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CHARACTERIZATION OF THE RESTRICTED TYPE SPACES R(X)

JAVIER SORIA AND PEDRO TRADACETE

(Communicated by L. Maligranda)

Abstract. We study functorial properties of the spaces R(X), which have been recently intro-
duced as a central tool in the analysis of the Hardy operator minus the identity on decreasing
functions. In particular, we provide conditions on a minimal Lorentz space A, so that the equa-
tion R(X) = A, has a solution within the category of rearrangement invariant (r.i.) spaces.
Moreover, we show that if R(X) = Ay, then we can always take X to be the minimal r.i. Banach
range space for the Hardy operator defined in A .

1. Introduction

Let X be a rearrangement invariant space (r.i.) on (0, ), satisfying that the func-
tion 1/(1+s) € X. Associated with X, we can consider the space R(X), introduced in
[18] (which appears naturally in the study of the norm of the Hardy operator minus the
identity in the cone of radially decreasing functions [3]). This is defined as the minimal
Lorentz function space Ay, , with

=||E1/8llx, 1)
X

o[

where g(s) = 1/(1+s) and E, denotes the usual dilation operator (cf. [2, §3]). It can
be noted that the function g(s) = 1/(1+s) belongs to an r.i. space X if and only if the
inclusion (L' NL™) C X holds [18].

Recall that, for a quasi-concave function ¢, that is, an increasing function such
that ¢(r)/t is decreasing and ¢(z) # 0 for r > 0 (cf. [2, p. 69]), the minimal Lorentz
space Ay is defined as

Ao ={rilrs, = [ rd00 <=},

where f* is the decreasing rearrangement of f [2]. Similarly, the maximal Lorentz
space (or Marcinkiewicz space) M,, is the r.i. space of all measurable functions f such
that

My = {f: 1ty = s0p 7 (000 < oo},
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where L
£ = /0 F(s)ds.

Another important space associated to ¢ is the weak-type Lorentz space
A= {751y = s 00 < = . @
¢ >0

and it is easy to prove that Ay C My C A%,,’N. Note that, in general, A(l,ﬁ'x’ is a quasi-
Banach space which need not be locally convex (cf. [6]).
For a given r.i. space X, the fundamental function @y is defined as

@x (1) = || xallx, where |A] =1z.

On an r.i. space, this expression is independent of the set A, so ¢x is a well-defined
quasi-concave function. This allows us to consider the minimal and maximal spaces
associated with X: A(X) = Ay, and M(X) = Ay, . It is well known (see [2]) that for
every r.i. space X we have

AX)CX CcM(X).

Now, as noted in [15], if the space X satisfies the condition mentioned above that
g(s) =1/(1+s) belongs to X, then we can extend this chain of inclusions as follows

RX)CAX)CcX CcM(X).

It was proved in [15] that every Wy as in (1) satisfies Wx (¢) > Ctlog(1 +1/t),
for some constant C > 0. Our main interest is to consider a converse result, namely,
whether every Lorentz function space A, whose fundamental function ¢ satisfies the
inequality

¢(t) = Ctlog(1+1/1), 3)

can be equal to R(X), for some r.i. X .
It is known that this question has a positive answer if the upper fundamental index
of the space X (see [2])

where

_ Ox (St)

)= o)
satisfies EX < 1. Indeed, [15, Theorem 2.2] asserts that Ex <1 is actually equivalent
to the identity R(X) = A(X). Therefore, in this case, R is constant on all r.i. spaces
having the same fundamental function ¢; i.e., those X for which Ay, C X C M, [2].

In our study of the equation R(X) = Ay, we will elaborate first on its connection

with the optimal range for the Hardy operator on Ay (provided such space exists). This
will allow us to find a solution to the equation when the space X is only an r.i. quasi-
Banach space. In the remaining sections we will provide conditions on a quasi-concave
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function ¢ satisfying (3) in order to have A, = R(X), with X being a Marcinkiewicz
space or a Lorentz space.

The terminology used in this paper follows the monograph [2], to which the reader
is referred for further explanations concerning rearrangement invariant spaces and re-
lated concepts. Another classical book for reference is [10]. In this monograph, an r.i.
space is a symmetric space with the Fatou property.

2. Optimal range for the Hardy operator

We recall the definition of the Hardy operator in R™:

sr =1 [ roar @

A simple calculation shows that, for any s,# > 0, then
. o
SX[O;](S) = m1n{17 E} ~ @ = El/tg(s)»
where g and E; are defined as in (1). This remark yields the following important fact.
LEMMA 2.1. Let ¢ be quasi-concave and X an r.i. Banach space. The following
are equivalent:
(i) Ap CR(X).
(@) ISxpaqllx S @(t).
(iii) S:Ap — X is bounded.
Proof. By definition, R(X) is the Lorentz space Awy , where Wx (t) = ||E| /,][x ~
SX[0.|lx - Therefore, Ay C Awy is equivalent to [|Sxjo,llx < ¢@(¢) [6]. This shows
the equivalence of (i) and (if).

The implication (iii) = (ii) is immediate. Let us now see that (i7) implies (iii).
First, notice that for a measurable set A, with measure |A|, we have that

[Sxallx < 1Sx10,apllx < Cllxalla,-

Now, given f € Ay, denote A, = {x:2" <|f(x)| <2}, for n € Z. Using that

I7lg = |, @(Rs(0))a,

where Ag(r) = [{x:|f(x)| >t} is the distribution function of f then, it follows that

ISFllx = || X S(fxa)|| <€ X 2" Ma,llag

nez X nez
<C Y, 2 o(A(2") <4C||f |, O

nez
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The equivalence of conditions (i) and (iii) suggests that, in order to obtain an
equality in (i), we should consider the optimal range for the Hardy operator (4) on Ay .

