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ORLICZ GEOMINIMAL SURFACE AREAS
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(Communicated by Y. Burago)

Abstract. In 1996, E. Lutwak extended the important concept of geominimal surface area to Lp

version, which serves as a bridge connecting a number of areas of geometry: affine differential
geometry, relative differential geometry, and Minkowskian geometry. In this paper, by using the
concept of Orlicz mixed volume, we extend geominimal surface area to the Orlicz version and
give some properties and an isoperimetric inequalities for the Orlicz geominimal surface areas.

1. Introduction

R
n denotes the usual n -dimensional Euclidean space with the canonical inner

product 〈·, ·〉 . The letter B is reserved for the unit ball centered at the origin o , and the
surface of B is Sn−1. A bounded closed convex set C ⊂ R

n is called a convex body
if it has non-empty interior. Let K n be the class of convex bodies of R

n , let K n
0 be

the class of members of K n containing the origin, and let K n
00 be those sets in K n

containing the origin in their interiors. Let K n
c denote the set of convex bodies whose

centroids lie at the origin. In general, we refer the reader to [15] for standard notation.
The Orlicz-Brunn-Minkowski theory, introduced by Lutwak, Yang, and Zhang

(see [4, 10, 11]), is a new extension of the classical Brunn-Minkowski theory. For
the recent development see [1, 5, 6, 16]. Quite recently, in [3], Gardner, Hug and
Weil constructed a general framework for Orlicz-Brunn-Minkowski theory that includes
Orlicz addition and Orlicz mixed volume, established the new Orlicz-Brunn-Minkowsk
inequality and the Orlicz-Minkowski mixed volumes inequality, and made clear for the
first time the relation to Orlicz spaces and norms.

The important concept of geominimal surface area was introduced by Petty [14].
It serves as a bridge connecting a number of areas of geometry: affine differential
geometry, relative differential geometry, and Minkowskian geometry. The geominimal
surface area, G(K) , of K ∈ K n , could be defined by

ω1/n
n G(K) = inf{nV1(K,Q)V (Q∗)1/n : Q ∈ K n

00},
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Where ωn denotes the volume of n -dimensional unit ball, and V1(K,Q) is the mixed
volume of K,Q .

In [8], Lutwak extended Petty’s geominimal surface area to the Lp version. For
p � 1, the p -geominimal surface area, Gp(K) , of K ∈ K n

00 is defined by

ω p/n
n Gp(K) = inf{nVp(K,Q)V (Q∗)p/n : Q ∈ K n

00},
where Vp(K,Q) means p -mixed volume of K,Q (for the definition see section 2).

By the homogeneous of volume and p -mixed volume, the p -geominimal surface
area could also be defined by

Gp(K) = inf{nVp(K,Q) : Q ∈ K n
00 and V (Q∗) = ωn}.

In this paper, we will introduce the Orlicz geominimal surface area Gϕ (K) of
K ∈ K n

00 . Let Φ denote the set of convex functions ϕ : [0,∞) → [0,∞) that satisfy
ϕ(0) = 0 and ϕ(1) = 1. For K ∈ K n

00 , and ϕ ∈ Φ ,

Gϕ(K) = inf{nVϕ(K,Q) : Q ∈ K n
00 and V (Q∗) = ωn},

where Vϕ(K,Q) means Orlicz mixed volume of K,Q (for the definition see section 2).
It will be shown that the infimum in the above definition is attained.

THEOREM 1. If K ∈K n
00 and ϕ ∈ Φ , then there exists a body K ∈K n

00 such that

Gϕ(K) = nVϕ(K,K) and V (K
∗
) = ωn.

We will show that Orlicz geominimal surface area of a body is invariant under
unimodular centro-transformations of the body. Another important property of Orlicz
geominimal surface area is the following:

THEOREM 2. If ϕ ∈ Φ , then the functional Gϕ : K n
00 → (0,∞) is continuous.

Petty [14] established the fundamental affine isoperimetric inequality for geomin-
imal surface area. He showed that for K ∈ K n ,

G(K)n � nnωnV (K)n−1,

with equality if and only if K is an ellipsoid. This inequality is closely related to the
Blaschke-Santaló inequality. In [8], Lutwak established the corresponding inequality
for p -geominimal surface area: For K ∈ K n

c ,

Gp(K)n � nnω p
n V (K)n−p,

with equality if and only if K is an ellipsoid. Now, an Orlicz extension of Petty’s
geominimal surface area inequality will be obtained.

