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STEFFENSEN TYPE INEQUALITIES INVOLVING CONVEX FUNCTIONS

JOSIP PEČARIĆ AND KSENIJA SMOLJAK

(Communicated by S. Varošanec)

Abstract. In this paper a new class of functions M c
1 [a,b] that extends the class of convex func-

tions is introduced. Moreover, Steffensen type inequalities for the class of convex functions are
proved as a consequence of more general inequalities for class M c

1 [a,b] . Using the linear func-
tionals constructed from the difference of the left and the right hand side of proved Steffensen
type inequalities new families of exponentially convex functions and related results are obtained.

1. Introduction

Since its appearance in 1918 Steffensen’s inequality [8] has been generalized, re-
fined and applied by many mathematicians for various motivations. For detailed infor-
mation interested reader may refer to relevant chapters of monographs [4], [5], [7] and
references cited therein. Recent overview of connections between some generalizations
obtained by Pečarić, Milovanović, Mercer, Wu, Srivastava and Liu can be found in [6].

The well-known Steffensen inequality reads:

THEOREM 1. Suppose that f is nonincreasing and g is integrable on [a,b] with
0 � g � 1 and λ =

∫ b
a g(t)dt. Then we have

∫ b

b−λ
f (t)dt �

∫ b

a
f (t)g(t)dt �

∫ a+λ

a
f (t)dt. (1.1)

The inequalities are reversed for f nondecreasing.

Milovanović and Pečarić in their paper [3] obtained weaker conditions on function
g . In [9] Vasić and Pečarić showed that these weaker conditions are necessary and
sufficient. Hence, we have the following theorem.

THEOREM 2. Let f and g be integrable functions on [a,b] and let λ =
∫ b
a g(t)dt .
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a) The second inequality in (1.1) holds for every nonincreasing function f if and
only if

∫ x

a
g(t)dt � x−a and

∫ b

x
g(t)dt � 0 for every x ∈ [a,b] .

b) The first inequality in (1.1) holds for every nonincreasing function f if and only
if ∫ b

x
g(t)dt � b− x and

∫ x

a
g(t)dt � 0 for every x ∈ [a,b] .

In this paper we introduce a new class of functions M c
1 [a,b] that extends the

class of convex functions. As we show, class M c
1 [a,b] can be interpreted as class of

functions which are “convex at point c”. Further, we prove that a function is convex on
[a,b] if and only if it is convex at every point of [a,b] . Steffensen’s inequality assumes
that the function f is monotonic and our aim is to extend it to more general types of
functions such as class M c

1 [a,b] and the class of convex functions.
First, let us recall the k -th order divided difference of f at distinct points x0,x1, . . . ,

xk . Let f be a real-valued function defined on [a,b] . The k -th order divided difference
of f at distinct points x0,x1, . . . ,xk in [a,b] may be defined recursively by

[xi; f ] = f (xi), i = 0, . . . ,k

and

[x0, . . . ,xk; f ] =
[x1, . . . ,xk; f ]− [x0, . . . ,xk−1; f ]

xk − x0
.

2. Main results

Let us introduce a new class of functions that extends the class of convex functions.

DEFINITION 1. Let f : [a,b] → R be a function and c ∈ (a,b) . We say that f
belongs to class M c

1 [a,b] (M c
2 [a,b]) if there exists a constant A such that the func-

tion F(x) = f (x)−Ax is nonincreasing (nondecreasing) on [a,c] and nondecreasing
(nonincreasing) on [c,b] .

REMARK 1. If f ∈ M c
1 [a,b] or f ∈ M c

2 [a,b] and f ′(c) exists, then f ′(c) = A .
Let us show this for f ∈ M c

1 [a,b] . Since F is nonincreasing on [a,c] and nonde-
creasing on [c,b] for every distinct points x1,x2 ∈ [a,c] and y1,y2 ∈ [c,b] we have

[x1,x2;F ] = [x1,x2; f ]−A � 0 � [y1,y2; f ]−A = [y1,y2;F ].

Therefore, if f ′−(c) and f ′+(c) exist, letting xi ↗ c and yi ↘ c , i = 1,2 we get

f ′−(c) � A � f ′+(c). (2.1)
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In the following lemma and theorem we show connection between class of func-
tions M c

1 [a,b] and the class of convex functions.

LEMMA 1. If f : [a,b]→R is convex (concave), then f ∈M c
1 [a,b] ( f ∈M c

2 [a,b])
for every c ∈ (a,b) .

Proof. If f is convex, then f ′− and f ′+ exist (see [7]). Hence, for every x1,x2 ∈
[a,c] and y1,y2 ∈ [c,b] it holds

f (x2)− f (x1)
x2 − x1

� f ′−(c) � f ′+(c) � f (y2)− f (y1)
y2 − y1

.

