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AN EXTENSION OF TURÁN’S INEQUALITY

GENO NIKOLOV AND VERONIKA PILLWEIN

(Communicated by T. Erdélyi)

Abstract. Let pm(x) = P(λ)
m (x)/P(λ)

m (1) be the m -th ultraspherical polynomial normalized by
pm(1) = 1 . We prove the inequality |x|p2

n(x)− pn−1(x)pn+1(x) � 0 , x ∈ [−1,1] , for −1/2 <
λ � 1/2 . Equality holds only for x = ±1 and, if n is even, for x = 0 . Further partial results on
an extension of this inequality to normalized Jacobi polynomials are given.

1. Introduction and statement of the result

Turán’s inequality was formulated around 1940 for Legendre polynomials Pn(x)
stating that for all n � 0 and x ∈ [−1,1]∣∣∣∣ Pn(x) Pn+1(x)

Pn−1(x) Pn(x)

∣∣∣∣ = Pn(x)2 −Pn−1(x)Pn+1(x) � 0,

where equality is only attained for x = ±1. Since its first appearance there have been
several proofs provided, e.g., Szegő [22] gave four different proofs of this inequality. In
the middle of the 20th century, Turán type inequalities were obtained for various classes
of orthogonal polynomials such as Gegenbauer, Hermite, and Laguerre polynomials
with appropriate normalization as well as refined lower and upper bounds for Turán’s
determinants for ultraspherical polynomials [21, 25]. The extension to the class of Ja-
cobi polynomials was done by Gasper [8, 9] in the 1970s. In the late 1990s Szwarc [24]
provided a general analysis of Turán type inequalities for sequences of orthogonal poly-
nomials based on the coefficients of the defining three term recurrence relations. The
same approach is applied in Berg and Szwarc [2] for derivation of conditions ensuring
monotonicity of the normalized Turán determinants. For a historic overview and further
references the reader is referred to [24] and [2].

As usual, the notation P(λ )
m stands for the m-th ultraspherical polynomial, which

is orthogonal in [−1,1] with respect to the weight function wλ (x) = (1− x2)λ−1/2 ,
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λ > −1/2, and is normalized by P(λ )
m (1) =

(m+2λ−1
m

)
. We shall need a different nor-

malization for these polynomials, namely, we shall require that they take value 1 at
x = 1, so we set

pm(x) = p(λ )
m (x) := P(λ )

m (x)/P(λ )
m (1), m = 0,1, . . . , (1.1)

where, for the sake of brevity, the superscript (λ ) will be omitted hereafter. We prove
the following extension of Turán’s inequality:

THEOREM 1. Let pn be defined by (1.1), and λ ∈ (−1/2,1/2] . Then, for every
n ∈ N ,

|x|p2
n(x)− pn−1(x)pn+1(x) � 0 for every x ∈ [−1,1] . (1.2)

The equality in (1.2) holds only for x =±1 and, if n is even, for x = 0 . Moreover, (1.2)
fails for every λ > 1/2 and n ∈ N .

This variation of Turán’s inequality was introduced by Gerhold and Kauers [11]
and proven in the limit case λ = 1/2, i.e., for Legendre polynomials.

The proof of Theorem 1 using classical tools is given in the next section. In Sec-
tion 3 we present a computer algebra approach to the proof of Theorem 1 indicating
that statements of this form can be proven nowadays almost routinely by a computer.
Both approaches have been in included in order to allow for a fair comparison of these
techniques. In Section 4 we compare our lower bound for Turán’s determinant for ul-
traspherical polynomials with the hitherto known results. In the final section we discuss
an extension of Theorem 1 to the Jacobi case, and provide some partial results obtained
with the assistance of computer algebra.

2. Classical analysis of Theorem 1

Assume first that {pm} is a general sequence of orthogonal polynomials, defined
by the three term recurrence equation

xpn(x) = γnpn+1(x)+ αnpn−1(x), n = 0,1,2, . . . , (2.1)

where p−1(x) := 0, p0(x) = 1, α0 = 0, αn+1 > 0, γn > 0, and αn + γn = 1 for
every n ∈ N0 . Clearly, pm(−1) = (−1)m and pm(1) = 1 for every m ∈ N0 , and
more generally pm(−x) = (−1)mpm(x) . By these properties it is easy to see that
|x|p2

n(x)− pn−1(x)pn+1(x) is an even function that vanishes at x = ±1 and, if n is
even, also at x = 0. We therefore set

Δ̃n(x) := xp2
n(x)− pn−1(x)pn+1(x) , n ∈ N , (2.2)

and our goal is to examine which conditions guarantee that Δ̃n(x) > 0 for every x ∈
(0,1) . We start with some representations of Δ̃n(x) .