DEFINITION 2.2. Given a quasi-concave function ¢, let %R[S,A,] denote the
minimal r.i. Banach function space Y such that §: A, — Y is bounded.

Note that the minimal space R[S, Ay] may not exist in general. However, we will
see in Theorem 2.3 that the existence of this space is equivalent to condition (3).

As far as we know, the problem of determining the optimal space Y (among r.i.
spaces) such that §: A, — Y is bounded has not been studied before. An easy duality
argument (using that A:p = My, ) relates this problem with that of finding the optimal
ri. space X such that ' : X — My, is bounded, where @,(t) =1/¢(r) and §' is the

conjugate Hardy operator:
S'f(1) = / @ds.
t

If the minimality condition we consider here is relaxed, and one looks for an opti-
mal domain or range space among the class of all Banach lattices (or Banach function
spaces), then vector measure techniques are used to characterize these cases (see [14]
and the references therein). However, note that in fact, as pointed out in [7], the opti-
mal domain for the Hardy operator is never an r.i. space. Similar questions, related to
optimal Sobolev embeddings for r.i. spaces, were also considered in [8].

In [12] and [13] this kind of optimal range (respectively domain) problems within
the class of Banach lattices were studied for the Hardy operator and L? spaces.

We now characterize the existence of 9R[S,A,] and show an explicit description
of its norm:

THEOREM 2.3. Let ¢ be a quasi-concave function. Then, ¢ satisfies (3) if and
only if the space R[S, Ay exists. In this case, R[S, Ay] coincides with the space:

X = {f e L'+ L7 : ™ < (Sg)*™, for some decreasing g € A¢}7

endowed with the norm

171x =int{ligllag - £ < (S8)"*}.

Proof. Assume ¢ satisfies (3). Let us start by proving that || - ||x actually defines
anorm. It is trivial that || f||x =0, when f =0 and that ||A f||x = |A]||f]|x -

Now, suppose that || f||x = 0. Then, there exists g, in Ay, with f** < (Sg,)™,
such that [|ga|[a, — 0. Observe that, since @(t) = tlog(1+1/t) ~ [|Sxjoll,1, 1~ and
using Lemma 2.1[(ii) = (iii)], we have that

S:Ap—L'+L”

is bounded, and hence |[Sgy||;1, ;- — 0. Since f** < (Sg,)™ forevery n, we have that
| fllz1 oz < inf|[Sgpl/z1 7~ = 0, which shows that f =0.
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It is straightforward to check that || - ||x satisfies the triangle inequality. Let us
see now that with this norm X is also complete. Suppose f, is a sequence in X with
Sy | fullx < oo, then we want to prove that Y, f, convergesin X . Splitting each f,
into its positive and negative parts, we can assume that f;, are all positive functions.

By hypothesis, for each n let g, be a decreasing functionin Ay, with

< (Sga)™ and [galla, < IIfall+27"

In particular,
D llgnlla, <o,
n=1

and since A, is complete, then the series ¥,” | g, convergesin Ay .
We claim that, for each £ > 0,

(5.0)"<(5(50)"

Indeed, first note that, by Lemma 2.1, §: Ay — L'+ L= is bounded and hence, using
[2, §2 Theorem 4.6],

D fallzrir= < ASI Y, lgnllag < oo,
n=1 n=1

and we conclude that ¥, f,, € L' + L~
Now for fixed k£ > 0, let

k+n
hkm:: 2:]}-
=k
Clearly
hhnT 2:]}
=k

almost everywhere, so i, T (X7, f;)™ point-wise (as n — eo.) On the other hand,
for each n € N we have

k+n k+n k+-n

(50" < Bisor = ((50) "< ((50))
Hence, taking the limit as n — oo we have that
(£4)" <(s(Za))”
j=k j=k

as claimed.
Now, note that since

lim H ig,, =0 and (an>** < (S(gcgn>>**7

koo n=k ¢ n=k
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then, by the definition of the norm in X we have that

:O,

k—oo

fim | S
n=k

or equivalently, that 3~ f, convergesin X . Therefore, X is an r.i. Banach space.
Now, for any decreasing f € Ay

1S1lx = inf{{lglla, : (S)™ < (S)™} < I f1la,-

Thus, S: Ay — X is bounded, which by the definition of 2R[S, A, means that R[S, Ay]
C X . For the converse inclusion, pick any r.i. Banach space Y such that S: Ay — Y is
bounded. If f € X then, for each decreasing function g € A, with f** < (Sg)*™, we
have that [2, §2 Theorem 4.6]

£ 1ly < lISglly < [ISI/1Ig 1A,

which implies that || f||y < ||S]|l|f|lx; i.e., X C Y. This proves the minimality condi-
tion, and hence R[S, Ay] coincides with X .
Conversely, if the minimal range space R[S, Ay] exists, in particular we have that

S:Ag — R[S,Ap] C L' + L7,
and by Lemma 2.1 we obtain that ¢log(1 + 1/7) = [|Sx(oll1 1= S [ Xj0.]la, = @(2),
which gives (3). U

Note that by Lemma 2.1[(iii) = (i)], it follows that, if ¢ satisfies (3), we always
have
Ap CR(R[S,Ag)).