Therefore, for every A ∈ [ f ′−(c), f ′+(c)] the function F(x) = f (x)−Ax satisfies

F(x2)−F(x1)
x2− x1

� 0 � F(y2)−F(y1)
y2− y1

,

so F is nonincreasing on [a,c] and nondecreasing on [c,b] . �

THEOREM 3. If f ∈ M c
1 [a,b] ( f ∈ M c

2 [a,b]) for every c ∈ (a,b) , then f is con-
vex (concave).

Proof. We give the proof for f ∈M c
1 [a,b] . First, let us recall the characterization

of convexity given in [7]: the function g is convex if and only if the function

(x,y) �→ [x,y;g] =
g(x)−g(y)

x− y

is nondecreasing in both variables.
For every c∈ (a,b) there exists constant Ac such that the function Fc(x) = f (x)−

Acx is nonincreasing on [a,c] and nondecreasing on [c,b] . So for every x1 �= x2 � c �
y1 �= y2 we have

Fc(x2)−Fc(x1)
x2− x1

=
f (x2)− f (x1)

x2 − x1
−Ac � 0 � f (y2)− f (y1)

y2− y1
−Ac =

Fc(y2)−Fc(y1)
y2− y1

.

Particularly, for u < v < w we have

f (v)− f (u)
v−u

� Av � f (w)− f (v)
w− v

. (2.2)

Now, let x1,x2,y ∈ [a,b] be arbitrary. If y < x1 < x2 , applying (2.2) we get

f (x1)− f (y)
x1− y

� Ax1 � f (x2)− f (x1)
x2 − x1

=
f (x2)− f (y)

x2 − x1
− f (x1)− f (y)

x2− x1
.

By multiplying the above inequality with x2−x1
x2−y > 0 and simplifying we get

f (x1)− f (y)
x1 − y

� f (x2)− f (y)
x2− y

.
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Similarly for the cases x1 < y < x2 and x1 < x2 < y . So we can conclude that the
function (x,y) �→ [x,y; f ] is nondecreasing in variable x . By symmetry, the same thing
holds for variable y , so the proof is completed. �

REMARK 2. Taking into account Lemma 1 and Theorem 3, we can describe the
property from Definition 1 as “convexity at point c”. Therefore, function f is convex
on [a,b] if and only if it is convex at every c ∈ (a,b) .

In the following theorems we give Steffensen type inequalities for class of func-
tions that are convex at point c .

THEOREM 4. Let g : [a,b] → R be an integrable function such that 0 � g � 1 .
Let c ∈ (a,b) , λ1 =

∫ c
a g(t)dt and λ2 =

∫ b
c g(t)dt . If f ∈ M c

1 [a,b] and

∫ b

a
tg(t)dt = aλ1 +bλ2 +

λ 2
1 −λ 2

2

2
, (2.3)

then ∫ b

a
f (t)g(t)dt �

∫ a+λ1

a
f (t)dt +

∫ b

b−λ2

f (t)dt (2.4)

holds.
If f ∈ M c

2 [a,b] and (2.3) holds, the inequality in (2.4) is reversed.

Proof. We give the proof for f ∈ M c
1 [a,b] . Let F(x) = f (x)−Ax , where A is

the constant from Definition 1. Since F : [a,c] → R is nonincreasing we can apply the
right-hand side of Steffensen’s inequality on function F , so∫ c

a
F(t)g(t)dt �

∫ a+λ1

a
F(t)dt.

Hence, we obtain

0 �
∫ a+λ1

a
F(t)dt−

∫ c

a
F(t)g(t)dt

=
∫ a+λ1

a
f (t)dt −

∫ c

a
f (t)g(t)dt−A

(
aλ1 +

λ 2
1

2
−
∫ c

a
tg(t)dt

)
.

(2.5)

Further, since F : [c,b] → R is nondecreasing we can apply the left-hand side of Stef-
fensen’s inequality on function F , so∫ b

c
F(t)g(t)dt �

∫ b

b−λ2

F(t)dt.

Hence, we obtain

0 �
∫ b

c
F(t)g(t)dt−

∫ b

b−λ2

F(t)dt

=
∫ b

c
f (t)g(t)dt −

∫ b

b−λ2

f (t)dt −A

(∫ b

c
tg(t)dt−bλ2 +

λ 2
2

2

)
.

(2.6)
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Now from (2.5) and (2.6) we obtain

∫ a+λ1

a
f (t)dt+

∫ b

b−λ2

f (t)dt−
∫ b

a
f (t)g(t)dt � A

(
aλ1 +bλ2 +

λ 2
1 −λ 2

2

2
−
∫ b

a
tg(t)dt

)
.