LEMMA 1. Assume that the sequence {pm} satisfies the three term recurrence
relation (2.1). Then the following representations hold true:

γnΔ̃n(x) = γnxp2
n(x)+ αnp2

n−1(x)− xpn−1(x)pn(x) , (2.3)
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αnΔ̃n(x) = αnxp2
n(x)+ γnp2

n+1(x)− xpn(x)pn+1(x) , (2.4)

γnΔ̃n(x) = (γnx− γn−1)p2
n(x)+ (αn−αn−1x)p2

n−1(x)+ αn−1Δ̃n−1(x) , (2.5)

γnΔ̃n(x) =x
(
αnpn−1(x)− γnpn(x)

)(
pn−1(x)− pn(x)

)
+ αn(1− x)p2

n−1(x) ,
(2.6)

Proof. Formulae (2.3) and (2.4) follow from rewriting γnpn+1(x) and αnpn−1(x)
in γnΔ̃n and αnΔ̃n , respectively, using the recurrence equation (2.1). Subtracting (2.4)
(with n− 1 instead of n ) from (2.3), we obtain (2.5). Formula (2.6) is deduced by
multiplying xpn−1(x)pn(x) in the right-hand side of (2.3) by γn + αn (= 1) , and then
adding and subtracting αn x p2

n−1(x) . �

Our next lemma shows that the inequality Δ̃n(x) > 0 generally holds true in a
subinterval of (0,1) .

LEMMA 2. Assume that the sequence {pm} satisfies the three term recurrence
relation (2.1). Then

Δ̃n(x) > 0 for every x ∈ (0,4αnγn) .

Proof. The right-hand side of (2.3) is equal to

(√
αnpn−1(x)− x

2
√

αn
pn(x)

)2
+

x
4αn

(
4αnγn− x

)
p2

n(x) .

Both summands are non-negative if x ∈ (0,4αnγn) . Moreover, for x ∈ (0,4αnγn) this
expression would be equal to zero only if both pn(x) and pn−1(x) are equal to zero,
which is impossible, since the zeros of pn and pn−1 interlace. �

From now on, we restrict our considerations to the case of ultraspherical poly-

nomials, i.e., {pm} = {p(λ )
m } , as normalized by (1.1). The zeros of pm are denoted

henceforth by x1,m(λ ) < x2,m(λ ) < · · · < xm,m(λ ) . We collect in the next lemma some
well-known properties of ultraspherical polynomials, which will be needed for the proof
of Theorem 1.

LEMMA 3. (i) {pn} = {p(λ )
n } satisfy the recurrence relation (2.1) with

γn =
n+2λ

2(n+ λ )
, αn =

n
2(n+ λ )

. (2.7)

(ii) The positive zeros of p(λ )
n are strictly monotone decreasing functions of λ in

(−1/2,∞) . Moreover, for every n � 2 ,

xn,n(λ ) �
( (n−1)(n+2λ +1)

(n+ λ )2 +3λ +5/4+3(λ +1/2)2/(n−1)

)1/2
. (2.8)
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(iii) The following relations hold true:

p′n(x) :=
d
dx

{
p(λ )

n (x)
}

=
n(n+2λ )
2λ +1

p(λ+1)
n−1 (x) , (2.9)

pn−1(x) =
1
n
(1− x2)p′n(x)+ xpn(x) . (2.10)

The above properties of p(λ )
n are easily obtained from their analogues for P(λ )

n ,
given, e.g., in Szegő’s monograph [23]. The recurrence relation (2.1) with the coef-
ficients γn and αn given in (2.7) follows from [23, Eqn. (4.7.17)]. Formulae (2.9)
and (2.10) are consequences of [23, loc. cit. (4.7.14) and (4.7.27)]. The monotone

dependence of the zeros of p(λ )
n on λ follows from a well-known observation due to

A.A. Markov, see e.g., [23, Theorem 6.12.1]. The upper bound (2.8) for the extreme
zeros of ultraspherical polynomials is proved in [17, Lemma 3.5] (for other bounds for
the extreme zeros of classical orthogonal polynomials, see, e.g., [6] and the references
therein).

Set

zn(λ ) := 4αnγn = 1− λ 2

(n+ λ )2 .

The following is an immediate consequence of Lemma 2:

COROLLARY 1. Let {pm} = {p(λ )
m } , λ > −1/2 , be the sequence of ultraspheri-

cal polynomials. Then for every n ∈ N ,

Δ̃n(x) > 0 , x ∈ (
0,zn(λ )

)
.

In view of Corollary 1, (1.2) is true for λ = 0, and to prove (1.2) for λ ∈ (−1/2,0)
∪ (0,1/2] , we have to show that Δ̃n(x) > 0 when x ∈ [zn(λ ),1) .