As an immediate application we get:

COROLLARY 2.4. Given ¢ satisfying (3), if there exists an r.i. Banach space X
such that R(X) = Ay, then R(R[S,Ay]) = Agp.

Proof. Let X be such that R(X) = A, . By Lemma 2.1[(i) = (iii)], we have that S :
Ay — X is bounded. Hence, by the minimality of 2R[S,A,] we must have R[S, Ay] C
X . Therefore, by the monotonicity of the operation R, it holds that

Ap CR(R[S,Ap]) CR(X) = Ay,
as claimed. O

In particular, this shows that, provided ¢ satisfies (3), the equation R(X) = A,
has a solution if and only if X = R[S, A is a solution (though it may not be the only
one).

COROLLARY 2.5. Given ¢ satisfying (3), the following conditions are equiva-
lent:
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(i) There exists an r.i. Banach space X such that R(X) = A.

(ii) There exists a constant C > 0 such that, for any t > 0, if a decreasing function
g: satisfies that

/ g (u log du tlog(H—;),
for every s >0, then

/0 " gi(u)do(u) > Colr).

(iii) There is a constant C > 0 such that, if g is a decreasing function with

/Osg(u) log (%)du > log(l+s),

for every s > 0, then for every t > 0 it also satisfies
< ru
/0 g(;)dw(u) > Co(1).

Proof. Using Corollary 2.4, we know that R(X) = A, has a solution if and only
if Ap = R(R[S,Ay]). Moreover, we always have

Ay C R(R[S, Ay)).

The converse embedding is equivalent to

00) S Wonjs g1 (1) = 0t { g, : (S20,))" < (Sg) " with g | }.

But, a straightforward computation shows that a decreasing function g; satisfies
(Sx(0.4))"* < (Sg)** if and only if

/gt log du tlog<l+ )

This shows the equivalence of the first two statements. The equivalence with the
third one follows directly from the fact that the dilation operator E; commutes with the
Hardy operator: SE,(g) =E;S(g). O

REMARK 2.6. It is easy to see that, under condition (3), we always have that
Ap CR[S,Agp]. Infact, if f € Ay, then taking g = f* € A, we get that f** = S(g) <
(Sg)**. Moreover, we can prove the following characterization for the case of equality,
in terms of the upper Boyd index @4, [2, §3 Definition 5.12].

COROLLARY 2.7. Given ¢ satisfying (3), we have that

if and only if Oy, < 1. If this holds true, then, in fact, Ay = R(R[S, Ag]).
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Proof. By Remark 2.6, Ay C R[S,A], and hence equality holds if and only if
R[S, Ay] C Ay which, by Theorem 2.3, is equivalent to the boundedness of the operator
S: Ay — Ay . Finally, this condition is known to be equivalent to the inequality oy, < 1

¢ ¢ g
[2, §3 Theorem 5.17]. O

Notice that, in general, the relation between the upper fundamental index and the
upper Boyd index, for an r.i. space X with fundamental function @y, is given by the
inequality E(PX < ayx [2, pp. 177-178]. When X is a Lorentz space, it is easy to show
that, in fact, the equality always holds (examples of non-Lorentz r.i. spaces with strict
inequality are known [16]). This result agrees with the following remark: If X = Ay,
we know that B(p < 1 is equivalent to R(Ay) = Ay [15, Theorem 2.2], which implies
that R(R[S,A¢]) = Ay (see Corollary 2.4) and, by Corollary 2.7, this is equivalent to
@p, < 1. Hence, if @a, =1, then B, = 1.

EXAMPLE 2.8. Since the spaces 1< p < oo and L~ are all minimal Lorentz
spaces, with upper Boyd index strictly less than 1, then R[S, L7!] = L”! and R[S, L] =
L*. We know by Theorem 2.3 that, if p = 1, then R[S, L'] does not exist (see also Re-
mark 3.5).

We are now going to see a couple of examples for which the upper Boyd index is
equal to 1:

EXAMPLE 2.9. Let ¢(r) = max{1,¢}. Then
R[S, Ag] = My,

where y(t) =1/log(1+1). In fact, first notice that A, = L' NL*. Now, since S:L! —
LY and S: L* — L™ are bounded, we immediately get that

S:Ap— LY NL”
is bounded, though L'>NL> is not a Banach space. But L'*NL> C M,, (this is in fact
the smallest of all r.i. Banach spaces satisfying this embedding [15, Proposition 3.3]),
and hence we get that R[S, Ay] C My,
For the converse inclusion, since R(My) = Ay [15], using Corollary 2.4 we get

that R(R[S,A¢]) = Ap. Thus, by the minimality of M, among those spaces with
R(X) # {0} [15, Proposition 3.5], it also holds that My, C R[S, Ay).