Hence, if
∫ b
a tg(t)dt = aλ1 +bλ2 + λ 2

1−λ 2
2

2 , then (2.4) holds.
Proof for f ∈ M c

2 [a,b] is similar so we omit the details. �

REMARK 3. It is obvious from the proof that the condition (2.3) can be weakened.
That is, for f ∈ M c

1 [a,b] inequality (2.4) still holds if (2.3) is replaced by the weaker
condition

A

(
aλ1 +bλ2 +

λ 2
1 −λ 2

2

2
−
∫ b

a
tg(t)dt

)
� 0, (2.7)

where A is the constant from Definition 1. Also, for f ∈M c
2 [a,b] the reverse inequality

in (2.4) holds if (2.3) is replaced by (2.7) with the reverse inequality.
Additionaly, condition (2.3) can be further weakened if the function f is mono-

tonic. Since (2.1) holds, for a nondecreasing function f ∈ M c
1 [a,b] or nonincreasing

function f ∈ M c
2 [a,b] , from (2.7) we obtain that (2.3) can be weakened to

∫ b

a
tg(t)dt � aλ1 +bλ2 +

λ 2
1 −λ 2

2

2
. (2.8)

Further, if f ∈ M c
1 [a,b] is nonincreasing or f ∈ M c

2 [a,b] is nondecreasing, (2.3) can
be weakened to (2.8) with the reverse inequality.

THEOREM 5. Let g : [a,b] → R be an integrable function such that 0 � g � 1 .
Let c ∈ (a,b) , λ1 =

∫ c
a g(t)dt and λ2 =

∫ b
c g(t)dt . If f ∈ M c

1 [a,b] and

∫ b

a
tg(t)dt = c(λ1 + λ2)+

λ 2
2 −λ 2

1

2
, (2.9)

then ∫ b

a
f (t)g(t)dt �

∫ c+λ2

c−λ1

f (t)dt (2.10)

holds.
If f ∈ M c

2 [a,b] and (2.9) holds, the inequality in (2.10) is reversed.

Proof. We give the proof for f ∈ M c
1 [a,b] . Let F(x) = f (x)− Ax . Since F :

[a,c] → R is nonincreasing applying the left-hand side of Steffensen’s inequality on
function F we obtain

0 �
∫ c

a
f (t)g(t)dt−

∫ c

c−λ1

f (t)dt −A

(∫ c

a
tg(t)dt− cλ1 +

λ 2
1

2

)
. (2.11)
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Further, since F : [c,b] → R is nondecreasing applying the right-hand side of Stef-
fensen’s inequality on function F we obtain

0 �
∫ c+λ2

c
f (t)dt−

∫ b

c
f (t)g(t)dt−A

(
cλ2 +

λ 2
2

2
−
∫ b

c
tg(t)dt

)
. (2.12)

Now from (2.11) and (2.12) we obtain∫ b

a
f (t)g(t)dt−

∫ c+λ2

c−λ1

f (t)dt � A

(∫ b

a
tg(t)dt− c(λ1 + λ2)+

λ 2
1 −λ 2

2

2

)
.

Hence, if
∫ b
a tg(t)dt = c(λ1 + λ2)+ λ 2

2 −λ 2
1

2 , then (2.10) holds.
Proof for f ∈ M c

2 [a,b] is similar so we omit the details. �

REMARK 4. For f ∈ M c
1 [a,b] the inequality (2.10) still holds if the condition

(2.9) is replaced by the weaker condition

A

(∫ b

a
tg(t)dt− c(λ1 + λ2)+

λ 2
1 −λ 2

2

2

)
� 0, (2.13)

where A is the constant from Definition 1. Also, for f ∈M c
2 [a,b] the reverse inequality

in (2.10) holds if (2.9) is replaced by (2.13) with the reverse inequality.
Additionaly, condition (2.9) can be further weakened if the function f is mono-

tonic. Since (2.1) holds, for a nondecreasing function f ∈ M c
1 [a,b] or nonincreasing

function f ∈ M c
2 [a,b] , from (2.13) we obtain that (2.9) can be weakened to∫ b

a
tg(t)dt � c(λ1 + λ2)+

λ 2
2 −λ 2

1

2
. (2.14)

Further, if f ∈ M c
1 [a,b] is nonincreasing or f ∈ M c

2 [a,b] is nondecreasing, (2.9) can
be weakened to (2.14) with the reverse inequality.

As a consequence of Theorems 4 and 5 we obtain Steffensen type inequalities that
involve convex functions.

COROLLARY 1. Let g : [a,b]→ R be an integrable function such that 0 � g � 1 .
Let c ∈ (a,b) , λ1 =

∫ c
a g(t)dt and λ2 =

∫ b
c g(t)dt . If f : [a,b] → R is convex function

and (2.3) holds, then (2.4) holds.
If f : [a,b] → R is concave function and (2.3) holds, the inequality in (2.4) is

reversed.

