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WRIGHT TYPE MULTIPLICATIVELY CONVEX FUNCTIONS

KAIZHONG GUAN

(Communicated by C. P. Niculescu)

Abstract. The notion of Wright type multiplicatively convex functions is introduced. Relation-
ships between such functions and multiplicatively convex functions are investigated, and a coun-
terpart of the Ng representation theorem for Wright convex functions is presented. It is proved
that the function F(x1, ...,xn ) = f (x1) · · · f (xn) is multiplicatively Schur-convex if and only if
f is Wright type multiplicatively convex. A Hermite-Hadamard type inequality for Wright type
multiplicatively convex functions is also given.

1. Introduction

Convexity plays a very important role in mathematical science and other applied
fields, and hence convexity and generalized convexity have been investigating exten-
sively [8,9].

Let I be an interval in R . Recall that a function f : I → R is said to be convex if

f (λx+(1−λ )y) � λ f (x)+ (1−λ ) f (y) (1.1)

for all x,y ∈ I and λ ∈ [0,1] ; f is called Jensen convex (or mid-convex) if condition

(1.1) is assumed only for λ = 1
2 , that is f

( x+y
2

)
� f (x)+ f (y)

2 for all x,y ∈ I. A function
f : I → R is said to be quasi-convex if

f (λx+(1−λ )y) � max{ f (x), f (y)}

for all x,y ∈ I and λ ∈ [0,1] .
There are many papers giving conditions under which Jensen convex functions are

convex functions. K. Nikodem [6] obtained the following characterization of convex
functions.
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NIKODEM’S THEOREM. Let f be a real-valued function defined on convex and
open set D(⊆ Rn) . Then f is a convex function on D if and only if it is Jensen convex
and quasi-convex on D.

Recall also that a function f : I → R is said to be Wright-convex (see [5, 10]) if

f (λx+(1−λ )y)+ f ((1−λ )x+ λy)� f (x)+ f (y) (1.2)

for all x,y∈ I and λ ∈ [0,1] . A function f : R→R is additive if f (x+y) = f (x)+ f (y)
for all x,y ∈ R.

It is known that both convex functions and additive functions are Wright-convex.
In particular, C. T. Ng [5] presented the following interesting result that any Wright-
convex function can be decomposed as the sum of such functions.

NG’S THEOREM. Let I ⊆ R be an open interval, and let f : I → R be a function.
Then f is Wright-convex if and only if there exist a convex function C : I → R and an
additive function A : R → R such that f (x) = C(x)+A(x) , x ∈ I.

It is also noted that the study of convex functions has evolved into a larger theory
about functions which are adapted to other geometries of the domain and/or obey other
laws of comparison of means. P. Montel [4] first considered the class of all multiplica-
tively (or geometrically) convex functions in a beautiful paper discussing the possible
analogues of convex functions in n variable. C. P. Niculescu et al. [8] presented com-
prehensive survey on multiplicatively convex functions.

In what follows R+ denotes the set of all positive real numbers and I is a non-
void interval of R+ . A positive function f : I → R+ is said to be multiplicatively (or
geometrically) convex (see [7] and [8, p. 66]) if

f (xλ y1−λ ) � f λ (x) f 1−λ (y) (1.3)

for all x,y ∈ I and λ ∈ [0,1] ; f is called multiplicatively (or geometrically) Jensen
convex if condition (1.3) is assumed only for λ = 1/2, that is

f (
√

xy) �
√

f (x) f (y) for all x,y ∈ I. (1.4)

For two n− tuples x = (x1, ...,xn),y = (y1, ...,yn) ∈ In (n � 2) , following Zhang
[11] we say that x is logarithmically majorized by y , and write logx ≺ logy , if

m

∏
i=1

x[i] �
m

∏
i=1

y[i] (m = 1, ...,n−1), and
n

∏
i=1

x[i] =
n

∏
i=1

y[i],

where x[i] denotes the i th largest component in x .
A function G : In → R+ is said to be multiplicatively (or geometrically) Schur-

convex if G(x) � G(y) whenever logx≺ logy, x,y∈ In . G is called multiplicatively (or
geometrically) Schur-concave if and only if 1/G is multiplicatively (or geometrically)
Schur-convex.