EXAMPLE 2.10. Let ¢(z) =rlog(1+1/t). Then
R[S, Ag] =L' +L".
In fact, since, by definition, R[S ,A¢} is an r.i. Banach space, it follows that

R[S, Ag] C L' + L~



CHARACTERIZATION OF RESTRICTED TYPE SPACES 303

Let us prove the converse inclusion. To simplify the notation, set X = R[S, A4] and let
¢@x denote its fundamental function. Since

X C Mgy, CL'+L",
by Lemma 2.1 and [15, Remark 2.7] we have that
Ay CR(X) CR(Mgy) C R(L' +L7) = Ay,

so, in particular, we have that R(My, ) = Ay . Now,

O(1) 2 Wi, (1) = S'il())(El/tg)**(u)(pX(u)

= sup ('DX(M)/ ! ds
0

u>0 u 1+%
=tsuplog(l+ u/t)qox_(u)
u>0 u
Therefore, for any u > 0,
. ud(r) .
<inf ————-—— = 1,u}.
oxl) < Inf o A gy — min{ L}

Hence,
Amin{1y =L'+L7 C Agy CX,

which shows that L! + L~ C R[S, Ay] (see also Lemma 4.4 and Theorem 4.5 for a more
general result).

3. The case of r.i. quasi-Banach spaces

In the context of r.i. quasi-Banach spaces, the equation R(X) = A, has always a
solution (provided that ¢ is quasi-concave), as the following result shows.

THEOREM 3.1. Let ¢ be a quasi-concave function and let Aé,,’m be the r.i. quasi-
Banach space defined in (2). Then, R(A(lp’w) = Agp.

Proof. A simple calculation shows that

Wy (1) = 1B gl = %003

1 N
=sup< [ o) du(s) = 0,y = 000).

Therefore,
RAG™)=Aw . =Ay. O
Ap
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It is known [17] that A(lp"x’ is a Banach space if and only if ¢ satisfies the so called

B; condition [1]:
/ ﬂ;) dr<C M7
t r t

which is equivalent to the boundedness of §: Ay — Ay . This condition is also char-
acterized in terms of the upper Boyd index of A, by means of the inequality ots,, <1
[2, §3 Theorem 5.17]. Since E(p < EAq, [2, pp. 177-178], we obtain in this case that,
whenever @x ~ @, then R(X) = Ay [15, Theorem 2.2].

As in Theorem 2.3, we can also consider the optimal r.i. quasi-Banach space X
such that the operator S : Ay — X is bounded. Let us denote this space by 9,[S,Ay].
By definition 2Ry[S,Ay] C R[S, Ay] provided both spaces exist.

THEOREM 3.2. Let ¢ be a quasi-concave function. The optimal range Ry[S, Ay]
coincides with the space

Y = {f e L'+ L™ f* < Sg*, for some g € A(,,}7
endowed with the quasi-norm || f |y = inf{||g|a, : f* < Sg*}.

Proof. 1t is straightforward to check that || - ||y defines an r.i. quasi-norm. For
example, to prove the triangle inequality (with a constant C > 1), if fi,/> €Y and
81,82 € Ag, with f; < Sgj, j=1,2, then taking g € Ay such that g*(r) = (g] +
83)(t/2), we get that

(fi+2)"(0) S fL(e/2) + f3(1/2) < Sg1(t/2) +Sg3(1/2) = Sg"(1).

Hence, [|fi+f2lly < lglla, < Clg1lla, +821la,) and [[fi+L2lly < C(|filly +[Aill¥)-

Letus prove now that Y is complete. To see this, first note that by Aoki-Rolewicz’s
theorem [9] there exists 0 < p < 1 such that || - ||y is equivalentto a p-norm |- ||o (i.e.,
x+y][5 < [Ix|5+[y]l5)- Now, ¥ would be complete if we show that, for any sequence
(fi) in Y with I3 || fil[§ < oo, then the series

> fi
k=1
convergesin Y.
Thus, let (f¢) in ¥ with 37 || fi[|§ < eo. Splitting each f; into its positive and

negative parts, we can actually assume that f; is already a positive function in Y. Since
the inclusion ¥ < L + L™ is continuous, we have that

- -
(2 fellrmss ) < S AN o e <,
k=1 k=1

and by completeness of L'+ L™ we conclude

=3 frel=+L~.
k=1
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Moreover, since Y5, || fx||h < oo, for each k there exists gx € Ay with f; < S(g})
and X7, || ngi(p < oo. In particular, the series ¥;” | gx convergesin Ay.
Let now fix n € N. Clearly

n—+m oo

AN YL

k=n k=

so in particular
n—+m

() <ipin(X5)"

For k € N, let us denote
< p 7! p
o= (2 lslf,) el
j=1

By [5], for every m we have

fi O+ 1L 1 (s)ds)
S(&R) W)+ 4 Ji 4 I3 gilw)duds)

n+$
<Y (S0 + i 830) 08 (i) )

k=Z+m
<53 (1 ~log(ex))gi ) 1)
<5( 3 (1~ tog(ex)si) ()

Therefore, we have
(Z4) @ <s( T~ togle)s) o).
k=n k=n

so by the definition of the norm, and taking into account that the dilation operator is
boundedin Y,

o o popi} ngHK(p .
| S ], | S [1+10e( Zrtme ) st
k=n Y k=n HngA(p Ag
o o =5, llgs Ik )P
< x + log | ——=——2— ),
~ Hkgngk Ap ]Enn”ngAq, g < Teelag

which goes to 0, as n — oo, since 37, ng”i(,, < oo and xlog(C/x) SxP,if0<x<C
and 0 < p < 1. Thus, we have seen that ¥ is complete and hence it is an r.i. quasi-
Banach space.
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Let us see now that the Hardy operator is bounded S : Ay, — Y. Indeed, for any
fENy:
1S1ly = inf{[|g]a, : (S)" < Sg7} <[ flla,-

Now, suppose S : Ay — X is bounded, and let us see that ¥ C X. In fact, for
f E€Ry[S,Ay], and any g € A, such that f* < Sg*, we have that

1f1lx < [1Sg"x < 115118l a,-

Therefore, taking the infimum over all such g we get that || f||x < ||S|[||f|ly. O

THEOREM 3.3. Let ¢ be quasi-concave. Then, R(Ry[S,Ag]) = Agp.
Proof. For any ¢t > 0 we have that

Wos,fs g1 (1) = IE8llon s ag) = inf {1 1n, : (E1je)” <SF*} < 20 lag = 000).