Proof. Since f is convex, from Lemma 1 we have that f ∈ M c
1 [a,b] for every

c ∈ (a,b) . So we can apply Theorem 4. �

COROLLARY 2. Let g : [a,b]→ R be an integrable function such that 0 � g � 1 .
Let c ∈ (a,b) , λ1 =

∫ c
a g(t)dt and λ2 =

∫ b
c g(t)dt . If f : [a,b] → R is convex function

and (2.9) holds, then (2.10) holds.
If f : [a,b] → R is concave function and (2.9) holds, the inequality in (2.10) is

reversed.
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Proof. Similar as in proof of Corollary 1 we have that f ∈ M c
1 [a,b] for every

c ∈ (a,b) . So we can apply Theorem 5. �

Motivated by Theorem 2, in the following theorems we give weaker conditions for
Steffensen type inequalities for class M c

1 [a,b] .

THEOREM 6. Let c ∈ (a,b) and let g : [a,b] → R be an integrable function such
that ∫ x

a
g(t)dt � x−a and

∫ c

x
g(t)dt � 0 for every x ∈ [a,c] (2.15)

and
∫ b

x
g(t)dt � b− x and

∫ x

c
g(t)dt � 0 for every x ∈ [c,b]. (2.16)

Let λ1 =
∫ c
a g(t)dt and λ2 =

∫ b
c g(t)dt . If f ∈ M c

1 [a,b] and (2.3) holds, then (2.4)
holds.

If f ∈ M c
2 [a,b] and (2.3) holds, the inequality in (2.4) is reversed.

Proof. Let f ∈ M c
1 [a,b] and let F(x) = f (x)−Ax . Since F : [a,c] → R is non-

increasing and (2.15) holds, from Theorem 2 a) we obtain

0 �
∫ a+λ1

a
F(t)dt−

∫ c

a
F(t)g(t)dt

=
∫ a+λ1

a
f (t)dt −

∫ c

a
f (t)g(t)dt −A

(
aλ1 +

λ 2
1

2
−
∫ c

a
tg(t)dt

)
.

(2.17)

Further, since F : [c,b] → R is nondecreasing and (2.16) holds, from Theorem 2 b) we
obtain

0 �
∫ b

c
F(t)g(t)dt−

∫ b

b−λ2

F(t)dt

=
∫ b

c
f (t)g(t)dt−

∫ b

b−λ2

f (t)dt −A

(∫ b

c
tg(t)dt−bλ2 +

λ 2
2

2

)
.

(2.18)

Now from (2.17) and (2.18) we obtain

∫ a+λ1

a
f (t)dt +

∫ b

b−λ2

f (t)dt −
∫ b

a
f (t)g(t)dt

� A

(
aλ1 +bλ2 +

λ 2
1 −λ 2

2

2
−
∫ b

a
tg(t)dt

)
.

Hence, if
∫ b
a tg(t)dt = aλ1 +bλ2 + λ 2

1−λ 2
2

2 , then (2.4) holds.
Similarly for f ∈ M c

2 [a,b] . �



370 J. PEČARIĆ AND K. SMOLJAK

THEOREM 7. Let c ∈ (a,b) and let g : [a,b] → R be an integrable function such
that ∫ c

x
g(t)dt � c− x and

∫ x

a
g(t)dt � 0 for every x ∈ [a,c] (2.19)

and ∫ x

c
g(t)dt � x− c and

∫ b

x
g(t)dt � 0 for every x ∈ [c,b]. (2.20)

Let λ1 =
∫ c
a g(t)dt and λ2 =

∫ b
c g(t)dt . If f ∈ M c

1 [a,b] and (2.9) holds, then (2.10)
holds.

If f ∈ M c
2 [a,b] and (2.9) holds, the inequality in (2.10) is reversed.

Proof. Similar to the proof of Theorem 6. �
As a consequence of previous theorems we obtain weaker conditions for Stef-

fensen type inequalities that involve convex functions.

COROLLARY 3. Let c ∈ (a,b) and let g : [a,b] → R be an integrable function
such that (2.15) and (2.16) hold. Let λ1 =

∫ c
a g(t)dt and λ2 =

∫ b
c g(t)dt . If f : [a,b]→R

is convex function and (2.3) holds, then (2.4) holds.
If f : [a,b] → R is concave function and (2.3) holds, the inequality in (2.4) is

reversed.

COROLLARY 4. Let c ∈ (a,b) and let g : [a,b] → R be an integrable function
such that (2.19) and (2.20) hold. Let λ1 =

∫ c
a g(t)dt and λ2 =

∫ b
c g(t)dt . If f : [a,b]→R

is convex function and (2.9) holds, then (2.10) holds.
If f : [a,b] → R is concave function and (2.9) holds, the inequality in (2.10) is

reversed.