The case n = 1, λ ∈ (−1/2,1/2] is easily verified. Namely,

Δ̃1(x) = x3− 2(λ +1)
2λ +1

x2 +
1

2λ +1
=

x−1
2λ +1

(
(2λ +1)x2− x−1

)
,

and the polynomial q(x) = (2λ +1)x2−x−1 has a unique positive root. Since q(1) =
2λ −1 � 0, it follows that q(x) < 0, and consequently Δ̃1(x) > 0 for every x ∈ (0,1) .

We therefore assume in what follows that n � 2. In our proof of the inequality
Δ̃n(x) > 0, x ∈ [zn(λ ),1) we shall distinguish between the cases λ ∈ (−1/2,0) and
λ ∈ (0,1/2) .

LEMMA 4. If λ ∈ (−1/2,0) , then Δ̃n(x) > 0 for every x ∈ [zn(λ ),1) .

Proof. We use induction with respect to n . The case n = 1 was settled above,
and we assume that, for some n � 2, Δ̃n−1(x) > 0 for every x ∈ [zn−1(λ ),1) . Since
zn−1(λ ) < zn(λ ) , we have also Δ̃n−1(x) > 0 for every x ∈ [zn(λ ),1) .

By the interlacing property and monotonicity of the zeros of ultraspherical poly-
nomials, we have

0 � xn−1,n−1(λ +1) � xn−1,n−1(λ ) < xn,n(λ ) < xn+1,n+1(λ ) < 1 , (2.11)
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where the first two inequalities are strict unless n = 2, and in the latter case we have
x1,1(λ +1) = x1,1(λ ) = 0.

Next, we show that if λ ∈ (−1/2,0) , then the largest zero of p′n , which, in view
of (2.9), is xn−1,n−1(λ +1) , satisfies

xn−1,n−1(λ +1) < zn(λ ) . (2.12)

Indeed, by Lemma 3(ii) we readily get

xn−1,n−1(λ +1) � xn−1,n−1(1/2) �
(
1− 5

n2−n+3

)1/2
< 1− 1

(2n−1)2 � zn(λ ) .

As is seen from (2.3) and (2.4), the inequality Δ̃n(x) > 0 is true whenever x > 0
and pn−1(x)pn(x) � 0 or pn(x)pn+1(x) � 0, in particular, Δ̃n(x) > 0 in the interval
[xn−1,n−1(λ ),xn+1,n+1(λ )] . Set

In := (xn−1,n−1(λ +1),xn−1,n−1(λ )) .

In view of (2.11) and (2.12), the induction step from n− 1 to n will be done if we
manage to show that Δ̃n(x) > 0 for x ∈ In (this interval is void when n = 2) and for
x ∈ (xn+1,n+1(λ ),1) .

Assume first that x ∈ (xn+1,n+1(λ ),1) , then 0 < pn(x) < pn−1(x) , since the zeros
of pn − pn−1 interlace with the zeros of pn , and the rightmost zero of pn − pn−1 is
at x = 1. Moreover, since αn > 1

2 > γn > 0 for λ ∈ (−1/2,0) , we have αn pn−1(x)−
γnpn(x) > 0. Then by (2.6) we conclude that

γnΔ̃n(x) > x
(
αnpn−1(x)− γnpn(x)

)(
pn−1(x)− pn(x)

)
> 0 , x ∈ (xn+1,n+1(λ ),1) .

Now assume that n � 3 and x ∈ In∩ [zn(λ ),1) . By (2.5) and the induction hypoth-
esis, we have

γnΔ̃n(x) > (αn−1x−αn)
( γnx− γn−1

αn−1x−αn
p2

n(x)− p2
n−1(x)

)
, (2.13)

and it suffices to show that the right-hand side of the inequality (2.13) is positive in
In ∩ [zn(λ ),1) . A straightforward calculation using (2.7) shows that if λ ∈ (−1/2,0)
and x ∈ [zn(λ ),1) , then

αn−1x−αn � 4αn−1αnγn−αn = αn(4αn−1γn−1) = − λ (λ +1)αn

(n+ λ )(n+ λ −1)
> 0.