Similarly, if f € A is such that (E; /,g)" <Sf*, then )([*E)*t] <cf*™. By [2, §3 Theorem
2.10], this yields

o(t) = llx0.lla, < cllfla,-

Hence,
o(t) <cinf{||flla, : (E1/:8)" < Sf7} =W sa,)(). O

Notice that, in fact, we have the following embedding.
PROPOSITION 3.4. For a quasi-concave function ¢ it holds that

Ry[S.Ap] C Ay™.

Proof. If f € My, then

ISf1ly1= = ngP(Sf)*(tﬁP(l) <supS(f7) (1) @(1) = (1 f1l, -

>0
Therefore, S: My — A:,,"X’ is bounded, and in particular since Ay C My, 5o is
. Lo
S:Ahp — Ay

Hence, by definition
R[S, Ap] CAy™. O

REMARK 3.5. In general %,[S,Ay] and R[S, Ay] may be different spaces. For
example if @(¢) =1, and hence Ay, = L', then the range space SR[S,L!] does not exist
by Theorem 2.3, while

RylS,L'] = {f eL :,E%Vf*(t) = 0},
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In fact, since S: L' — L' is bounded, then R, [S,L!] C L. Also, if the function
fE€MRY[S,L'] there exists g € L' such that 7f*(¢) < [ g*(s)ds, and hence ¢ f*(t) — 0,
as t — 01, Thus,

MylS,L'] C {f €L lim 1f*(r) = 0}~

Let us now see that

{f €LY tim 1f* (1) = 0} C R[S, L],

concluding thus the proof. To this end, take f € L', || f||;1 = 1, and satisfying that
lim,_o+ £f*(t) = 0. Our goal is to find g € L' such that f* < S(g*). For 0 <t <1,
define h(r) = supy.,.,(sf*(s)), which is an increasing, positive function and 7 f*(r) <
h(r), 0 <t < 1. Observe that since

h
k) _ sup uf”(tu),
! 0<u<l

then A(t)/t is a decreasing function. Hence, if we define

H(t) = /t% @ds,

s
then H is absolutely continuous and satisfies that
log2h(t) < H(t) < h(r).

By the definition of %, and the hypothesis on f, it is easy to see that H(0T) = h(0T) =
0. Now, define

H'(t)/log2, 0<t<1,
g@)::{0(>/ g

1<t <oo.

It is clear that g € L! and, for 0 <7 < 1,

L _h@) _H@) _1p .
r<t P < pos =1 [swds<g [ewas

and, for 1 <1 < oo,
1 A1 1 /7
f*(t)é;é—( /g ;/g*(s)ds
0

Therefore, f*(r) < S(g")(), forevery t > 0.
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4. Marcinkiewicz spaces

In this section we introduce the auxiliary function @, which will allow us to find
a new approach for the study of the equation R(X) = A,. One of the main reasons to
consider this new function is the fact that it is equivalent to the fundamental function of
R[S, Ay| (Proposition 4.6).

Let ¢ : Ry — R, U{0} be a quasi-concave function. Let us consider the function

1o(r) )

S 19()
o) = It gl £ 1/7)

which clearly satisfies @(r) < @(¢).
LEMMA 4.1. Let ¢ be as in (5). Then,
(i) @(t) is increasing.

(ii) @(t)/t is decreasing.

(iii) If there is a constant C > 0 such that, for every t >0, @(r) > Ctlog(1+1/1),
then @(t) > Cmin{1,7}. In particular, ¢(t) # 0 for t > 0.

Proof. (i) Given s <1, it holds that

t ~
T O R O R
u>0log(1+u) ~u>0log(l+4u)
since ¢ is increasing.
(i) This is a direct consequence of the fact that log(1 +7) is increasing.

(iif) By hypothesis, it holds that

o(r)

p(1)=inf —2___ >
o) =il e+ 1/m = €

Moreover, since () is increasing and @(z)/t is decreasing, we have ¢(¢) > C, for
every t > 1 and @(¢) > Ct, for every t < 1. Hence, for every ¢ > 0 we have

©(t) >Cmin{l,r}. O
REMARK 4.2. Notice that:

~ o~ o to(r)
= inf = infinf ———M——

¢(0+) = infe(r) = Infinf T+ /n)
:inf¢(r).

>0 zn>lglog(1+t/r)
=inf¢(r) = ¢(0+),
r>0
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while
fim Y e @O i 90
1—eo f >0 t >0r>0 rlog(14¢/r)
i ) ! —0.

>0 r 1>0log(l+1/r)

The function defined in (5) will play a fundamental role in what follows, and will
allow us to build the space X = Mg as a candidate to solve the equation R(X) = A, in
the Banach case. We begin by showing the following embedding:

LEMMA 4.3. Given a quasi-concave function @ : Ry — Ry U{0} satisfying (3),
let us consider the function ¢ and the corresponding maximal Lorentz space M, @- Then,

A CR(Mg).

