.5) and
(4.6) are satisfied. The theorem is proved. �
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Let I be an open interval. Let f : I → R be a convex function and a,b ∈ I with
a < b . The following double inequality

f

(
a+b

2

)
� 1

b−a
·
∫ b

a
f (x)dx � f (a)+ f (b)

2
(4.7)

is known as the Hermite-Hadamard inequality for convex functions (see [12], [6] ). In
[7] Fejér gave a generalization of the inequality (4.7):

PROPOSITION 4.2. Let f : I → R be a convex function defined on a real interval
I , a,b∈ I with a < b and let g : [a,b]→ R be nonnegative and symmetric with respect
to the point (a+b)/2 (the existence of integrals is assumed in all formulas). Then

f

(
a+b

2

)
·
∫ b

a
g(x)dx �

∫ b

a
f (x)g(x)dx � f (a)+ f (b)

2
·
∫ b

a
g(x)dx. (4.8)

The double inequality (4.8) is known in the literature as the Hermite-Hadamard-
Fejér inequality (see [12], [6] and [13] for the historical background).

In the paper of Dragomir et al. (2002) [5] can be found the Hermite-Hadamard
type inequalities for g -convex dominated functions.

PROPOSITION 4.3. ([5]) Let g : I → R be a convex function and f : I → R be a
g-convex dominated function. Then, for all a,b ∈ I with a < b,∣∣∣∣ 1

b−a
·
∫ b

a
f (x)dx− f

(
a+b

2

)∣∣∣∣� 1
b−a

·
∫ b

a
g(x)dx−g

(
a+b

2

)
(4.9)

and ∣∣∣∣ f (a)+ f (b)
2

− 1
b−a

·
∫ b

a
f (x)dx

∣∣∣∣� g(a)+g(b)
2

− 1
b−a

·
∫ b

a
g(x)dx. (4.10)

We will give a generalization of the inequalities (4.9) and (4.10) of Dragomir et al.
(2002).

In the sequel we will to make use of the theory of s-convex stochastic ordering
(see Denuit et al. (1998) [4]). Let us review some notations.

As usual, FX denotes the cumulative distribution function (or the distribution func-
tion) of a random variable X and μX is the distribution corresponding to X . For real
valued random variables X ,Y and any integer s � 1, we say that X is dominated by
Y in the (s+1)-convex ordering sense if E f (X) � E f (Y ) for all s-convex functions
f : R → R , for which the expectations exist. In that case we write X �(s+1)−cx Y , or
μX �(s+1)−cx μY . Then the order �2−cx is just the usual convex order �cx .

A very useful criterion for the verification of the (s+1)-convex order is given by
Denuit, Lefèvre and Shaked in 1998 [4]. For the statement of this criterion, we need
introduce first the following notation. Define the number of sign changes of a function
ϕ : R → R by

S−(ϕ) = sup{S−[ϕ(x1),ϕ(x2), . . . ,ϕ(xn)] : x1 < x2 < .. . < xn ∈ R , n ∈ N},
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where S−[y1,y2, . . . ,yn] denotes the number of sign changes in the sequence y1,y2, . . . ,yn

(zero terms are being discarded). Two real functions ϕ1,ϕ2 are said to have k crossing
points (or cross each other k -times) if S−(ϕ1 −ϕ2) = k .

PROPOSITION 4.4. ([4]) Let X and Y be two random variables such that E(X j−
Y j) = 0 , j = 1,2, . . . ,s (s � 1 ). If S−(FX −FY ) = s and the last sign of FX −FY is
positive, then X �(s+1)−cx Y .

REMARK 4.2. a) Let X , Y , Z be three random variables such that μX = δ(a+b)/2 ,
μY (dx)= 1

b−adx , μZ = 1
2(δa+δb) . Then, by Proposition 4.4, we obtain that X �2−cx

Y and Y �2−cx Z , which implies (4.7).

b) Let f and g satisfy the assumptions of Proposition 4.2. Let X , Y , Z be three
random variables such that μX = δ(a+b)/2 , μY (dx) = (

∫ b
a g(x)dx)−1g(x)dx , μZ =

1
2 (δa + δb) . Then, by Proposition 4.4, we obtain that X �2−cx Y and Y �2−cx Z ,
which implies (4.8).

The following theorem provides a useful tool for obtaining and proving of various
forms of the Hermite-Hadamard-Fejér type inequality for delta-convex functions of
higher order.