Therefore, the right-hand side of inequality (2.13) is positive in In∩ [zn(λ ),1) when

γnx− γn−1

αn−1x−αn
p2

n(x)− p2
n−1(x) > 0 , x ∈ In∩ [zn(λ ),1) . (2.14)

According to (2.10) we have pn−1(x)− xpn(x) = (1− x2)p′n(x)/n , hence pn−1(x) >
xpn(x) for x ∈ In ; moreover, since both pn−1(x) and xpn(x) are negative in In (see
(2.11)), we get

x2p2
n(x) > p2

n−1(x) , x ∈ In . (2.15)
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We shall show that

ψ(x) :=
γnx− γn−1

αn−1x−αn
> x2 , x ∈ [zn(λ ),1) ,

then obviously (2.14) is a consequence from (2.15). The function ψ is continuous in
[zn(λ ),1] ; moreover, from αn + γn = αn−1 + γn−1 = 1 we find that ψ(1) = 1 and

ψ ′(x) =
(αn −αn−1)(αn−1 + αn−1)

(αn−1x−αn)2 < 0 , x ∈ [zn(λ ),1) ,

since αn−1 > αn > 1/2. Thus, ψ(x) is a decreasing function in [zn(λ ),1) , and ψ(x) >

1 > x2 therein. Consequently, (2.14) is true, and therefore Δ̃n(x) > 0 for x ∈ In ∩
[zn(λ ),1) . The proof of Lemma 4 is complete. �

Next, we prove the analogue of Lemma 4 for the case λ ∈ (0,1/2] .

LEMMA 5. If λ ∈ (0,1/2] , then Δ̃n(x) > 0 for every x ∈ [zn(λ ),1) .

Proof. Again, we apply induction with respect to n , and the base case n = 1
was already settled. As in the proof of Lemma 4, we assume that, for some n � 2,
Δ̃n−1(x) > 0 in [zn−1(λ ),1) , then Δ̃n−1(x) > 0 in [zn(λ ),1) , too. To accomplish the
induction step from n−1 to n , we observe that if λ ∈ (0,1/2] , then

zn(λ ) > xn+1,n+1(λ ) . (2.16)

Indeed, by Lemma 3(ii) we have xn+1,n+1(λ ) < xn+1,n+1(0) = cos π
2n+2 , while zn(λ ) �

zn(1/2) = 1− 1/(2n + 1)2 . Then (2.16) follows from the inequality sin2 π
4(n+1) >

1
2(2n+1)2 , which is true since sin t > 2

π t for t ∈ (0,π/2) .
In view of (2.5), the inductional hypothesis and (2.16), to prove the inequality

Δ̃n(x) > 0 for x ∈ (zn(λ ),1) , it suffices to show that

(γnx− γn−1)p2
n(x)+ (αn−αn−1x)p2

n−1(x) > 0, x ∈ [xn+1,n+1(λ ),1) . (2.17)

For λ > 0 the sequences {γn} and {αn} defined by (2.7) satisfy

γn ↘ 1
2 and αn ↗ 1

2 as n → ∞ .

Therefore, γnx−γn−1 � γn−γn−1 < 0 and αn−αn−1x � αn−αn−1 > 0. Since pn(x) >
0 and pn−1(x) > 0 for x ∈ [xn+1,n+1(λ ),1) , the inequality (2.17) is equivalent to

ϕ(x) :=
pn−1(x)
pn(x)

�
√

γn−1− γnx
αn−αn−1x

, [xn+1,n+1(λ ),1) . (2.18)

It is well-known that ϕ(x) is monotone decreasing and convex in (xn,n,∞) , where xn,n

is the rightmost zero of pn , see e.g. [23, Theorem 3.3.5] for a general result. For the
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sake of completeness, we propose a direct proof for the case pn = p(λ )
n . By (2.10), we

have

ϕ(x) =
pn−1(x)
pn(x)

= x+
1− x2

n
p′n(x)
pn(x)

= x+
1− x2

n

n

∑
k=1

1
x− xk,n

, (2.19)

where {xk,n} = {xk,n(λ )} are the zeros of pn . Differentiating the last expression, we
obtain that ϕ ′(x) < 0 and ϕ ′′(x) > 0 for x > xn,n(λ ) . Indeed,

ϕ ′(x) = 1− 2x
n

n

∑
k=1

1
x− xk,n

− 1− x2

n

n

∑
k=1

1
(x− xk,n)2

=
1
n

n

∑
k=1

(x− xk,n)2 −2x(x− xk,n)−1+ x2

(x− xk,n)2

=
1
n

n

∑
k=1

x2
k,n−1

(x− xk,n)2 < 0 ,

and

ϕ ′′(x) =
2
n

n

∑
k=1

1− x2
k,n

(x− xk,n)3 > 0 .

Since ϕ(1) = 1, it follows from the convexity of ϕ that ϕ(x) > 1 + ϕ ′(1)(x− 1) in
(xn,n(λ ),1) . We make use of (2.19) and (2.9) to calculate ϕ ′(1) :

ϕ ′(1) = 1− 2
n

p′n(1) = −2n+2λ −1
2λ +1

.