The theory of multiplicatively convex functions and multiplicatively schur-convex
functions has been recently received considerable attention. For example, see [2, 4, 7, 8,
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11] and the references cited therein. Our main purpose of this paper is to present com-
plementary information on the theory of multiplicatively convex functions and multi-
plicatively Schur-convex functions by proposing the following new notion of convexity,
which may be called Wright type multiplicative (or geometric) convexity.

DEFINITION. A function f : I → R+ is said to be Wright type multiplicatively (or
geometrically) convex if

f (xλ y1−λ ) f (x1−λ yλ ) � f (x) f (y)

for all x,y ∈ I and λ ∈ [0,1] .

2. Some characterizations

In this section we investigate the relationships between multiplicative Jensen con-
vexity, multiplicative convexity and Wright type multiplicative convexity. Some char-
acterizations are also presented. In particular, a representation of Wright type multi-
plicatively convex functions is given.

It is known that every multiplicatively convex function is multiplicative Jensen
convex, but not the converse. It is also obvious that multiplicatively convex functions
are Wright type multiplicatively convex, but the converse implication is not true as
shown the example below.

EXAMPLE 2.1. A function m : R+ → R+ is said to be multiplicative if

m(xy) = m(x)m(y) (2.1)

for all x,y ∈ R+. By [3, Theorem 1.49], (2.1) has a discontinuous solution, say m .
Taking f (x) = m(x)(1+ x) , x ∈ R+ , and using the weighted arithmetic and geometric
means inequality, we have

f (xλ y1−λ ) · f (x1−λ yλ ) = m(xλ y1−λ )(1+ xλy1−λ ) ·m(x1−λ yλ )(1+ x1−λyλ )

= m(xy)(1+ xy+ xλy1−λ + x1−λyλ )
� m(xy)(1+ xy+ x+ y)= f (x) f (y).

This implies that f is Wright type multiplicatively convex. On the other hand, it is
showed [8, p. 78] that every multiplicatively convex function is continuous in the in-
terior of its domain of definition. This implies that f is not multiplicatively convex
because it is not continuous.

To reveal the relationships between these kinds of geometric convexity, we start
with the following useful fact.

LEMMA 2.1. Let I be a non-void interval of R+ . If f : I → R+ is a multiplica-
tively Jensen convex, then

f
(
x

k
2n y1− k

2n
)

� f
k
2n (x) f 1− k

2n (y), (2.2)
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for all x,y ∈ I and all k,n ∈ N such that k < 2n .

Proof. This proof is by induction on n . For n = 1, (2.2) reduces to (1.4). Assum-
ing (2.2) to hold for some n ∈ N and all k < 2n , we will prove it for n+1. Fix x,y ∈ I
and take k < 2n+1 , without loss of generality we may assume that k < 2n . Then, by
(1.4) and the induction assumption, we obtain

f
(
x

k
2n+1 y1− k

2n+1
)

= f
((

x
k
2n y1− k

2n
) 1

2 y
1
2

)
�
(

f
(
x

k
2n y1− k

2n
)) 1

2 ( f (y))
1
2

� f
k

2n+1 (x) f
1
2− k

2n+1 (y)( f (y))
1
2 = f

k
2n+1 (x) f 1− k

2n+1 (y),

which finishes the proof. �

THEOREM 2.1. Let I ⊆ R+ be a non-void interval. Then f : I → R+ is multi-
plicatively convex if and only if f is multiplicatively Jensen convex and satisfies the
condition

f (xλ y1−λ ) � max{ f (x), f (y)}, for all x,y ∈ I and λ ∈ [0,1]. (2.3)

Proof. Necessity. Assume that f is multiplicatively convex. Obviously, it is mul-
tiplicatively Jensen convex. Again, the multiplicative convexity of f and the weighted
arithmetic and geometric means inequality show that for all x,y ∈ I and λ ∈ [0,1] ,

f (xλ y1−λ ) � f λ (x) f 1−λ (y) � λ f (x)+ (1−λ ) f (y) � max{ f (x), f (y)}.
Sufficiency. Fix arbitrary x,y∈ I , x �= y . Since f is multiplicatively Jensen convex,

then it follows from Lemma 2.1 that

f (xqy1−q) � f q(x) f 1−q(y) (2.4)

for all dyadic q ∈ (0,1) . Consider the function g : [0,1]→ R+ defined by

g(s) = f (xsy1−s), s ∈ [0,1].