THEOREM 4.3. Let n � 1 . Let g : I → R be an n-convex function and let f : I →
R be a function which is g-convex dominated of n-th order (or delta-convex of n-th
order with the control function g). Let X and Y be two I valued random variables such
that E(X j −Y j) = 0 , j = 1,2, . . . ,n, S−(FX −FY ) = n and the last sign of FX −FY is
positive. Then

|E f (Y )− E f (X)| � Eg(Y )− Eg(X). (4.11)

Proof. By Lemma 1.1 f is g -convex dominated of n -th order if and only if the
functions g− f and g+ f are n -convex on I . Let the random variables X and Y satisfy
the assumptions of the theorem. Then by Proposition 4.4, for any n -convex function
h : I → R we have the inequality

Eh(X) � Eh(Y ). (4.12)

Since the functions g− f and g+ f are n -convex on I , by (4.12) we obtain the fol-
lowing inequalities

E(g− f )(X) � E(g− f )(Y ), (4.13)

E(g+ f )(X) � E(g+ f )(Y ). (4.14)

From (4.13) and (4.14) we obtain

E f (Y )− E f (X) � Eg(Y )− Eg(X),

−(Eg(Y )− Eg(X)) � E f (Y )− E f (X),

which are equivalent to (4.11). The theorem is proved. �
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REMARK 4.3. Let n = 1. Let f : I → R be a function which is g -convex domi-
nated.

a) To prove (4.9), we consider random variables X and Y such that μX = δ(a+b)/2 and
μY (dx) = 1

b−adx , and then apply Theorem 4.3.

b) To prove (4.10), it suffices to consider randomvariables X and Y such that μX(dx)=
1

b−adx and μY = 1
2(δa + δb) , and then apply Theorem 4.3.

Taking some particular cases of random variables X ,Y , by Theorem 4.3, we obtain
the following Hermite-Hadamard-Fejér type inequalities for delta-convex functions of
higher order, that generalize the results of Dragomir et al. (2002) [5].

THEOREM 4.4. Let n � 1 . Let g : I → R be an n-convex function and let f : I →
R be a g-convex dominated of n-th order function. Let a,b ∈ I with a < b.

Let a(n) =
[

n
2

]
+1 , b(n) =

[
n+1
2

]
+1 . Let x1, . . . ,xa(n),y1, . . . ,yb(n) be real num-

bers, and α1, . . . ,αa(n) , β1, . . . ,βb(n) be positive numbers, such that α1 + . . .+ αa(n) =
1 , β1 + . . .+ βb(n) = 1 ,

1
b−a

∫ b

a
xkdx =

b(n)

∑
j=1

yk
jβ j =

a(n)

∑
i=1

xk
i αi (k = 1,2, . . . ,n),

a � x1 < x2 < .. . < xa(n) � b, a � y1 < y2 < .. . < yb(n) < b,

x1−a
b−a < α1 < x2−a

b−a ,

x2−a
b−a < α1 + α2 < x3−a

b−a ,

. . .
xa(n)−1−a

b−a < α1 + . . .+ αa(n)−1 <
xa(n)−a

b−a ,

y1−a
b−a < β1 < y2−a

b−a ,
y2−a
b−a < β1 + β2 < y2−a

b−a ,

. . .
yb(n)−1−a

b−a < β1 + . . .+ βb(n)−1 <
yb(n)−a

b−a ;

if n is even then y1 = a, yb(n) = b, x1 > a, xa(n) < b;
if n is odd then y1 = a, yb(n) < b, x1 > a, xa(n) = b.

Then we have the following inequalities:

i) if n is even then∣∣∣∣∣ 1
b−a

∫ b

a
f (x)dx−

a(n)

∑
i=1

αi f (xi)

∣∣∣∣∣� 1
b−a

∫ b

a
g(x)dx−

a(n)

∑
i=1

αig(xi), (4.15)
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∣∣∣∣∣
b(n)

∑
j=1

β j f (y j)− 1
b−a

∫ b

a
f (x)dx

∣∣∣∣∣ �
b(n)

∑
j=1

β jg(y j)− 1
b−a

∫ b

a
g(x)dx, (4.16)

ii) if n is odd then∣∣∣∣∣ 1
b−a

∫ b

a
f (x)dx−

b(n)

∑
j=1

β j f (y j)

∣∣∣∣∣� 1
b−a

∫ b

a
g(x)dx−

b(n)

∑
j=1

β jg(y j), (4.17)

∣∣∣∣∣
a(n)

∑
i=1

αi f (xi)− 1
b−a

∫ b

a
f (x)dx

∣∣∣∣∣ �
a(n)

∑
i=1

αig(xi)− 1
b−a

∫ b

a
g(x)dx. (4.18)

Proof. Let X ,Y and Z be random variables such that

μX =
a(n)

∑
i=1

αiδxi ,

μY =
b(n)

∑
j=1

β jδy j ,

μZ(dx) =
1

b−a
χ[a,b](x)dx.