Therefore, we have

ϕ(x) > 1+
2n+2λ −1

2λ +1
(1− x) for x ∈ [xn+1,n+1(λ ),1) . (2.20)

Now we estimate the right-hand side of (2.18). On using (2.7), we find

γn−1− γnx
αn−αn−1x

= 1+
(1−αn−1−αn)(1− x)

αn −αn−1x
= 1+

λ (2n+2λ −1)(1− x)(
n(n+ λ −1)−λ

)
(1− x)+ λ

.

For n � 1, λ > 0 and 0 < x < 1 we have
(
n(n+λ −1)−λ

)
(1−x)+λ � λ , therefore

γn−1− γnx
αn−αn−1x

� 1+(2n+2λ −1)(1− x) .

In view of this estimate and (2.20), the inequality (2.18) will be proved if we manage
to show that

1+
2n+2λ −1

2λ +1
(1− x) �

√
1+(2n+2λ −1)(1− x) for x ∈ [xn+1,n+1(λ ),1) .
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After squaring both sides of this inequality, we find that a sufficient condition for its
validity is 2/(2λ +1) � 1, i.e., λ � 1/2. Thus, (2.17) is true, and therefore Δ̃n(x) > 0
for x ∈ [zn(λ ),1) . The proof of Lemma 5 is complete. �

Summarizing, the inequality (2.1) follows from: 1) Corollary 1 for λ = 0; 2)
Corollary 1 and Lemma 4 for λ ∈ (−1/2,0) ; 3) Corollary 1 and Lemma 5 for λ ∈
(0,1/2] .

It remains to prove the last claim of Theorem 1, namely that if λ > 1/2, then (1.2)
fails for every n ∈ N . On using pn−1(1) = pn(1) = 1, (2.9) and (2.1), we find

γnΔ̃′
n(1) = −αn +(2γn−1)p′n(1)+ (2αn−1)p′n−1(1)

=
(2λ −1)(n+2λ )
2(2λ +1)(n+ λ )

.

If λ > 1/2, then Δ̃′
n(1) > 0, and hence Δ̃n(1− ε) < Δ̃n(1) = 0 for a sufficiently small

ε > 0. This completes the proof of Theorem 1.

3. A computer algebra approach to Theorem 1

Gerhold and Kauers [10] introduced a method for proving inequalities on se-
quences that depend on a discrete parameter and are defined by general (possibly non-
linear) systems of difference equations. Many special functions are within this class,
in particular classical orthogonal polynomials that can be defined by three term recur-
rences. In [11] they considered in particular Turán type inequalities and discovered and
proved Theorem 1 for Legendre polynomials. Their method essentially proceeds by
induction along the discrete parameter and they automatically derive a sufficient con-
dition for the given inequality to hold. This sufficient condition consists of a system of
polynomial inequalities. Note that the modified Turán inequality (1.1) is a polynomial
inequality only for particular choices of n and not a polynomial inequality for sym-
bolic n . The computer algebra algorithm that is applied to show that the system of
polynomial inequalities is consistent is Cylindrical Algebraic Decomposition (CAD).

CAD was introduced in the 1970s by Collins [5] to solve the problem of real
quantifier elimination. Given a quantified formula of polynomial inequalities (or, more
general, rational or algebraic inequalities), a CAD computation gives an equivalent,
quantifier free formula. If there are no free variables in the given expression, then this
formula is one of the logical constants True or False. There are several implementations
of CAD available [3, 19, 20], for this work we use the Mathematica built-in commands
“CylindricalDecomposition” and “Resolve”. For a recent practical overview on how to
apply CAD and which problem classes are suitable as input for CAD see [15].

Let us illustrate how Lemma 2 can be proven using CAD. Recall that by means of
identity (2.3) it had to be proven that

γnxp2
n(x)+ αnp2

n−1(x)− xpn−1(x)pn(x) > 0, (3.1)

for all x ∈ (0,4αnγn) with αn,γn > 0. This result follows from the more general state-
ment, where we replace αn by a positive real variable a > 0, and analogously γn > 0 by
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c > 0, and pn−1(x), pn(x) by real variables y−1,y0 . A classical quantifier elimination
task for CAD is to show that

∀a,c,x,y−1,y0 :
(
a > 0∧ c > 0∧0 < x < 4ac

)⇒ cxy2
0 +ay2

1− xy1y0 � 0

is true (this computation can be carried out very quickly). From this more general and
purely polynomial statement the non-negativity of the expression in (3.1) follows. CAD
can also be used to determine for which values the strictness is violated and we find that
equality is only attained for y−1 = y0 = 0. This case, however, can be ruled out by the
argument given in the proof of Lemma 2.