Proof. Observe that, by Lemma 4.1, ¢ is a quasi-concave function. We will prove
that Wiy, (t) < (1), for t > 0. Indeed,

1
1+s/t)
=sup — ‘1 dsinf ue(r)
wsoJo 1+s/t r>0rlog(l4+u/r)
= ili[(;tlog(l +u/t)ir>1£%
o(r)rlog(1+u/t)

<sup OV TR ).
\i‘i% tlog(1+u/t) o) O

=sup(Ey,g)" (u)p(u)

WM@ (t) - H M¢ u>0

Moreover, the function ¢ has the following maximal property.

LEMMA 4.4. Let ¢ satisfy (3). If for some ¢ we have Ay C R(My), then ¢ < @,
and hence
Ay CR(Mg) C R(My)

In other words, @ is maximal among the set of quasi-concave functions ¢ satisfying
t u
sup — log (1 + —)q)(u) < o).
u U t

Proof. Suppose Ay C R(My). Then, for every ¢ > 0 we have that
Q1) 2 Wit (1) = Sug(El/zg)**(u)fb(u)
u>

|
:supM/ ds
u>0 U 0 1+S/l

10}

u

= suptlog (1 + ?)

u>0
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Hence, for every u,t > 0 we have

ug(t)
o(u) S fog(1+ 1)

)

and, taking the infimum over 7 > 0, we conclude that ¢ (1) < @(u), as claimed. [

THEOREM 4.5. Let ¢ : Ry — Ry U{0} be a quasi-concave function satisfying
(3). The following statements are equivalent:

(i) There exists a quasi-concave function ¢, such that Ay = R(My).
(ii) Ao =R(Mg).

(iii) There exists K > 0 such that for all t > 0, there is u, > 0 satisfying

, o(r) o) , o(r)
f < < Kinf .
20 rlog(1+u/r) ~ tlog(l+u/t) 0 rlog(1+u/r)

(iv) There exist sequences of positive real numbers (ay), (by) such that

~ %
o)~ tsgpbklog (1 + ; )

Proof. (i) < (ii): Let us suppose first that Ay, = R(M,) for some ¢. Then, by
Lemma 4.4, it follows that ¢ < ¢. So we have that Mg C My . Now, this fact, together
with Lemma 4.3 yield

A(p C R(M(Np) C R(Mq)).

Since by hypothesis Ay = R(My), we must also have Ay = R(Mg). This proves the
implication (i) = (ii). Since the converse is immediate, both are equivalent.

(ii) < (iii): By Lemma 4.3, we have Ay = R(Mj) if and only if there is K > 0
such that (¢) < KWy, (t), for every ¢ > 0. This means that

uy. o(r)
1< Ksupriog (1+ ) inf 00
o) iﬂ% o8 +t ;I>10r10g(1+u/r)
which is equivalent to (iii).

(ii) < (iv): Suppose first that there exist sequences of positive real numbers (ay),
(by) such that

~ %
o) Ntsgpbklog <1 + ; )

Since

Wi, (t) ~ suptlog (1 + ?) i sup by log

1 ag
f———--— 1+ —
; log(1+u/r) ( + r)’
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in particular, for u = a;, we have

Wi, (1) Z tlog (1 + ?) in

1 ai aij
f = supbl (1 —) > bl (1 —f).
r log(1+u/r) Sip rlog {1+ 7 jtlog {1+ t

This holds for every j, so we also get that Wy, (1) 2 ©(t). Since the reverse inequality

holds by Lemma 4.3, we have that Ay = R(Mg).
Conversely, if ¢(t) ~ Wy, () then

! ~
¢(t) ~ sup ;10g (1 + ?) o(u).
Now, since ¢ is quasi-concave, by [4, Proposition 3.2.6] (see also [11]) there is an in-
creasing sequence (1 )rez of positive numbers such that @ (f2x12) = Q(t2x+1), ©/ (tar)t2k
~ @/(tog+1)t2k+1 and
P ~ . u
©(u) =~ sup @(tox41) min (1, —)
k D1

In particular, we have

t u ~ u
o(t) ~ sup —log (1 + —) sup @ (fox+1) min <1, —)
u u t k

12k+1
~ log(1 t log(1 t
:[Sup(p([2k+l)max{ Sup M’ Sup M}
k M<t2k+| t2k+1 U>p u

ot t
— tsup (P(21<+1)10g<1Jr 2k+1>. 0
b D+l t

Notice also that in Theorem 4.5, the best constant K appearing in (iii) coincides
with the best norm of the isomorphism between A, and R(Mg).

We prove next a very important feature of the function @, namely that it coincides
with the fundamental function of the optimal range R[S, Ay .

PROPOSITION 4.6. Given ¢ satisfying (3), we have that

(Pm[s,A(p](f) = ||X(o,r)||m[s,Aq,] ~o(t).

Proof. First, note that by Lemma 4.3 we have Ay C R(M(~p). Hence, by Lemma
2.1 we have that the operator
S:Ap — M’(b

is bounded. Therefore, we must have

R[S, Ag] C M

which implies that @gs.a,](7) 2 @ (1).
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Now, let y(z) denote @g(sa,](7). Since @ satisfies (3), we have that
R[S, Ap] C My.

Hence, it follows that
Ap CR(R[S,Ay]) CR(My).