We now apply Theorem 4.3.
If n is even then we take the pairs (X ,Z) and (Z,Y ) in place of (X ,Y ) to obtain

the inequalities (4.15) and (4.16), respectively.
If n is odd then we take the pairs (Y,Z) and (Z,X) in place of (X ,Y ) to obtain

the inequalities (4.17) and (4.18), respectively. This completes the proof. �

THEOREM 4.5. Let n � 1 . Let g : I → R be an n-convex function and let f : I →
R be a g-convex dominated of n-th order function. Let a,b ∈ I with a < b.

Let a(n) =
[

n
2

]
+1 , b(n) =

[
n+1
2

]
+1 .

Let α1, . . . ,αa(n) , x1, . . . ,xa(n) , β1, . . . ,βb(n) , y1, . . . ,yb(n) be real numbers such
that

a) if n is even then

0 < β1 < α1 < β1 + β2 < α1 + α2 < .. . < α1 + . . .+ αa(n) = β1 + . . .+ βb(n) = 1,

a � y1 < x1 < y2 < x2 < .. . < xa(n) < yb(n) � b,

b) if n is odd then

0 < β1 < α1 < β1 + β2 < α1 + α2 < .. . < β1 + . . .+ βb(n) < α1 + . . .+ αa(n) = 1

a � y1 < x1 < y2 < x2 < .. . < yb(n) < xa(n) � b;

and
a(n)

∑
i=1

xk
i αi =

b(n)

∑
j=1

yk
jβ j,

for any k = 1,2, . . . ,n.
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Then we have the following inequalities:

i) if n is even then∣∣∣∣∣
b(n)

∑
j=1

β j f (y j)−
a(n)

∑
i=1

αi f (xi)

∣∣∣∣∣�
b(n)

∑
j=1

β jg(y j)−
a(n)

∑
i=1

αig(xi), (4.19)

ii) if n is odd then∣∣∣∣∣
a(n)

∑
i=1

αi f (xi)−
b(n)

∑
j=1

β j f (y j)

∣∣∣∣∣�
a(n)

∑
i=1

αig(xi)−
b(n)

∑
j=1

β jg(y j). (4.20)

Proof. We apply Theorem 4.3. Let X and Y be random variables such that:
if n is even, then we take

μX =
a(n)

∑
i=1

αiδxi , μY =
b(n)

∑
j=1

β jδy j ,

to obtain the inequality (4.19),
if n is odd, then we take

μX =
b(n)

∑
j=1

β jδy j , μY =
a(n)

∑
i=1

αiδxi ,

to obtain (4.20). The theorem is proved. �

5. Inequalities between quadrature operators

Many inequalities, which are connected with quadrature operators are known in
the numerical analysis (cf. [1], [3] and the references therein).

The numerical analysts prove them using the suitable differentiability assump-
tions. As proved Wa̧sowicz in the papers [20], [21], [22], for convex functions of higher
order some inequalities can be obtained without assumptions of this kind, using only
the higher order convexity itself. The support-type properties play here the crucial role.
As we will show in this paper, some inequalities can be obtained using a probabilis-
tic characterization. In this paper we obtain new inequalities concerning delta-convex
functions of higher order. Our method of proof using the convex stochastic ordering
seems to be quite easy.

For a function f : [−1,1] → R we consider six operators approximating the inte-
gral mean value

I ( f ) := 1
2

1∫
−1

f (x)dx.