The CAD computations presented in this paper were carried out using Math-
ematica’s built-in implementation of CAD. The computation time is negligible for
all of them and could certainly be carried out with other implementations such as,
e.g., [7, 3, 19, 4] as well. A reason why we stick to using the Mathematica implemen-
tation is that Kauers [12] implemented the Gerhold-Kauers method as a Mathematica
package which is freely available for download. The proof of Theorem 1 can be carried
out without knowledge of the underlying algorithm using the command “ProveInequal-
ity”. The input can be formulated using standard Mathematica notation such as, e.g.,
GegenbauerC for Gegenbauer polynomials. For sake of readability below we use the

traditional notation and also plug in explicitely P(λ )
n (1) = (2λ )n

n! .

In[1]= ProveInequality[x
(
P(λ)

n+1(x)(n+1)!/(2λ)n+1
)2 −n!(n+2)!/

(
(2λ)n(2λ)n+2

)
P(λ)

n (x)P(λ)
n+2(x) > 0,

Using →{− 1
2 < λ � 1

2 ∧0 < x < 1},Variable → n]

Out[1]= True

Note that the range of the continuous variables needs to be provided and that the
discrete variable (along which internally the induction is performed) has to be specified.
Then with a one line statement the main theorem can be proven for both positive and
negative λ at once. Readers interested in the underlying mechanisms will find the in-
termediate steps carried out explicitly in [11] for Legendre polynomials. One drawback
of the method is that the proof only delivers the final result and usually does not provide
further insight. Still, not only did it provide the first computer proofs of some special
function inequalities from the literature [10, 11, 13, 14], but was used to resolve some
open conjectures [1, 14, 16, 18].

As mentioned earlier, the method only needs the defining recurrence of the given
expressions as input. For common special functions such as Gegenbauer polynomials
the defining recurrence need not be given additionally, because the programhas it stored
internally. In many applications it may happen that we do not have a closed form
representation but only the recursive description at hand. The function call providing
also the recursive definition is as follows:

In[2]= ProveInequality[xp[n+1]2 − p[n]p[n+2]2 > 0,Using →{− 1
2 < λ < 1

2 ∧0 < x < 1},
Where → {p[n+2]= = 2x(λ+n+1)

2λ+n+1 p[n+1]− (n+1)
2λ+n+1 p[n], p[0]= =1, p[1]= =x},Variable → n]

Out[2]= True

The function calls above very quickly deliver the desired answer, but note that
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CAD-computations may be costly both with respect to time and memory consumption.
The run time depends on the number of variables, the degrees of the involved polyno-
mials, as well as the number of inequalities in a doubly exponential way in the worst
case. Hence, even if the computation would eventually terminate, either the computer
may run out of memory before that, or the user out of patience. It is recommended,
however, to be aware of the fact that these computations may take some time when
using the program and not interrupt calculations after a couple of minutes (or hours).
The procedure is by no means approximate and hence if the result we aim at is a proof,
then it is worth investing some resources.

4. Comparison to known results

For normalized Gegenbauer polynomials pm(x) = P(λ )
m (x)/P(λ )

m (1) let us denote
the classical Turán determinant by Δn,λ (x) ,

Δn,λ (x) = p2
n(x)− pn−1(x)pn+1(x).

Thiruvenkatachar and Nanjundiah [25] showed that in (0,∞) the normalized Turán
determinant

ϕn,λ (x) :=
Δn,λ (x)
1− x2

is monotone increasing if λ > 0 and monotone decreasing if − 1
2 < λ < 0. In particular,

cn,λ � ϕn,λ (x) � Cn,λ , x ∈ (−1,1), (4.2)

with sharp constants 0 < cn,λ < Cn,λ , given by cn,λ = p2
n(0)− pn−1(0)pn+1(0) and

Cn,λ = (2λ +1)−1 , if λ > 0, and with interchanged cn,λ and Cn,λ , if −1/2 < λ < 0.
Theorem 1 asserts that if λ ∈ (− 1

2 , 1
2 ] , then for x ∈ (−1,1) ,

ϕn,λ (x) � pn(x)2

1+ |x| := gn,λ (x) . (4.3)

A result of a similar nature due to Szász [21] asserts that for every λ ∈ (0,1) ,

ϕn,λ (x) � λ (1− p2
n(x))

(n+ λ −1)(n+2λ )(1− x2)
=: hn,λ (x) . (4.4)

In view of (4.2), (4.3) and (4.4), it is of interest to compare the normalized Turán de-
terminant ϕn,λ (x) with its lower bounds gn,λ (x) , hn,λ (x) in the case 0 < λ � 1/2, and
with gn,λ (x) in the case −1/2 < λ < 0.

