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Abstract. We prove two conjectures of Chen concerning the complete monotonicity properties
of some functions involving the gamma and polygamma functions. We prove asymptotic expan-
sions of the logarithm of the gamma function in terms of the polygamma functions, and provide
recurrence relations to calculate the coefficients of the asymptotic expansions. By using the
results obtained, we derive recursive relations of the Bernoulli numbers.

1. Introduction

A function f is said to be completely monotonic on an interval I if it has deriva-
tives of all orders on I and satisfies the following inequality:

(−1)n f (n)(x) � 0 (x ∈ I; n ∈ N0 := N∪{0}, N := {1,2,3, . . .}). (1)

Dubourdieu [4, p. 98] pointed out that, if a non-constant function f is completely
monotonic on I = (a,∞) , then strict inequality holds true in (1). See also [6] for a
simpler proof of this result. It is known (Bernstein’s Theorem) that f is completely
monotonic on (0,∞) if and only if

f (x) =
∫ ∞

0
e−xt dμ(t),

where μ is a nonnegative measure on [0,∞) such that the integral converges for all
x > 0. See [8, p. 161].

The gamma function:

Γ(x) =
∫ ∞

0
tx−1e−t dt, x > 0

is one of the most important functions in mathematical analysis and its applications in
various diverse areas are widely scattered. The logarithmic derivative of the gamma
function:

ψ(x) =
d
dx

{lnΓ(x)} =
Γ′(x)
Γ(x)

or lnΓ(x) =
∫ x

1
ψ(t) dt
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is known as the psi (or digamma) function. The successive derivatives of the psi func-
tion ψ(x) :

ψ(n)(x) :=
dn

dxn {ψ(x)}, n ∈ N

are called the polygamma functions.
Recently, Chen [3] presented new asymptotic expansions of the logarithm of the

gamma function in terms of the polygamma functions. More precisely, the author
proved that, as x → ∞ ,

lnΓ(x+1)∼
(

x+
1
2

)
lnx− x+ ln

√
2π +

∞

∑
j=1

a jψ(2 j−1)
(

x+
1
2

)
(2)

and

lnΓ(x+1)∼
(

x+
1
2

)
lnx− x+ ln

√
2π +

∞

∑
j=1

b jψ( j)(x), (3)

where the coefficients a j and b j are given by

a j =
4 j

22 j+1(2 j +1)!
, j ∈ N (4)

and

b j =
j

2( j +2)!
, j ∈ N, (5)

respectively. Burić et al. [2] dealt with the same problem. Based on the asymptotic
expansions (2) and (3), Chen [3] proposed the following conjectures.

CONJECTURE 1. For all m ∈ N0 , the functions Rm(x) defined by

Rm(x) = lnΓ(x+1)

−
[(

x+
1
2

)
lnx− x+ ln

√
2π +

m

∑
j=1

4 j
22 j+1(2 j +1)!

ψ(2 j−1)
(

x+
1
2

)]
(6)

are completely monotonic on (0,∞) .

CONJECTURE 2. For all m ∈ N0 , the functions Sm(x) defined by

Sm(x) = (−1)m

[
lnΓ(x+1)−

(
x+

1
2

)
lnx+ x− ln

√
2π −

m

∑
j=1

j
2( j +2)!

ψ( j) (x)

]

(7)

are completely monotonic on (0,∞) .

Our first aim in this paper is to prove these two conjectures. Our second aim in
this paper is to give recursive relations for determining the coefficients a j and b j in (2)
and (3), respectively. By using the results obtained, we derive recursive relations of the
Bernoulli numbers.
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2. Completely monotonic functions

In this section, we prove Conjectures 1 and 2.

THEOREM 1. For all m∈ N0 , the functions Rm(x) , defined by (6), are completely
monotonic on (0,∞) .

Proof. The noted Binet’s first formula [7, p. 16] states that

lnΓ(x) =
(

x− 1
2

)
lnx−x+ ln

√
2π +

∫ ∞

0

(
t

et −1
−1+

t
2

)
e−xt

t2
dt (x > 0). (8)

It is known (see [1, p. 260]) that

ψ( j)(x) = (−1) j+1
∫ ∞

0

t j

1− e−t e
−xt dt, x > 0 and j ∈ N. (9)

By using (8) and (9), we have

Rm(x) =
∫ ∞

0

(
t

et −1
−1+

t
2

)
e−xt

t2
dt −

m

∑
j=1

4 j
22 j+1(2 j +1)!