They are

C( f ) := 1
3

(
f
(−√

2
2

)
+ f (0)+ f

(√2
2

))
,
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G2( f ) := 1
2

(
f
(−√

3
3

)
+ f
(√3

3

))
,

G3( f ) := 4
9 f (0)+ 5

18

(
f
(−√

15
5

)
+ f
(√15

5

))
,

L4( f ) := 1
12

(
f (−1)+ f (1)

)
+ 5

12

(
f
(−√

5
5

)
+ f
(√5

5

))
,

L5( f ) := 16
45 f (0)+ 1

20

(
f (−1)+ f (1)

)
+ 49

180

(
f
(−√

21
7

)
+ f
(√21

7

))
,

S( f ) := 1
6

(
f (−1)+ f (1)

)
+ 2

3 f (0).

The operators G2 and G3 are connected with Gauss-Legendre rules. The operators
L4 and L5 are connected with Lobatto quadratures. The operators S and C concern
Simpson and Chebyshev quadrature rules, respectively. The operator I stands for the
integral mean value (see e.g. [16], [23], [24], [25], [26]).

We will establish all possible inequalities between these operators in the class of
g convex dominated functions of higher order.

REMARK 5.1. Let X2 , X3 , Y4 , Y5 , U , V and Z be random variables such that

μX2 =
1
2

(
δ−

√
3

3
+ δ√

3
3

)
,

μX3 =
4
9

δ0 +
5
18

(
δ−

√
15
5

+ δ√
15
5

)
,

μY4 =
1
12

(δ−1 + δ1)+
5
12

(
δ−

√
5

5
+ δ√

5
5

)
,

μY5 =
16
45

δ0 +
1
20

(δ−1 + δ1)+
49
180

(
δ−

√
21
7

+ δ√
21
7

)
,

μU =
2
3

δ0 +
1
6
(δ−1 + δ1),

μV =
1
3

(
δ−

√
2

2
+ δ0 + δ√

2
2

)
,

μZ(dx) =
1
2

χ[−1,1](x)dx.

Then we have
G2( f ) = E [ f (X2)], G3( f ) = E [ f (X3)],

L4( f ) = E [ f (Y4)], L5( f ) = E [ f (Y5)],

S( f ) = E [ f (U)], C( f ) = E [ f (V )], I ( f ) = E [ f (Z)].

THEOREM 5.1. Let f : [−1,1]→ R be g-convex dominated of 3-order. Then

|I ( f )−G2( f )| � I (g)−G2(g), (5.1)

|S( f )−I ( f )| � S(g)−I (g),



292 TERESA RAJBA

|C( f )−G2( f )| � C(g)−G2(g),

|T ( f )−C( f )| � T (g)−C(g),

|S( f )−T ( f | � S(g)−T(g),

where T ∈ {G3,L5} .

Proof. Let n = 3. Let f : [−1,1] → R be g -convex dominated of 3-order. It is
not difficult to prove that for X := X2 and Y := Z the assumptions of Theorem 4.3
are satisfied. Taking into account that, by Remark 5.1, we have G2( f ) = E[ f (X2)] and
I ( f ) = E[ f (Z)] , from Theorem 4.3 it follows the inequality (5.1).

Similarly, considering the following pairs of random variables: (Z,U) , (X2,V ) ,
(V,X3) , (V,Y5) , (X3,U) and (Y5,U) in place of the pair (X ,Y ) , respectively, from
Theorem 4.3 and taking into account Remark 5.1, we obtain the other inequalities of
this theorem. The theorem is proved. �

THEOREM 5.2. Let f : [−1,1]→ R be g-convex dominated of 5-order. Then

|I ( f )−G3( f )| � I (g)−G3(g),

|L4( f )−I ( f )| � L4(g)−I (g),

|L5( f )−G3( f )| � L5(g)−G3(g),

|L4( f )−L5( f )| � L4(g)−L5(g),

Proof. Let n = 5. Let f : [−1,1] → R be g -convex dominated of 5-order. The
proof is similar to the proof of Theorem 5.1. It suffices to apply Theorem 4.3 and
Remark 5.1, considering the following pairs of random variables: (X3,Z) , (Z,Y4) ,
(X3,Y5) and (Y5,Y4) in place of the pair (X ,Y ) , respectively. The theorem is proved.

�
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Hadamard-Type Inequalities, Tamsui Oxford Journal of Mathematical Sciences, 18 (2) (2002), 161–
173.

[6] S. S. DRAGOMIR AND C. E. M. PEARCE, Selected Topics on Hermite-Hadamard Inequalities and
Applications, RGMIA Monographs, Victoria University, 2000.
(Online: http://rgmia.vu.edu.au/monographs/).
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