Therefore, by Lemma 4.4, we have that @(t) 2 w/(t) = @xsa,)(t), as claimed. [

We know [15, Theorem 2.2] that in the case when E(p <1, then R(X) = Ay for
every r.i. space with fundamental function equivalent to ¢. In particular, we have
R(My) = Ay, so by Theorem 4.5 we also have R(Mg) = Ayp. We will see now that, in
fact in this case, ¢ ~ Q.

Recall that given a quasi-concave function ¢ we define [2]

(1) — su o(ts)
) =sup oy

which is a submultiplicative function (it is actually the smallest submultiplicative func-
tion larger than ¢).

LEMMA 4.7. Let ¢ be a quasi-concave function satisfying (3). Then,

(i) 9<7.
(i) IfE(P < 1 we have that E(p < 1.

(iii) @(t) =~ @(t) holds if and only if

_ t
IS m~

Proof. (i) By definition, for every s > 0 we have

= —su 5(ts)
#ls) =sup =0

ulog(1+1/u) inf tsQ(r)

- fgg f,‘i% to(u) >0 rlog(L+1s/r)
o(us) _
X sup = @(s),
u>0 (p(u) ( )

where we just picked r = us to get the last inequality.
(ii) Follows immediately from (i).
(iii) Since @ (1) < (), then the equivalence of these two functions holds if and
only if
s@(t/s)

< o0 =1 _—
o) S ¢) gg log(1+3s)’
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for every ¢ > 0. This is the same as
o) s
o(t/s) ~ log(l+s)’

for every s, > 0. Equivalently, this means that

B(s) — sup 203 _ o @) s
Pl =sup ) =S o0 ]s) < Togl15s)"

_ THEOREM 4.8. Let ¢ be a quasi-concave function satisfying (3). We have that
By <1ifandonlyif ¢(t) = ¢(t).

Proof. First, let us suppose that E(p < 1. Hence, by [15, Theorem 2.2]
R(My) = Ayp. (6)
In particular, by Theorem 4.5 we also have
R(M3) = Ag.

On the other hand, by Lemma 4.7 (ii) it holds that E;p < 1, which, by [15, Theorem 2.2]
implies that

R(Mg) = Ag. (7
Now, putting together (6)-(7) we get that Ay = Ag, which is equivalent to the condition

o(t)~ o).
Conversely, if the equivalence @ (1) ~ @(t) holds, then by Lemma 4.7 (iii) we now
that

1t
o
(1) og(1 1)’

for every ¢ > 0. Let us consider a > 1 large enough so that @(a) < a. We have that

At =

froz-2 5%

HEE)/ a"v2

?(v)
/1v2d

Since ®(a) < a, this is a convergent series, and using [2, §3 Lemma 5.9] we conclude
that B, <1. O

Note that for a quasi-concave function @(r) satisfying (3), then:

min{1,1} S ¢(1) < (8)

~ log(l +1)

In the following results we study the equality cases in (8), and prove some important
properties of the solution R(X) = A, for the corresponding spaces:



314 J. SORIA AND P. TRADACETE

PROPOSITION 4.9. The equivalence

(r)

t
" log(1+1)

holds if and only if @(r) =~ max{l,t}. Moreover, if y(t) =t/log(1+71), then the
Marcinkiewicz space My is minimal among the r.i. Banach spaces X satisfying that
R(X) = Amax{1,4 = L' NL™.

Proof. Ttis easy to see that if ¢(r) = max{1,7}, then the equivalence ¢(¢) =~ y(r)
holds. Let us now prove the converse result. We have that @ = y if and only if there is
some constant C > 0 such that ¢@(z) > Cy/(¢). This means that

log(l+71) . to(r)
gl /)
o(r). . log(l+1)
r lrtlflog(l +1t/r)
o(r)

= inf —=min{1,r}
ror

. o 9(r)
=min{ jof o nf %7}
S - o(r)
—mm{lg%(p(r)mm },

r—o

Cgiltlf

= inf
r

and we get that max{1,7} < ¢(¢). The converse inequality is always true for a quasi-
concave function.

Suppose now that X satisfies that R(X) = L' NL*. Then R(X) # {0} and, by the
minimality of My, [15, Proposition 3.5] among the r.i. Banach spaces with this property,
we have that My, C X as claimed. [J

PROPOSITION 4.10. If ¢(t) ~tlog(1+1/t), then ¢(t) ~ min{1,7} and, more-
over, L' + L™ is the unique r.i. Banach space X such that R(X) = A¢.

Proof. That @(¢) ~ min{1,7} is an easy calculation. Now, recall that we have
already seen in Example 2.10 that R(L' + L) = A, . To finish, suppose X is an r.i.
Banach space such that R(X) = A, . Clearly, we have that X C L' 4+ L™. Moreover, let
¢x denote the fundamental function of this space. Since X C My, we have that

Hence, by Lemma 4.4, we conclude that
Mg C My, CL'+ L.

Since ¢(¢) = min{1,7}, it follows that Mgz = M, = L' + L~ and, therefore, ¢ ~ @y .
But,
L'+ L7 = Aing1,} = Mgy CX C Moy =Myping1,y =L' +L7. O
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EXAMPLE 4.11. We have seen in Theorem 4.8 that if E(p <1, then R(Mg) =A,.
Propositions 4.9 and 4.10 show that this also holds for particular choices of ¢ with
B, = 1. Letus see one further example. If y/(#) =1/log(1+1¢), then ,, =1 and

~ t
1) = .
V) = S olos( 1/ log(1+7)

We observe that the function f; (r) =log(1+1¢/r)log(1+r) satisfies that f; (r) = f; (t/r),
and hence the supremum is attained when r =1/r;i.e., r = \/t. Therefore,

t

VO = v

An easy calculation now shows that

and hence R(My) = Ay .