3. Exponential convexity

Notice that Steffensen type inequalities (2.4) and (2.10) are linear in f . This
motivates us to define the following linear functionals:

L1( f ) =
∫ a+λ1

a
f (t)dt +

∫ b

b−λ2

f (t)dt−
∫ b

a
f (t)g(t)dt (3.1)

and

L2( f ) =
∫ b

a
f (t)g(t)dt−

∫ c+λ2

c−λ1

f (t)dt. (3.2)

Under assumptions of Theorems 4–7 we have that L1( f ) � 0 and L2( f ) � 0 for
f ∈ M c

1 [a,b] . Further, under assumptions of Corollaries 1–4 we have that L1( f ) � 0
and L2( f ) � 0 for any convex function f .

First, we give mean value theorems.
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THEOREM 8. Let c ∈ (a,b) and let g : [a,b] → R be an integrable function such
that 0 � g � 1 . Let λ1 =

∫ c
a g(t)dt and λ2 =

∫ b
c g(t)dt . If (2.3) holds, then for any

f ∈C2[a,b] there exists ξ ∈ [a,b] such that

L1( f ) =
f ′′(ξ )

2

[
a2λ1 +aλ 2

1 +b2λ2−bλ 2
2 +

λ 3
1 + λ 3

2

3
−
∫ b

a
t2g(t)dt

]
. (3.3)

where L1 is defined by (3.1).

Proof. Since f ∈C2[a,b] there exist m = minx∈[a,b] f ′′(x) and M = maxx∈[a,b] f ′′(x) .
The functions

Ψ1(x) = f (x)− m
2

x2 and Ψ2(x) =
M
2

x2− f (x)

are convex since Ψ′′
i (x) � 0, i = 1,2. Hence, by Corollary 1 we have L1(Ψi) � 0,

i = 1,2 and we get
m
2

L1(x2) � L1( f ) � M
2

L1(x2), (3.4)

where

L1(x2) = a2λ1 +aλ 2
1 +b2λ2−bλ 2

2 +
λ 3

1 + λ 3
2

3
−
∫ b

a
t2g(t)dt.

Since x2 is convex, by Corollary 1 we have L1(x2) � 0.
If L1(x2) = 0, then (3.4) implies L1( f ) = 0 and (3.3) holds for every ξ ∈ [a,b] .

Otherwise, dividing (3.4) by L1(x2)/2 > 0 we get

m � 2L1( f )
L1(x2)

� M,

so continuinity of f ′′ ensures existence of ξ ∈ [a,b] satisfying (3.3). �

THEOREM 9. Let c ∈ (a,b) and let g : [a,b] → R be an integrable function such
that 0 � g � 1 . Let λ1 =

∫ c
a g(t)dt and λ2 =

∫ b
c g(t)dt . If (2.9) holds, then for any

f ∈C2[a,b] there exists ξ ∈ [a,b] such that

L2( f ) =
f ′′(ξ )

2

[∫ b

a
t2g(t)dt− c2(λ1 + λ2)− c(λ 2

2 −λ 2
1 )− λ 3

1 + λ 3
2

3

]
.

where L2 is defined by (3.2).

Proof. Similar to the proof of Theorem 8. �

THEOREM 10. Let c∈ (a,b) and let g : [a,b]→ R be an integrable function such
that 0 � g � 1 . Let λ1 =

∫ c
a g(t)dt , λ2 =

∫ b
c g(t)dt and f ,h ∈C2[a,b] . If (2.3) holds

and h′′(x) �= 0 for every x ∈ [a,b] , then there exists ξ ∈ [a,b] such that

L1( f )
L1(h)

=
f ′′(ξ )
h′′(ξ )

holds, where L1 is defined by (3.1).
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Proof. Let us define Φ ∈C2[a,b] by Φ(x) = L1(h) f (x)−L1( f )h(x) . Due to lin-
earity of L1 we have L1(Φ) = 0. Now, by Theorem 8 there exist ξ ,ξ1 ∈ [a,b] such
that

0 = L1(Φ) =
Φ′′(ξ )

2
L1(x2)

0 �= L1(h) =
h′′(ξ1)

2
L1(x2).

Therefore, L1(x2) �= 0 and

0 = Φ′′(ξ ) = L1(h) f ′′(ξ )−L1( f )h′′(ξ ),

which gives the claim of the theorem. �

THEOREM 11. Let c∈ (a,b) and let g : [a,b]→ R be an integrable function such
that 0 � g � 1 . Let λ1 =

∫ c
a g(t)dt , λ2 =

∫ b
c g(t)dt and f ,h ∈C2[a,b] . If (2.9) holds

and h(x) �= 0 for every x ∈ [a,b] , then there exists ξ ∈ [a,b] such that

L2( f )
L2(h)

=
f ′′(ξ )
h′′(ξ )

holds, where L2 is defined by (3.2).