∫ ∞

0

t2 j−1

1− e−t e
−(x+1/2)t dt

=
∫ ∞

0

p(t)
2sinh( t

2 )
e−xt dt,

with

p(t) =
1
t

cosh
( t

2

)
− 2

t2
sinh

( t
2

)
−

m

∑
j=1

4 j
22 j+1(2 j +1)!

t2 j−1

=
∞

∑
j=m+1

4 j
22 j+1(2 j +1)!

t2 j−1 > 0, t > 0.

We then obtain that

(−1)nR(n)
m (x) > 0 for x > 0 and m,n ∈ N0.

The proof of Theorem 1 is complete. �

THEOREM 2. For all m ∈ N0 , the functions Sm(x) , defined by (7), are completely
monotonic on (0,∞) .

Proof. By using (8) and (9), we have

Sm(x) = (−1)m
[∫ ∞

0

(
t

et −1
−1+

t
2

)
e−xt

t2
dt−

m

∑
j=1

(−1) j−1 j
2( j +2)!

∫ ∞

0

t j

1− e−t e
−xt dt

]

=
∫ ∞

0
(−1)m

(
q(t)−

m

∑
j=1

(−1) j−1 j
2( j +2)!

t j

)
e−xt

1− e−t dt,

(10)
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where

q(t) =
1
2t

− 1
t2

+
(

1
2t

+
1
t2

)
e−t =

m

∑
j=1

(−1) j−1 j
2( j +2)!

t j, t > 0. (11)

We claim that for all t > 0 and m ∈ N0 ,

(−1)m

(
q(t)−

m

∑
j=1

(−1) j−1 j
2( j +2)!

t j.

)
> 0, (12)

it suffices to show that for all t > 0 and k ∈ N0 ,

2k

∑
j=1

(−1) j−1 j
2( j +2)!

t j < q(t) <
2k+1

∑
j=1

(−1) j−1 j
2( j +2)!

t j. (13)

We are now in a position to prove (13). It is easy to see that for t > 0,

q(t)et =
∞

∑
j=1

j
2 · ( j +2)!

t j > 0

and (
q(t)− 1

12
t

)
et = −

∞

∑
j=2

j( j−1)( j +4)
12 · ( j +2)!

t j < 0.

Hence, we have

0 < q(t) <
1
12

t, t > 0. (14)

Let t > 0 be fixed. Denote

a j =
j

2( j +2)!
t j

and

Sk =
k

∑
j=1

(−1) j−1a j, q(t) = S =
∞

∑
j=1

(−1) j−1a j.

Then we have

a j−1 � a j ⇐⇒ j +1− 2
j

� t.

So, the sequence (a j) is unimodal. Let j∗ be the minimal index for which elements of
this sequence obtains the maximal value. We consider two cases to show (13).

Case 1. j∗ = 2m , and

a1 < a2 < .. . < a2m−1 < a2m, a2m � a2m+1 > a2m+2 > .. . .
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For k � m we have

S2k = (a1−a2)+ (a3−a4)+ · · · +(a2k−1−a2k) < 0 < q(t),

and

S2k−1 = a1 +(−a2 +a3)+ . . .+(−a2k−2 +a2k−1) > a1 =
t
12

> q(t).

For k > m we have

q(t) = S = S2k +(a2k+1−a2k+2)+ . . . > S2k

and

q(t) = S = S2k−1− (a2k−a2k+1)− . . . < S2k−1.

Case 2. j∗ = 2m+1, and

a1 < a2 < .. . < a2m < a2m+1, a2m+1 � a2m+2 > a2m+3 > .. . .

For k � m we have

S2k = (a1−a2)+ (a3−a4)+ . . .+(a2k−1−a2k) < 0 < q(t)

and

S2k+1 = a1 +(−a2 +a3)+ . . .+(−a2k +a2k+1) > a1 =
t
12

> q(t).

For k > m we have

q(t) = S = S2k +(a2k+1−a2k+2)+ . . . > S2k

and

q(t) = S = S2k+1− (a2k+2−a2k+3)− . . . < S2k+1.

This proves the claim.
We then obtain from (10) that

(−1)nS(n)
m (x) > 0 for x > 0 and m,n ∈ N0.