THEOREM 3. If K ∈ K n
c and ϕ ∈ Φ , then

Gϕ (K) � nV (K)ϕ
(( ωn

V (K)

)1/n)
,

with equality only if K is an ellipsoid.

In this paper, we also follow the principle. We will use the technique which is
developed by Lutwak [8]. So our work is a natural extension of the work of Lutwak [8]
and Petty [14]. It would be impossible to overstate our reliance on his work.
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2. Notations and Orlicz mixed volumes

For K ∈ K n
0 , let hK = h(K, ·) : Sn−1 → R denote the support function of K ; i.e.,

for u ∈ Sn−1 , h(K,u) = max{〈u,x〉 : x ∈ K}. The formula (See (0.27), P. 18 in [2])

hAK(u) = hK(Atu) (2.1)

for x ∈ R
n and a linear transformation A : R

n → R
n , gives the change in a support

function under A , where At denotes the transpose of A . For K,L ∈K n
0 , the Hausdorff

metirc δ (K,L) = maxu∈Sn−1 |h(K,u)−h(L,u)|. If o∈ L and L is a star-shaped at o , its
radial function ρL , for x ∈ R

n\{o} , is defined by ρL(x) = ρ(L,x) = max{λ : λx ∈ L}.
For K ∈ K n

00 , let K∗ denote the polar of the body K ; i.e.

K∗ = {x ∈ R
n : 〈x,y〉 � 1, for all y ∈ K}.

The Blaschke-Santaló inequality (see [12, 13]) is one of the fundamental affine isoperi-
metric inequalities. It states that if K ∈ K n

c then

V (K)V (K∗) � ω2
n , (2.2)

with equality if and only if K is an ellipsoid.
For x ∈ R

n , let 〈x〉 = x/|x| , whenever x �= 0. For surface area measure SK(u) of
K , a A ∈ SL(n) , define the measure S∗K(Au) on Sn−1 by∫

Sn−1
f (u)dS∗K(Au) =

∫
Sn−1

|A−1u| f (〈A−1u〉)dSK(u), (2.3)

for each f ∈ C (Sn−1) . In [9], the following equation is proved:

dSAK(u) = dS∗K(At u). (2.4)

For K ∈ K n , we have ∫
Sn−1

udSK(u) = 0. (2.5)

In [3], Gardner, Hug and Weil introduced the definition of Orlicz mixed volumes.
For ϕ ∈ Φ , K ∈K n

00 , L ∈ Kn
0 , the Orlicz mixed volume Vϕ(K,L) of K,L is defined by

Vϕ(K,L) =
1
n

∫
Sn−1

ϕ
( hL(u)

hK(u)

)
hK(u)dSK(u). (2.6)

The special case of ϕ(t) = t p, p � 1 is p -mixed volume Vp(K,L) of K,L (see [7]):

Vp(K,L) =
1
n

∫
Sn−1

h(L,u)pdSp(K,u),

where Sp(K, ·) is the Lp−surface area measure of K .
The following result provides an Orlicz-Minkowski inequality: let ϕ ∈ Φ , if K ∈

K n
00 and L ∈ K n

0 , then

Vϕ(K,L) � V (K)ϕ
((V (L)

V (K)

)1/n)
. (2.7)

If ϕ is strictly convex, equality holds iff K and L are dilates or L = {0} . In (2.7), the
special case when ϕ(t) = t p , p � 1, reduces to the Lp -Minkowski inequality.

For the further research, the corresponding properties are studied in the following.
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LEMMA 2.1. Suppose K ∈ K n
00 , and L ∈ K n

0 . If ϕ ∈ Φ and A ∈ SL(n), then

Vϕ(AK,AL) = Vϕ(K,L).

Proof. By (2.6), (2.4), (2.3) and (2.1), we have

Vϕ(AK,L) =
1
n

∫
Sn−1

ϕ
( hL(u)

hAK(u)

)
hAK(u)dSAK(u)

=
1
n

∫
Sn−1

ϕ
( hL(u)

hK(At u)

)
hK(At u)dS∗K(At u)

=
1
n

∫
Sn−1

|A−tu|ϕ
( hL(〈A−t u〉)

hK(At〈A−t u〉)
)
hK(At〈A−tu〉)dSK(u)

=
1
n

∫
Sn−1

ϕ
(hL(A−t u)

hK(u)

)
hK(u)dSK(u)

=
1
n

∫
Sn−1

ϕ
(hA−1L(u)

hK(u)

)
hK(u)dSK(u)

= Vϕ(K,A−1L). �

It is easy to check that Vϕ(λK,λL) = λ nVϕ(K,L) , for λ > 0. Therefore, we have

PROPOSITION 2.2. Suppose K ∈ K n
00, and L ∈ K n

0 . If ϕ ∈ Φ and A ∈ GL(n) ,
then

Vϕ(AK,AL) = |detA|Vϕ(K,L).