It turns out that for 0 < λ � 1/2 the inequality gn,λ (x) � cn,λ holds only near the
endpoints of [−1,1] , i.e., our pointwise lower bound gn,λ (x) for the normalized Turán
determinant ϕn,λ (x) improves upon the “uniform” lower bound cn,λ only on a subset
of [−1,1] of a small measure. However, for most x ∈ (−1,1) our pointwise estimate
is better than the Szász one.
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Figure 1: Graphs of gn,λ (x) (black), hn,λ (x) (gray), φn,λ (x) (dashed), and cn,λ (dotted) for

n = 12 (top line) and n = 13 (bottom line), and (from left to right) λ = 1
2 , 1

4 ,− 1
4 .

The situation changes when λ is negative. Namely, in that case the inequality
gn,λ (x) < cn,λ holds only in some small neighborhoods of the zeros of pn . Thus, in
the case −1/2 < λ < 0, for most x ∈ (−1,1) Theorem 1 furnishes a better pointwise
bound than the “uniform” bound cn,λ . Also, the local maxima of gn,λ (x) imitate the
shape of ϕn,λ (x) . See Figure 1.

5. The non-symmetric case

In view of Gasper’s result [8, 9], it seems reasonable to look for extension of
Theorem 1 to the normalized Jacobi polynomials. Even though the most general result
can not be proven using the Gerhold-Kauers method yet (at least not within a reasonable
amount of time), several interesting observations can be made with the assistance of
computer algebra.

Recall that P(α ,β )
m (x) , α,β > −1, is the m-th Jacobi polynomial, orthogonal with

respect to the weight function wα ,β (x) = (1− x)α (1+ x)β in [−1,1] , and normalized

by P(α ,β )
m (1) =

(m+α
m

)
. As in the classical study of Turán determinants for Jacobi poly-

nomials by Gasper [8, 9] we shall need a different normalization for these polynomials,
namely, we shall require that they take value 1 at x = 1. Hence we set, oppressing the
dependency on α and β for sake of brevity,

qm(x) = P(α ,β )
m (x)/P(α ,β )

m (1), m = 0,1,2, . . . , (5.5)

and study the following extension of Turán’s determinant,

Δ̂m(x) = |x|q2
m(x)−qm−1(x)qm+1(x), x ∈ [−1,1], −1 < α � β � 0.

Note that by the standard relation between Jacobi and Gegenbauer polynomials the
range of α and β includes the previously discussed case. In the general case of α 
= β
we still have Δ̂m(1) = 0, but Δ̂m(x) is no longer symmetric with respect to the origin.
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Assume first that {qm} is a general sequence of orthogonal polynomials, defined
by the three term recurrence equation

xqn(x) = γnqn+1(x)+ βnqn(x)+ αnqn−1(x), n = 0,1,2, . . . , (5.6)

where q−1(x) = 0 and q0(x) = 1, α0 = 0, and αn+1 > 0,γn > 0 and αn + βn + γn = 1
for every n ∈ N0 . In a complete analogy to Lemma 1 we can derive the following
identities.

LEMMA 6. Assume that the sequence {qm} satisfies the three term recurrence
relation (5.6). Then the following representations hold true:

γnΔ̂n(x) = |x|γnqn(x)2 + αnqn−1(x)2 − (x−βn)qn−1(x)qn(x) , (5.7)

αnΔ̂n(x) = αn|x|q2
n(x)+ γnq

2
n+1(x)− (x−βn)qn(x)qn+1(x) , (5.8)

γnΔ̂n(x) = (γn|x|− γn−1)q2
n(x)+ (αn−αn−1|x|)q2

n−1(x)

+ (βn−βn−1)qn−1(x)qn(x)+ αn−1Δ̂n−1(x) .
(5.9)

Also, a version of Lemma 2 for general orthogonal polynomial sequences (5.6) can be
proven, where we distinguish between the cases x � 0 and x < 0.

LEMMA 7. Assume the sequence {qm} satisfies the three term recurrence rela-
tion (5.6) with βn = 1−αn− γn .

If 0 � αn � 1 and 0 � γn � 1 and x ∈ [ξ1,ξ2] ⊆ [0,1] , where

ξi = βn +2αnγn +(−1)i2
√

αn(1−αn)γn(1− γn), i = 1,2,

then Δ̂n(x) � 0 .
If 0 � αn � 1 and 1−αn

1+αn
� γn � 1 and x ∈ [ζ1,ζ2] ⊆ [−1,0] , where

ζi = βn−2αnγn +(−1)i2
√

αnγn(αnγn + αn + γn−1), i = 1,2,

then Δ̂n(x) � 0 .