The proof of Theorem 2 is complete. �

REMARK 1. From Sm(x) > 0 (for x > 0 and m ∈ N0 ), we obtain the following
upper and lower bounds for the gamma function in terms of the polygamma functions

√
2πx

(x
e

)x
exp

(
2m

∑
k=1

k
2(k+2)!

ψ(k)(x)

)
< Γ(x+1)

<
√

2πx
(x

e

)x
exp

(
2m+1

∑
k=1

k
2(k+2)!

ψ(k) (x)

) (15)

for x > 0 and m ∈ N0 ,
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3. Asymptotic expansions

In this section, we provide recurrence relations to calculate the coefficients of
asymptotic expansions (2) and (3). By using the results obtained, we derive recursive
relations of the Bernoulli numbers.

THEOREM 3. The following asymptotic expansion hold true:

ln

(
Γ(x+1)√
2πx(x/e)x

)
∼

∞

∑
j=1

a jψ(2 j−1)
(

x+
1
2

)
as x → ∞, (16)

with the coefficients a j given by the recursive relation

a1 =
B2

2
, a j =

j−1

∑
k=1

a j−k

(
1− 1

22k−1

)
B2k

(2k)!
+

B2 j

(2 j)!
, j � 2, (17)

where Bn are the Bernoulli numbers.

Proof. The psi function has the following asymptotic expansion (see [5, p. 33]):

ψ(x+ t)∼ lnx+
∞

∑
n=1

(−1)n−1Bn(t)
nxn , x → ∞, (18)

where Bn(t) are the Bernoulli polynomials defined by the following generating func-
tion:

xetx

ex −1
=

∞

∑
n=0

Bn(t)
xn

n!
. (19)

Note that the Bernoulli numbers Bn (n ∈ N0) are defined by (19) for t = 0. Differen-
tiating the relation (18) j times, we obtain

ψ( j)(x+ t)∼
∞

∑
k=0

(−1)k+ j−1(k+ j−1)!Bk(t)
k!xk+ j . (20)

It follows from Stirling’s series for the gamma function (see [1, p. 257, Equation
(6.1.40)]) that

ln

(
Γ(x+1)√
2πx(x/e)x

)
∼

∞

∑
j=1

B2 j

2 j(2 j−1)x2 j−1 , x → ∞. (21)

In view of (20) and (21), we can let

ln

(
Γ(x+1)√
2πx(x/e)x

)
∼

∞

∑
j=1

a jψ(2 j−1)
(

x+
1
2

)
as x → ∞, (22)

where a j are real numbers to be determined.
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Setting t = 1
2 and noting that

Bk( 1
2 ) = −

(
1− 1

2k−1

)
Bk, k = 0,1,2, . . . ,

we obtain from (20) that

ψ(2 j−1)
(

x+
1
2

)
∼−

∞

∑
k=0

(2k+2 j−2)!
(2k)!x2k+2 j−1

(
1− 1

22k−1

)
B2k. (23)

Substituting (23) into (22), we obtain that, as x → ∞ ,

ln

(
Γ(x+1)√
2πx(x/e)x

)
∼−

∞

∑
j=1

a j

x2 j−1

∞

∑
k=0

(2k+2 j−2)!
(2k)!x2k

(
1− 1

22k−1

)
B2k

∼
∞

∑
j=1

(
−

j−1

∑
k=0

a j−k
(2 j−2)!

(2k)!

(
1− 1

22k−1

)
B2k

)
1

x2 j−1 . (24)

Equating the coefficients of 1/x2 j−1 in (21) and (24) yields

−
j−1

∑
k=0

a j−k
(2 j−2)!

(2k)!

(
1− 1

22k−1

)
B2k =

B2 j

2 j(2 j−1)
, j � 1.

We then obtain the recursive formula

a1 =
B2

2
, a j =

j−1

∑
k=1

a j−k

(
1− 1

22k−1

)
B2k

(2k)!
+

B2 j

(2 j)!
, j � 2.

The proof of Theorem 3 is complete. �

REMARK 2. It is know that

B0 = 1, B1 = −1
2
, B2 =

1
6
, B4 = − 1

30
, B6 =

1
42

, B8 = − 1
30

,

B10 =
5
66

, . . . , and B2n+1 = 0, n ∈ N.