The following shows that the Orlicz mixed volumes Vϕ(·, ·) are continuous on
K n

00×K n
0 .

PROPOSITION 2.3. Suppose Ki,K ∈ K n
00 , Li , L ∈ K n

0 and ϕ ∈ Φ , if Ki → K
and Li → L, then

Vϕ(Ki,Li) →Vϕ(K,L).

Proof. Since Ki → K and Li → L , we have hKi → hK and hLi → hL , uniformly
on Sn−1 . Since the continuous function hK is positive, the hKi are uniformly bounded
away from 0. Thus

ϕ
(hLi

hKi

)
hKi → ϕ

( hL

hK

)
hK , uniformly on Sn−1.

And Ki → K also implies that

SKi(·) → SK(·), weakly on Sn−1.

Hence,
1
n

∫
Sn−1

ϕ
(hLi

hKi

)
hKiSKi(u) → 1

n

∫
Sn−1

ϕ
( hL

hK

)
hKdSK(u). �

By the similar argument of proposition 2.3, we have the following result.

PROPOSITION 2.4. Let K,L∈K n
0 , if ϕi , ϕ ∈Φ and ϕi →ϕ , i.e., maxt∈I |ϕi(t)−

ϕ(t)| → 0, for every compact interval I ⊂ R , then Vϕi(K,L) →Vϕ(K,L).
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3. Orlicz geominimal surface areas

For K ∈ K n
00 , and ϕ ∈ Φ , define the Orlicz geominimal surface area, Gϕ(K) , of

K by

Gϕ(K) = inf{nVϕ(K,Q) : Q ∈ K n
00 and V (Q∗) = ωn}. (3.1)

When ϕ(t)= t p , p � 1, the Orlicz geominimal surface area becomes the p−geominimal
surface area. The next proposition shows that Orlicz geominimal surface area of a body
is invariant under the special linear transformation.

PROPOSITION 3.1. Suppose K ∈ K n
00 . If ϕ ∈ Φ , and A ∈ SL(n) , then

Gϕ(AK) = Gϕ (K).

Proof. From (3.1) and Lemma 2.1, we get

Gϕ(AK) = inf{nVϕ(AK,Q) : Q ∈ K n
00 and V (Q∗) = ωn}

= inf{nVϕ(K,A−1Q) : A−1Q ∈ K n
00 and V ((A−1Q)∗) = ωn}

= Gϕ(K). �

Next, we will show that the infimum in the definition (3.1) of the Orlicz geomini-
mal surface area can be attained. Let C n denote the set of compact convex subsets of
R

n .

LEMMA 3.2. ([8] p. 264) Suppose Ki ∈ K n
00 and Ki → L ∈ C n . If the sequence

V (K∗
i ) is bounded, then L ∈ K n

00 .

Proof of Theorem 1. By the definition of Gϕ(K) , we can find a sequence Mi ∈K n
00

with V (M∗
i ) = ωn such that Vϕ(K,B) � Vϕ(K,Mi) , for all i , and

nVϕ(K,Mi) → Gϕ(K).

Let Ri = max{ρ(Mi,u) : u ∈ Sn−1} denote the outer radius of Mi and the convex
set ei = {λui : 0 � λ � Ri} ⊂ Mi , where ui is any of the points in Sn−1 such that
ρ(Mi,ui) = Ri . Then, we have

h(ei,u) = max{〈0,u〉,〈Riui,u〉}
= Ri max{〈0,u〉,〈ui,u〉}
= Ri · 1

2
(|〈ui,u〉|+ 〈ui,u〉).
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By Jessen’s inequality, we have

Vϕ(K,B) � Vϕ(K,Mi)

=
1
n

∫
Sn−1

ϕ
(h(Mi,u)

h(K,u)

)
h(K,u)dSK(u)

� V (K)ϕ
( 1

nV (K)

∫
Sn−1

h(Mi,u)dSK(u)
)

� V (K)ϕ
( 1

nV (K)

∫
Sn−1

h(ei,u)dSK(u)
)