Take arbitrary a,b ∈ [0,1] , and λ ∈ (0,1) . The multiplicative Jensen convexity of f ,
together with the arithmetic and geometric means inequality, implies that

g
(a+b

2

)
= f

(
x

a+b
2 y1− a+b

2

)
= f
((

xay1−a) 1
2 · (xby1−b) 1

2
)

�
√

f
(
xay1−a

) · f
(
xby1−b

)
=
√

g(a)g(b) � g(a)+g(b)
2

,

which implies that the function g is Jensen convex on [0,1] .
By (2.3) and the definition of g , we can easily obtain

g
(

λa+(1−λ )b
)

= f
((

xay1−a)λ(
xby1−b)1−λ

)
� max{ f

(
xay1−a), f

(
xby1−b)}

= max{g(a),g(b)},
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which implies that the function g is quasiconvex on [0,1] .
Thus, by Nikodem’s Theorem, the function g is convex, and so it is continuous on

the open interval (0,1) . From (2.4) it follows that

g(q) � (g(1))q(g(0))1−q (2.5)

for all dyadic q ∈ (0,1) . Take a sequence {qn} (n = 1,2, ...) of dyadic numbers in
(0,1) tending to λ . Using (2.5) for q = qn and the continuity of g at λ , we obtain

g(λ ) � (g(1))λ (g(0))1−λ .

Now, by the definition of g , we get

f (xλ y1−λ ) � f λ (x) f 1−λ (y),

which implies that f is multiplicatively convex, and so the proof is completed. �

THEOREM 2.2. Let I ⊆ R+ be a non-void interval. Then f : I → R+ is Wright
type multiplicatively convex if and only if it is multiplicatively Jensen convex and satis-
fies the condition

f (xλ y1−λ ) f (x1−λ yλ ) � max{ f 2(x), f 2(y)}, for all x,y ∈ I and λ ∈ [0,1]. (2.6)

Proof. Necessity. Assume that f is Wright type multiplicatively convex. Obvi-
ously, it is multiplicatively Jensen convex. The Wright type multiplicative convexity of
f also shows that for all x,y ∈ I and λ ∈ [0,1] ,

f (xλ y1−λ ) f (x1−λ yλ ) � f (x) f (y) � max{ f 2(x), f 2(y)}.
Sufficiency. Fix arbitrary x,y∈ I , x �= y . Since f is multiplicatively Jensen convex,

it follows from Lemma 2.1 that

f (xqy1−q) � f q(x) f 1−q(y), (2.7)

and
f (x1−qyq) � f 1−q(x) f q(y) (2.8)

for all dyadic q ∈ (0,1) . Consider the function g : [0,1]→ R+ defined by

g(s) = f (xsy1−s) · f (x1−sys), s ∈ [0,1].

Take arbitrary a,b∈ [0,1] , and λ ∈ (0,1) . The multiplicative Jensen convexity of
f , together with the arithmetic and geometric means inequality, implies that

g
(a+b

2

)
= f

(
x

a+b
2 y1− a+b

2

)
f
(
x1− a+b

2 y
a+b
2

)
= f

((
xay1−a) 1

2
(
xby1−b) 1

2
)
· f
((

x1−aya) 1
2
(
x1−byb) 1

2
)

�
√

f
(
xay1−a

)
f
(
xby1−b

) ·√ f
(
x1−aya

)
f
(
x1−byb

)
=
√

g(a)g(b) � g(a)+g(b)
2

,
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which implies that the function g is Jensen convex on [0,1] .
Again, from (2.7) it follows that for any s ∈ (0,1) ,

g(s) = f (xsy1−s) · f (x1−sys) � max{ f 2(x), f 2(y)},

which implies that g is bounded above on (0,1) . Therefore by the famous Jensen
Theorem (see [9, p. 220]), g is continuous on (0,1) .