Substituting (4) into (17), we find the following recursive relation of the Bernoulli num-
bers:

B2n = −
n−1

∑
k=0

(
2n
2k

)
(22k+1−1)(n− k)
22n−2(2n−2k+1)

B2k, n ∈ N. (25)

REMARK 3. From (21) and (16), we obtain the following approximation formu-
las:

n! ∼
√

2πn
(n

e

)n
exp

(
1

12n
− 1

360n3 +
1

1260n5

)
= un (26)
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and

n! ∼
√

2πn
(x

e

)n
exp

(
1
12

ψ ′
(

n+
1
2

)
+

1
480

ψ ′′′
(

n+
1
2

)
+

1
53760

ψ(5)
(

n+
1
2

))
= vn,

(27)

respectively. The following numerical computations (see Table 1) would show that, for
n ∈ N , the formula (27) is sharper than the formula (26).

Table 1. Comparison between approximation formulas (26) and (27).

n un−n!
n!

vn−n!
n!

1 2.87×10−4 1.89×10−5

10 5.87×10−11 6.06×10−12

100 5.95×10−18 6.19×10−19

1000 5.95×10−25 6.2×10−26

10000 5.95×10−32 6.2×10−33

THEOREM 4. The following asymptotic expansion hold true:

ln

(
Γ(x+1)√
2πx(x/e)x

)
∼

∞

∑
j=1

b jψ( j)(x) as x → ∞, (28)

with the coefficients b j given by the recursive relation

b1 =
B2

2
, b j =

b j−1

2
−

j−3

∑
k=0

(−1)kb j−k−2Bk+2

(k+2)!
+

(−1) j−1Bj+1

( j +1)!
, j � 2. (29)

where Bn are the Bernoulli numbers.

Proof. Write (21) as

ln

(
Γ(x+1)√
2πx(x/e)x

)
∼

∞

∑
j=1

Bj+1

j( j +1)x j , x → ∞. (30)

It is well-known (see [1, p. 260, Equation (6.4.11)]) that

ψ( j)(x) ∼ (−1) j−1
[
( j−1)!

x j +
j!

2x j+1 +
∞

∑
k=2

Bk
(k+ j−1)!

k!xk+ j

]
(31)

for x → ∞ and j ∈ N . In view of (30) and (31), we can let

ln

(
Γ(x+1)√
2πx(x/e)x

)
∼

∞

∑
j=1

b jψ( j)(x) as x → ∞, (32)
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where b j are real numbers to be determined. Substituting (31) into (32), we obtain that,
as x → ∞ ,

ln

(
Γ(x+1)√
2πx(x/e)x

)
∼

∞

∑
j=1

(−1) j−1( j−1)!b j

x j +
∞

∑
j=1

(−1) j−1 j!b j

2x j+1

+
∞

∑
j=1

(−1) j−1b j

x j

∞

∑
k=2

(k+ j−1)!Bk

k!xk
.

It is not difficult to see that

∞

∑
j=1

(−1) j−1b j

x j

∞

∑
k=2

(k+ j−1)!Bk

k!xk =
∞

∑
j=3

(
j−3

∑
k=0

b j−k−2(−1) j−k−1Bk+2
( j−1)!
(k+2)!

)
1
x j .

Hence, we have

ln

(
Γ(x+1)√
2πx(x/e)x

)

∼ b1

x
+
(

b1

2
−b2

)
1
x2

+
∞

∑
j=3

(−1) j−1( j−1)!
(

b j − b j−1

2
+

j−3

∑
k=0

(−1)kb j−k−2Bk+2
1

(k+2)!

)
1
x j .

(33)

Equating coefficients of the term 1/x j on the right sides of (30) and (33) yields

b1 =
B2

2
,

b1

2
−b2 = 0,

(−1) j−1( j−1)!
(

b j − b j−1

2
+

j−3

∑
k=0

(−1)kb j−k−2Bk+2
1

(k+2)!

)
=

Bj+1

j( j +1)
, j � 3.

We then obtain the recursive formula

b1 =
B2

2
, b j =

b j−1

2
−

j−3

∑
k=0

(−1)kb j−k−2Bk+2

(k+2)!
+

(−1) j−1Bj+1

( j +1)!
, j � 2.

The proof of Theorem 3 is complete. �

REMARK 4. Substituting (5) into (29), we find the following recursive relation of
the Bernoulli numbers:

Bn = (−1)n
n−2

∑
k=0

(−1)k
(

n
k

)
n− k−1
n− k+1

Bk, n ∈ N. (34)
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