Proof. For the proof we also distinguish between the cases x � 0 and x < 0 and
write identity (5.7) without absolute value. A CAD computation quickly confirms that

∀ y0,y−1,a,c,x ∈ R : (0 � c � 1∧0 � a � 1∧ξ1 � x � ξ2)

=⇒ cxy2
0 +ay2

−1− (x− (1−a− c))y−1y0 � 0

is true. This general result in combination with the assumptions stated in the lemma
and identity (5.7) yields Δ̂n(x) � 0 for non-negative x . The analogous formula yielding
positivity of the modified Turán determinant for negative x is

∀ y0,y−1,a,c,x ∈ R :
( 1−a

1+a � c � 1∧0 � a � 1∧ζ1 < x < ζ2
)

=⇒−cxy2
0 +ay2

−1− (x− (1−a− c))y−1y0 � 0. �
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For the normalized Jacobi polynomials the recurrence coefficients are given by

αn =
2n(β +n)

(α + β +2n)(α + β +2n+1)
,

γn =
2(α +n+1)(α + β +n+1)

(α + β +2n+1)(α + β +2n+2)
,

and βn = 1−αn−γn . With a CAD computation it is easily verified that the assumptions
of Lemma 7 are satisfied if −1 < α � β � 0 and n � 2 (the cases n = 0,1 can easily
be verified independently). For fixed α and β , the bounds derived in Lemma 7 when
specialized to the Jacobi recurrence coefficients have the following limits

lim
n→∞

ζ1 = −1, lim
n→∞

ζ2 = 0, lim
n→∞

ξ1 = 0, and lim
n→∞

ξ1 = 1.

Note that if we restrict ourselves to the ultraspherical case α = β = λ − 1/2, then
ξ1 = ζ2 = 0 and ξ2 = −ζ1 coincides with zn(λ ) . For particular choices of α,β with
−1 < α < β � 0 (not including the already proven ultraspherical case) and for concrete
degrees n , it is easy to verify using CAD that Δ̂n(x) � 0. The calculations proving the
inequality for more than 1500 random samples of α,β with degrees n ranging up to 15
on the whole interval [−1,1] take less than half an hour. Still, we did not succeed in
proving the inequality with symbolic parameters. Using the well-known identities [23]

d
dxP

(α ,β )
n (x) = n+α+β+1

2 P(α+1,β+1)
n−1 (x),

P(α ,β )
n (−x) = (−1)nP(β ,α)

n (−x), and P(α ,β )
n (1) = (α+1)n

n! ,

we can obtain some partial results by investigating the special cases x = ±1. For x > 0
we have

Δ̂n(x) = xqn(x)2 −qn−1(x)qn+1(x),

and using the identities above we find that Δ̂′
n(1) = α

α+1 . Recall that Δ̂n(1) = 0 for all

n � 1 and since α
α+1 > 0 for positive α , we have that Δ̂n(1−0) < 0 if α > 0. Hence,

the upper bound 0 on α and β is sharp and can not be extended.
For x = −1 we have

Δ̂n(−1) =
(

(β +1)n

(α +1)n

)2

− (β +1)n−1

(α +1)n−1

(β +1)n+1

(α +1)n+1
.
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Using SumCracker we obtain quickly that Δ̂n(−1) > 0 for n � 1 and α 
= β :

In[3]= ProveInequality[
(

(β +1)n+1

(α +1)n+1

)2

− (β +1)n

(α +1)n

(β +1)n+2

(α +1)n+2
> 0,

Using →{−1 < α < β � 0},Variable → n]

Out[3]= True

The inequality above could also be easily verified by hand. Note that since α,β >
−1 the arguments of the rising factorials are positive and so is (α +1)n+1/(β +1)n(α +
1)n+2/(β +1)n+1 . Multiplying the inequality by this term the left hand side simplifies
to β −α , which is positive in the given range.

In order to be able to apply a similar argument as for x = 1 we multiply Δ̂n(x)
with the factor 1+ x that is non-negative for x ∈ [−1,0] and consider

fn(x) = (1+ x)
(−xqn(x)2 −qn−1(x)qn+1(x)

)
= (1+ x)Δ̂n(x), x ∈ [−1,0].

Now fn(−1) = 0 and fn(x) � 0 if and only if Δ̂n(x) � 0 (in [−1,0]). Furthermore, we
have

f ′n(x) = Δ̂n(x)+ (1+ x)Δ̂′
n(x),

and thus f ′n(−1) = Δ̂n(−1) , which is positive as we showed earlier. From these obser-
vations it follows that there exists δ > 0 such that Δ̂n(x) > 0 in (−1,−1+ δ )∪ (1−
δ ,1) .

In conclusion we formulate a conjecture, which, if true, would yield a refinement
of the result of Gasper [9].

CONJECTURE 1. For all n � 0 and −1 < α � β � 0 and all x ∈ [−1,1] ,

Δ̂m(x) = |x|q2
m(x)−qm−1(x)qm+1(x) � 0.
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