= V (K)ϕ
( 1

nV (K)

∫
Sn−1

Ri · 12 (|〈ui,u〉|+ 〈ui,u〉)dSK(u)
)

= V (K)ϕ
(Riv(K|u⊥i )

nV(K)

)
,

where v(K|u⊥i ) denotes the area of the projection of K onto the hyperplane u⊥i with
normal vector ui . Since K contains the origin in its interior, there exists a constant
c > 0 such that v(K|u⊥i ) � c . Hence, Vϕ(K,B) � V (K)ϕ( Ric

nV (K) ) , which leads to that

Ri � nV (K)
c ϕ−1(Vϕ (K,B)

V (K) ) . So, Mi are uniformly bounded. By the Blaschke selection
theorem, there exist a convergent subsequence Mij of Mi and a compact convex body
L such that the limit of Mij must be L . Since Mij → L , and the sequence V (M∗

i j
) = ωn ,

we get that M∗
i j
→ L∗ and V (L∗) = ωn . Lemma 3.2 gives L ∈ K n

00 . Since the Orlicz

mixed volumes Vϕ(·, ·) are continuous on on K n
00 ×K n

0 , we get that L is the desired
body K . �

REMARK 3.3. We conjecture that K is unique if ϕ ∈ Φ is strictly convex, and
the uniqueness of K will bring us many interesting results.

Set
TϕK = {K ∈ K n

00 : Gϕ (K) = nVϕ(K,K) and V (K
∗
) = ωn}. (3.2)

Let ϕ(t) = t p , p � 1, we have TϕK = Tp(K) . In [8], Lutwak showed that TpK is a
singleton. Although we do not know whether TϕK is a singleton, we get the following
property of the body TϕK .

PROPOSITION 3.4. If K ∈ K n
00 , ϕ ∈ Φ and A ∈ SL(n) , then Tϕ(AK) = A(TϕK) .

Proof. First, let K ∈ TϕK , by Proposition 3.1, (3.2) and Proposition 2.2, we have

Gϕ(AK) = Gϕ(K) = nVϕ(K,K) = nVϕ(AK,AK).

Combining with V (K
∗
) =V ((AK)∗) = ωn , we have AK ∈ Tϕ(AK) , which implies that

Tϕ(AK) ⊃ A(TϕK) .
Second, let K ∈ Tϕ(AK) , we also have

Gϕ(K) = Gϕ(AK) = nVϕ(AK,K) = nVϕ(K,A−1K).
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Combining with V (K
∗
) = V ((A−1K)∗) = ωn , we have A−1K ∈ TϕK , which implies

that Tϕ (AK) ⊂ A(TϕK) . �

The following two lemmas are the corresponding Orlicz version of Lemma 3.6
and Lemma 3.7 of [8], which will be helpful in the sequel.

LEMMA 3.5. Suppose ϕ ∈ Φ , and K ∈ K n
00 . If r,R > 0 , are such that

rB ⊂ K ⊂ RB,

then

h(K,u) � nRnωnϕ−1(Rnϕ(1/r)/rn)
rn−1ωn−1

,

for all u ∈ Sn−1 and K ∈ TϕK .

Proof. As the proof of Theorem 1, let the convex set e0 = {λu0 : 0 � λ � R(K)}⊂
K and u0 be the point in Sn−1 such that

ρ(K,u0) = max{ρ(K,u) : u ∈ Sn−1} = R(K),

where R(K) is the outer radii of K. Then, we have

Vϕ(K,K) � V (K)ϕ
(R(K)v(K|u⊥0 )

nV (K)

)
.

Since rnωn � V (K) � Rnωn , and v(K|u⊥0 ) � rn−1ωn−1 , we have Vϕ(K,K) �

rnωnϕ
(R(K)rn−1ωn−1

nRnωn

)
.

From the minimality property of K , it follows that

Vϕ(K,K) � Vϕ(K,B).

By the integral representation (2.6) of Orlicz mixed volume, we have

Vϕ(K,B) =
1
n

∫
Sn−1

ϕ
( 1

hK(u)

)
hK(u)dSK(u) � V (K)ϕ(1/r) � ωnR

nϕ(1/r).

Therefore, rnωnϕ(R(K)rn−1ωn−1
nRnωn

) � ωnRnϕ(1/r) , which leads to that

R(K) � nRnωnϕ−1(Rnϕ(1/r)/rn)
rn−1ωn−1

.