Proof. Similar to the proof of Theorem 10. �

REMARK 5. Condition 0 � g � 1 in Theorems 8 and 10 can be replaced by
weaker conditions (2.15) and (2.16). Further, condition 0 � g � 1 in Theorems 9 and
11 can be replaced by weaker conditions (2.19) and (2.20).

Next, we recall some basic definitions and results on exponential convexity.

DEFINITION 2. A function ψ : I → R is n-exponentially convex in the Jensen
sense on I if

n

∑
i, j=1

ξiξ j ψ
(

xi + x j

2

)
� 0,

holds for all choices ξ1, . . . ,ξn ∈ R and all choices x1, . . . ,xn ∈ I .
A function ψ : I → R is n-exponentially convex on I if it is n -exponentially

convex in the Jensen sense and continuous on I .

REMARK 6. It is clear from the definition that 1-exponentially convex functions
in the Jensen sense are in fact nonnegative functions.

Also, n -exponentially convex functions in the Jensen sense are k -exponentially
convex in the Jensen sense for every k � n , k ∈ N .
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DEFINITION 3. A function ψ : I → R is exponentially convex in the Jensen sense
on I if it is n -exponentially convex in the Jensen sense on I for every n ∈ N .

A function ψ : I → R is exponentially convex on I if it is exponentially convex in
the Jensen sense and continuous on I .

REMARK 7. A function ψ : I → R is log-convex in the Jensen sense, i.e.

ψ
(

x+ y
2

)2

� ψ(x)ψ(y), for all x,y ∈ I, (3.5)

if and only if

α2ψ(x)+2αβ ψ
(

x+ y
2

)
+ β 2ψ(y) � 0

holds for every α,β ∈ R and x,y ∈ I , i.e., if and only if ψ is 2-exponentially convex
in the Jensen sense. By induction from (3.5) we have

ψ
(

1
2k x+

(
1− 1

2k

)
y

)
� ψ(x)

1
2k ψ(y)1− 1

2k .

Therefore, if ψ is continuous and ψ(x)= 0 for some x∈ I , then from the last inequality
and nonnegativity of ψ (see Remark 6) we get

ψ(y) = lim
k→∞

ψ
(

1
2k x+

(
1− 1

2k

)
y

)
= 0 for all y ∈ I.

Hence, 2-exponentially convex function is either identically equal to zero or it is strictly
positive and log-convex.

The following lemma is equivalent to the definition of convex functions (see [7]).

LEMMA 2. A function ψ : I → R is convex if and only if the inequality

(x3− x2)ψ(x1)+ (x1− x3)ψ(x2)+ (x2− x1)ψ(x3) � 0

holds for all x1,x2,x3 ∈ I such that x1 < x2 < x3 .

We also use the following result (see [7]).

PROPOSITION 1. If f is a convex function on I and if x1 � y1, x2 � y2, x1 �=
x2, y1 �= y2 , then the following inequality holds

f (x2)− f (x1)
x2− x1

� f (y2)− f (y1)
y2− y1

.

If the function f is concave, the inequality is reversed.
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We use previously defined functionals L1 and L2 to construct exponentially con-
vex functions, a special type of convex functions invented by Bernstein in [1]. An
elegant method of producing n− exponentially convex and exponentially convex func-
tions is given in [2]. We use this method to prove n−exponential convexity of func-
tionals L1 and L2 . In the sequel the notion log denotes the natural logarithm function
and I , J denote intervals in R .

THEOREM 12. Let Ω = { fp : I → R | p ∈ J} be a family of functions such that
for every mutually different points x0,x1,x2 ∈ I the mapping p �→ [x0,x1,x2; fp] is n-
exponentially convex in the Jensen sense on J . Let Li , i = 1,2 be linear functionals
defined by (3.1) and (3.2) . Then the mapping p �→ Li( fp) is n-exponentially convex
in the Jensen sense on J .

If the mapping p �→ Li( fp) is continuous on J , then it is n-exponentially convex
on J .

Proof. For ξ j ∈ R and p j ∈ J, j = 1, . . . ,n , we define the function

Φ(x) =
n

∑
j,k=1

ξ jξk f p j+pk
2

(x).

Using the assumption that the mapping p �→ [x0,x1,x2; fp] is n -exponentially convex
in the Jensen sense we have

[x0,x1,x2;Φ] =
n

∑
j,k=1

ξ jξk[x0,x1,x2; f p j+pk
2

] � 0.

This implies that Φ is a convex function. So by Corollaries 1 and 2,

0 � Li(Φ) =
n

∑
j,k=1

ξ jξkLi

(
f p j+pk

2

)
, i = 1,2.