By (2.7) and (2.8) we have

g(q) �
√

g(1)g(0) (2.9)

for all dyadic q ∈ (0,1) . Take a sequence {qn} (n = 1,2, ...) of dyadic numbers in
(0,1) tending to λ . Using (2.9) for q = qn and the continuity of g at λ , we obtain

g(λ ) �
√

g(1)g(0).

Now, by the definition of g , we get

f (xλ y1−λ ) f (xλ y1−λ ) � f (x) f (y),

which implies that f is Wright type multiplicatively convex, and so the proof is com-
pleted. �

Noting that Ng’s Theorem for Wrigth-convex functions, here we present a similar
representation theorem for Wright type multiplicatively convex functions.

THEOREM 2.3. Let I be a open interval of R+ . Then f : I → R+ is Wright
type multiplicatively convex if and only if there exist a multiplicatively convex function
G : I → R+ and a multiplicative function M : R+ → R+ such that

f (x) = G(x)M(x), for all x ∈ I.

Proof. The sufficiency is clear. We now prove the necessity. Assume that f :
I → R+ is Wright type multiplicatively convex on I = (a,b) . Take g(x) = log f (ex) ,
x ∈ (loga, logb) . Let x,y ∈ (loga, logb) , λ ∈ [0,1] , so ex,ey ∈ (a,b) , then we have

g(λx+(1−λ )y)+g((1−λ)x+λy) = log f (eλ x+(1−λ )y)+ log f (e(1−λ )x+λ y)

= log f
(
(ex)λ (ey)1−λ

)
+ log f

(
(ex)1−λ (ey)λ

)
� log f (ex)+ log f (ey)
= g(x)+g(y),

which implies that g(x) = log f (ex) is Wright-convex on (loga, logb) . By Ng’s The-
orem, there exist a convex function C : (loga, logb) → R and an additive function
A : R → R such that

g(x) = C(x)+A(x), for all x ∈ (loga, logb). (2.10)



WRIGHT TYPE MULTIPLICATIVELY CONVEX FUNCTIONS 395

Set M(x) = A(logx) and G(x) = C(logx),x ∈ (a,b) , one can verify that G(x) is mul-
tiplicatively convex on (a,b) and M(x) is multiplicative. From (2.10) it follows that

f (x) = G(x)M(x), for all x ∈ (a,b).

The proof is completed. �

REMARK 2.1. It is known [3, Theorem 1.49] that the general solution M : R+ →
R+ of the multiplicative functional equation (2.1) is either M(x) = 1 or M(x) = eA(logx) ,
where A : R → R is an additive function. Further, the continuous solutions of (2.1)
are M(x) = xμ(μ ∈ R) . Thus, by Theorem 2.3, one can see that a positive function
defined on an open interval I of R+ is Wright type multiplicatively convex if and
only if, either it is multiplicatively convex or it has the form eA(logx)G(x) , where G
is multiplicatively convex on I . And furthermore, under the presence of continuity,
a function W : I → R+ is Wright type multiplicatively convex if and only if it has
the form W (x) = xμG(x)(μ ∈ R) , where G(x) is multiplicatively convex. This also
shows that a continuous function f :W → R+ is Wright type multiplicatively convex if
and only if it is multiplicatively convex. Thus, from [8, p. 79–85], the functions 1−x

x ,
1+x
1−x , Γ(x) , is continuous and multiplicatively convex on (0, 1

2 ] , (0,1) , and [1,∞) ,
respectively, and so they are Wright type multiplicatively convex on (0, 1

2 ] , (0,1) , and
[1,∞) , respectively.