We are going to analyze another approach in order to study the validity of the
equation R(Mg) = Ay . First, we recall that there is a canonical involution in the cone
of quasi-concave functions so that, for each such ¢, we can consider ¢ defined by

0 (1) =9'(1). 9)

THEOREM 4.12. Let ¢ be a quasi-concave function satisfying (3) and let ¢* be
as in (9). Then,

(i) @° satisfies (3).
(ii) @B2(t) =Wy, (t).
(iii) @®08(1) = @2 ().
(iv) R(Mg) = Ay if and only if 9>* (1) = ¢(1).
) ¢ 59.
Proof. We have seen in (8) that if ¢(r) = rlog(1 + 1/t), then @() is quasi-

concave and @(r) < t/log(1+1), from where it follows that ¢*(z) = rlog(1+1/1),
which s (i).
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We now prove (ii):

1 trlog(1+ 1)
0°4(1) = — sup i
- ¢°(r) ro 9n(r)
r trlog(1+ 1)
trlog(1+$)
r rslog(l-l—E)
sup ————=2~
s o(s)
1y. o(s)
=suptlog (1 + — ) inf ————
P g( fr) s slog(1+4)
ZWM(T’(I).

Let us prove (iii): By Lemma 4.3 we have that Wy, (1) < ¢(7), and hence, using
(ii) and the involution property:

QAN (1) = Wiy )" (1) = 9°(1).

For the converse inequality, we apply again Lemma 4.3, but with the function ¢@* ;
that is;
9°10 (1) = War_, (1) < 9 (0).

Finally, R(M) = Ay if and only if Wy, ~ ¢, and (iv) follows from (ii).
For the proof of (v), note that

1
tslog (14—
t 1 1
6(1‘) = sup (,0(( S)) Z sup ( tS) _
s>0 s s>0 (P(S) lng
5>

1
tslog <1 + —)

ts
COROLLARY 4.13. If ¢ and ¢, satisfy (3), then

R(Mg) = R(Mgz) W (1) = Wags (1) & G1(e) ~ ).

5. Lorentz spaces

In this section we study under which conditions we have that, given a quasi-
concave function ¢ satisfying (3), there exists a Lorentz space Ay such that Ay =
R(Ay).

THEOREM 5.1. Let ¢ be a quasi-concave function satisfying (3), and let ¢(t) =
(@) (1/t), where @’ (t) =to(1/t). If ¢ is quasi-concave and }Lngow(s)/s =0, then

R(A@) =Ay.
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Proof. Let us start by computing the fundamental function of R(Ay), for a given
quasi-concave function y':

Wa, (0= [ vlu, ) du= [ w(i(s 1)) au
:,/0‘” (;I:L(rr))z dr=1 0’ (tll:L(r) °°

2 ;/Ot u/(r)dr—i—t/ol/tu/(%) dr.
1/t

Now, if we denote y (r / y(r)dr and y,(t) =1t y(l/r)dr, since y

is increasing, it is clear that

Therefore, it follows that

Wh,, () zt/ol/t u/<l> dr.

r

Now, since (ﬁ is quasi-concave, then
1/t )
Wi, (1) m/ (p( Jdr = ()~ tlimse(1/s) = p(r). T
0 s—0

EXAMPLE 5.2. If E(p < 1, then we know that R(Ay) = A, . If, for example, we
take @ (t) =rlog(1+1/1), for which Bq) =1,then ¢(r) =1/(r+1) ~min{1,¢}, which
satisfies the hypothesis of Theorem 5.1. Hence Ag = L'+ L~ and

R(AG) = Miog(1+1/1)-

THEOREM 5.3. Let @ be a quasi-concave function satisfying (3). Then, Ay =
R(Ay) for some quasi-concave function ¢ if and only if there exists an increasing
sequence (ak)kez and a decreasing sequence (by)iez, of non-negative real numbers,
and a constant ¢ > 0 such that

<p()Nc+zkEZZbklog(1+ 4.

Proof. Suppose first, that Ay, = R(Ay), for some ¢. By [4, Proposition 3.2.6]
(see also [11]), ¢ is equivalent to a function of the form

= 0(t) mm( )+11m¢()+llmwt

keZ e

where (f)rez is a sequence in (0,00) with limg_, oy = 0 and limy_ oty = +eoo.
Moreover, we can assume that limy_... ¢(s) /s = 0, since otherwise we can write Ay =
Ay, MLy and

A(p = R(A¢0 ﬂLl) = R(A%) ﬂR(Ll) =0.
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Now

1/t ld
Wh (1) =t CD—)
i [T )ar

()/l/t in (1 1>d+/1/t1‘ (s)d
=1 1 min y t m
keZ(P k 0 ! rty " 0 SLO¢S "
1, 1
~1 ¢(k)1og(1+—")+¢(0+).
rez t

Hence, we can take a; = i, by = ¢ () /tx and ¢ = ¢(0T) so that

o) =c+t Zbklog(l +a—k>.
keZ !

For the converse, assume now that such sequences exist so that

o(t)~c+1 Y blog (1 + a—")
kez !

Let

t
¢(t)=c+ ) braymin(1,— ).
ke%kk ( ak>

|

Now, it is straightforward to check that Ay, = R(Ay).
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