Therefore, the mapping p �→ Li( fp) is n -exponentially convex on J in the Jensen sense.
If the mapping p �→ Li( fp) is also continuous on J , then p �→ Li( fp) is n -expo-

nentially convex by definition. �

If the assumptions of Theorem 12 hold for all n ∈ N , then we have the following
corollary.

COROLLARY 5. Let Ω = { fp : I → R | p ∈ J} be a family of functions such that
for every mutually different points x0,x1,x2 ∈ I the mapping p �→ [x0,x1,x2; fp] is ex-
ponentially convex in the Jensen sense on J . Let Li , i = 1,2 be linear functionals
defined by (3.1) and (3.2) . Then the mapping p �→ Li( fp) is exponentially convex in
the Jensen sense on J .

If the mapping p �→ Li( fp) is continuous on J , then it is exponentially convex on
J .
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COROLLARY 6. Let Ω = { fp : I → R | p ∈ J} be a family of functions such that
for every mutually different points x0,x1,x2 ∈ I the mapping p �→ [x0,x1,x2; fp] is 2 -
exponentially convex in the Jensen sense on J . Let Li, i = 1,2 be linear functionals
defined by (3.1) and (3.2). Then the following statements hold:

(i) If the mapping p �→ Li( fp) is continuous on J , then for r,s,t ∈ J , such that
r < s < t , we have

[Li( fs)]t−r � [Li( fr)]t−s [Li( ft )]s−r , i = 1,2. (3.6)

(ii) If the mapping p �→ Li( fp) is strictly positive and differentiable on J, then for
every p,q,u,v ∈ J such that p � u and q � v we have

μp,q(Li,Ω) � μu,v(Li,Ω),

where

μp,q(Li,Ω) =

⎧⎪⎨
⎪⎩
(

Li( fp)
Li( fq)

) 1
p−q

, p �= q,

exp

(
d
dp Li( fp)
Li( fp)

)
, p = q.

(3.7)

Proof.

(i) By Theorem 12 the mapping p �→ Li( fp) is 2-exponentially convex. Hence,
by Remark 7, this mapping is either identically equal to zero, in which case in-
equality (3.6) holds trivially with zeros on both sides, or it is strictly positive and
log-convex. Therefore, for r,s,t ∈ J such that r < s < t Lemma 2 gives

(t − s) logLi( fr)+ (r− t) logLi( fs)+ (s− r) logLi( ft ) � 0,

which is equivalent to inequality (3.6).

(ii) By (i) we have that the mapping p �→ Li( fp) is log-convex on J , that is, the
function p �→ logLi( fp) is convex on J . Applying Proposition 1 with p � u, q �
v, p �= q, u �= v , we obtain

logLi( fp)− logLi( fq)
p−q

� logLi( fu)− logLi( fv)
u− v

,

that is
μp,q(Li,Ω) � μu,v(Li,Ω).

Finally, the limit cases p = q and u = v are obtained by taking the limits p → q
and u → v . �

Next, we give an example of a family of functions which satisfies previous condi-
tions.
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Let
ϒ = { fp : I ⊂ (0,∞) → R | p ∈ R}

be a family of functions defined by

fp(x) =

⎧⎨
⎩

xp

p(p−1) , p �= 0,1,

− logx, p = 0,
x logx, p = 1.

(3.8)

Functions fp are convex since f ′′p (x) = xp−2 � 0. Moreover, the function

Φ(x) =
n

∑
j,k=1

ξ jξk f p j+pk
2

(x)

satisfies

Φ′′(x) =
n

∑
j,k=1

ξ jξk f ′′p j+pk
2

(x) =

(
n

∑
j=1

ξ jx
p j
2 −1

)2

� 0,

so Φ is convex. Therefore,

0 � [t0,t1,t2;Φ] =
n

∑
j,k=1

ξ jξk[t0,t1,t2; f p j+pk
2

].

Hence, the mapping p �→ [t0,t1,t2; fp] is n -exponentially convex in the Jensen sense.
Since this holds for all n ∈ N , we see that the family ϒ satisfies the assumptions of
Corollary 5, so the mapping p �→ Li( fp) is exponentially convex in the Jensen sense.
Now, let us prove that the mapping p �→ L1( fp) is continuous on R . Obviously, it is
continuous on R\ {0,1} . First, suppose p → 0, then

lim
p→0

L1( fp) = lim
p→0

(∫ a+λ1

a

t p

p(p−1)
dt +

∫ b

b−λ2

t p

p(p−1)
dt−

∫ b

a

t p

p(p−1)
g(t)dt

)

= lim
p→0

∫ a+λ1
a t pdt +

∫ b
b−λ2

t pdt− ∫ b
a t pg(t)dt

p(p−1)
.