We finished the proof. �
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LEMMA 3.6. Suppose ϕ ∈ Φ . If Ki ∈ K n
0 is a family of bodies for which there

exist r,R > 0 , such that
rB ⊂ Ki ⊂ RB, for all i,

then there exist r′,R′ > 0 , such that arbitrary Ki ∈ TϕKi satisfy

r′B ⊂ Ki ⊂ R′B, for all i.

Proof. From Lemma 3.5, if the outer radii of a sequence of bodies are uniformly
bounded and the inner radii of the sequence are bounded away from 0, then there exists
R′ > 0 such that Ki ⊂ R′B .

Next, we will give the proof by contradiction to show that the inner radii of se-
quence Ki is also bounded away from 0. For arbitrary Ki ∈ TϕKi , let ri = r(Ki) denote
the inner radius of Ki , and let ui is any point in Sn−1 which satisfies that

ri = min
u∈Sn−1

h(Ki,u) = h(Ki,ui).

Suppose that the infimum of the ri is 0 . Thus, there exists a subsequence of the Ki ,
which will not be relabeled, such that

h(Ki,ui) → 0.

By the Blaschke selection theorem, there exist a subsequence of the Ki , which will
also not be relabeled, and a convex body M , such that

Ki → M.

Since V (Ki
∗
) = ωn , by Lemma 3.2, we get M ∈ K n

00 .
But h(Ki,ui) → 0, and max|hKi

− hM| → 0, implies that hM(ui) → 0, which is
impossible since the continuous function hM is positive. �

THEOREM 2. If ϕ ∈ Φ , then the functional Gϕ : K n
00 → (0,∞) is continuous.

Proof. That Gϕ is upper semicontinuous follows immediately from Proposition
2.3 and the definition of Gϕ (·) .

To see that Gϕ is lower semicontinuous at K0 ∈ K n
0 , let Ki ∈ K n

00 be a sequence
of bodies such that Ki → K0 , with Gϕ(Ki) → l ∈ R . It will be shown that l � Gϕ(K0),
and thus

liminfGϕ (Ki) � Gϕ(K0).

By Lemma 3.6, any Ki ∈ TϕKi are uniformly bounded. By the Blaschke selection
theorem and Lemma 3.2, we get that there exists a body M ∈ K n

00 , and a subsequence
of the Ki , which will not be relabeled, such that Ki → M , and V (M∗) = ωn . From
Proposition 4.3, the facts that Ki → K0 , and Ki → M , we conclude that Gϕ(Ki) =
nVϕ(Ki,Ki) → nVϕ(K0,M). Since Gϕ(Ki) → l , we have nVϕ(K0,M) = l . But the defi-
nition of Gϕ(K0) shows that

l = nVϕ(K0,M) � Gϕ(K0),



ORLICZ GEOMINIMAL SURFACE AREAS 361

and completes the argument. �

In [14] and [8], Petty and Lutwak proved that geominimal surface area G : K n →
(0,∞) and p -geominimal surface area Gp : K n

00 → (0,∞) are continuous respectively.
When ϕ(t) = t p , p � 1, Theorem 2 becomes the above results.

In [8], Lutwak showed that: If p � 1,and K ∈ K n
c , then

Gp(K)n � nnω p
n V (K)n−p, (3.3)

with equality iff K is an ellipsoid. In the sequel, we give the following Orlicz version.
Unfortunately, without the uniqueness of TϕK , we do not know whether the equality
holds if K is an ellipsoid.

THEOREM 3. If K ∈ K n
c and ϕ ∈ Φ , then

Gϕ (K) � nV (K)ϕ
(( ωn

V (K)

)1/n)
, (3.4)

with equality only if K is an ellipsoid.

Proof. Let Q = λK such that V (Q∗) = ωn , then λ =
(

V (K∗)
ωn

)1/n
. By the defini-

tions of Gϕ(K) and Vϕ(K,Q) , the Blaschke-Santalo inequality (2.2), we have

Gϕ(K) � nVϕ(K,λK)

=
∫

Sn−1
ϕ

(h(λK,u)
h(K,u)

)
h(K,u)dS(K,u)

= nϕ(λ )V (K)

= nV (K)ϕ
((V (K∗)

ωn

)1/n)

� nV (K)ϕ
(( ωn

V (K)

)1/n)

If the equality holds, by the equality case of the Blaschke-Santalo inequality, we get K
is an ellipsoid. �

In Theorem 3, when ϕ(t) = t p , p � 1, (3.4) reduces to (3.3).
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