Since

lim
p→0

(∫ a+λ1

a
t pdt +

∫ b

b−λ2

t pdt−
∫ b

a
t pg(t)dt

)
= 0,

from L’Hospital rule limit we have

lim
p→0

L1( fp) = lim
p→0

∫ a+λ1
a t p logtdt +

∫ b
b−λ2

t p logtdt− ∫ b
a t p logtg(t)dt

2p−1

= −
∫ a+λ1

a
log tdt−

∫ b

b−λ2

log tdt +
∫ b

a
logtg(t)dt

= L1( f0).
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In the same way, suppose p → 1, then we get

lim
p→1

L1( fp) =
∫ a+λ1

a
t logtdt +

∫ b

b−λ2

t logtdt−
∫ b

a
t log tg(t)dt = L1( f1).

Similarly we can check that the mapping p �→ L2( fp) is continuous on R . Hence, the
mapping p �→ Li( fp) is exponentially convex.

Applying Theorems 10 and 11 for the functions f = fp and h = fq given by (3.8)
and defined on segment I = [a,b] ⊂ (0,∞) , we conclude that there exist ξi ∈ [a,b] ,
i = 1,2 such that

ξi =

(
f ′′p
f ′′q

)−1(
Li( fp)
Li( fq)

)
=
(

Li( fp)
Li( fq)

) 1
p−q

, p �= q, i = 1,2.

Therefore, μp,q(Li,ϒ) given by (3.7) is a mean of the segment [a,b] . For p �= q we
have

μp,q(L1,ϒ) =

⎛
⎝ q(q−1)

p(p−1)
·

(a+λ1)p+1−ap+1

p+1 + bp+1−(b−λ2)p+1

p+1 − ∫ b
a t pg(t)dt

(a+λ1)q+1−aq+1

q+1 + bq+1−(b−λ2)q+1

q+1 − ∫ b
a tqg(t)dt

⎞
⎠

1
p−q

.

The limiting cases can easily be calculated so we obtain

∗ for p = q �= 0,1

μp,p(L1,ϒ) = exp

⎛
⎝ α − ∫ b

a t p logtg(t)dt
(a+λ1)p+1−ap+1

p+1 + bp+1−(b−λ2)p+1

p+1 − ∫ b
a t pg(t)dt

− 2p−1
p(p−1)

⎞
⎠

where

α =
(a+ λ1)p+1 log(a+ λ1)−ap+1 loga

p+1
− (a+ λ1)p+1−ap+1

(p+1)2

+
bp+1 logb− (b−λ2)p+1 log(b−λ2)

p+1
− bp+1− (b−λ2)p+1

(p+1)2 ,

∗ for p = q = 0 μ0,0(L1,ϒ) = exp

(
1
2 ·

β1−
∫ b
a log2 tg(t)dt

β2−
∫ b
a logtg(t)dt

+1

)
where

β1 = (a+ λ1) log2(a+ λ1)−a log2 a+b log2 b− (b−λ2) log2(b−λ2)
−2(a+λ1) log(a+λ1)+2a loga−2b logb+2(b−λ2) log(b−λ2)+2(λ1+λ2)

β2 = (a+ λ1) log(a+ λ1)−a loga+b logb− (b−λ2) log(b−λ2)−λ1−λ2
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∗ for p = q = 1 μ1,1(L1,ϒ) = exp

(
1
2 · γ1−

∫ b
a t log2 tg(t)dt

γ2−
∫ b
a t logtg(t)dt

−1

)
where

γ1 =
(a+λ1)2

2
(log2(a+λ1)− log(a+λ1))−a2

2
(log2 a− loga)+

b2

2
(log2 b− logb)

− (b−λ2)2

2
(log2(b−λ2)− log(b−λ2))+

aλ1+bλ2

2
+

λ 2
1−λ 2

2

4

γ2 =
(a+ λ1)2

2
log(a+ λ1)− a2

2
loga+

b2

2
logb− (b−λ2)2

2
log(b−λ2)

− aλ1 +bλ2

2
− λ 2

1 −λ 2
2

4
.

Similarly, we obtain that μp,q(L2,ϒ) is given by

μp,q(L2,ϒ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
L2( fp)
L2( fq)

) 1
p−q

, p �= q,

exp
(−L2( fp f0)

L2( fp)
− 2p−1

p(p−1)

)
, p = q �= 0,1,

exp
(−L2( f 2

0 )
2L2( f0)

+1
)

, p = q = 0,

exp
(−L2( f0 f1)

2L2( f1)
−1
)

, p = q = 1.
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[2] J. JAKŠETIĆ AND J. PEČARIĆ, Exponential convexity method, J. Convex Anal. 20 (1) (2013), 181–

197.
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