3. Functions generating multiplicatively Schur-convex products

It is showed [8, p. 80] that if a function f : I → R+ is multiplicatively convex, then
it generates multiplicatively Schur-convex products, that is, the function F : In → R+
defined by

F(x) = F(x1, ...,xn) = f (x1) · · · f (xn)

is multiplicatively Schur-convex.
Here we point out that the multiplicative convexity of f is a sufficient but not

necessary condition under which F is multiplicatively Schur-convex. For this purpose,
let m : R+ →R+ be a discontinuous multiplicative function, then f : R+ →R+ given by
f (x) = m(x)exp(x),x ∈ R+ , is not geometrically convex (because it is not continuous).
However, the function F(x) = f (x1) · · · f (xn) is multiplicatively Schur-convex in Rn

+ .
To see this, take x = (x1, · · ·,xn) , y = (y1, · · ·,yn) such that logx ≺ logy . Since exp(x)
is multiplicatively convex in R+ , then ∏n

i=1 exp(xi) � ∏n
i=1 exp(yi) . Again, by the

multiplicative of m , we have

m(x1) · · ·m(xn) = m(x1 · · · xn) = m(y1 · · · yn) = m(y1) · · ·m(yn).

Hence,

F(x) = f (x1) · · · f (xn) = m(x1) · · ·m(xn)∏n
i=1 exp(xi)

= m(y1) · · ·m(yn)∏n
i=1 exp(xi)

� m(y1) · · ·m(yn)∏n
i=1 exp(yi)

= f (y1) · · · f (yn).



396 KAIZHONG GUAN

This implies that F(x) = f (x1) · · · f (xn) is multiplicatively Schur-convex in Rn
+ .

The following result shows that the multiplicatively Jensen convex is a necessary
condition under which f generates multiplicatively Schur-convex products.

THEOREM 3.1. Let I ⊆ R+ be an interval. If the function F : In → R+ given by

F(x) = F(x1, ...,xn) = f (x1) · · · f (xn), (x1, ...,xn) ∈ In (n � 2)

is multiplicatively Schur-convex, then f is multiplicatively Jensen convex.

Proof. Take arbitrary x1,x2 ∈ I , without loss of generality we may assume that
x1 > x2 , and put y1 = y2 =

√
x1x2 . Consider the points

x = (x1,x2,x2, ...,x2), y = (y1,y2,x2, ...,x2)

(if n = 2, we then take x = (x1,x2) , y = (y1,y2)). Obviously, logy≺ logx . Therefore,
the multiplicative Schur-convexity of F implies that F(y) � F(x) , and so f (y1) f (y2)�
f (x1) f (x2) , i.e, f (

√
x1x2) �

√
f (x1) f (x2) , which means that f is multiplicatively

Jensen convex. The proof is completed. �

THEOREM 3.2. Let I ⊆ R+ be an open and non-void interval. Then the function
F : In → R+ given by

F(x) = F(x1, ...,xn) = f (x1) · · · f (xn), (x1, ...,xn) ∈ In(n � 2)

is multiplicatively Schur-convex if and only if f is Wright type multiplicatively convex.

Proof. Necessity. Taking arbitrary x1,x2 ∈ I with x1 > x2 , and 0 < λ < 1, one
can easily see that y = (xλ

1 x1−λ
2 ,xλ

2 x1−λ
1 ,x2, ...,x2) is logarithmically majorized by x =

(x1,x2,x2, ...,x2) , i.e., logy ≺ logx . If n = 2, we then take y = (xλ
1 x1−λ

2 ,xλ
2 x1−λ

1 ) and
x = (x1,x2) . Since the function F(x) = ∏n

i=1 f (xi) is multiplicatively Schur-convex,
then we have

f
(
xλ
1 x1−λ

2

)
f
(
xλ
2 x1−λ

1

)
� f (x1) f (x2),

which shows that the function f is Wright type multiplicatively convex on I .
Sufficiency. Assume that f is Wright type geometrically convex on I . By Theorem

2.3, there exist a multiplicatively convex function g and a multiplicative function m
such that f (x) = g(x)m(x),x ∈ I . Taking x = (x1, ...,xn) , y = (y1, ...,yn) such that
logx≺ logy , we obtain ∏n

i=1 g(xi) � ∏n
i=1 g(yi) since g is multiplicatively convex. We

also have ∏n
i=1 m(xi) = ∏n

i=1 m(yi) since m is multiplicative. Therefore, we obtain

F(x) =
n

∏
i=1

f (xi) =
n

∏
i=1

g(xi)m(xi) �
n

∏
i=1

g(yi)m(yi) =
n

∏
i=1

f (yi) = F(y),

which implies that F is multiplicatively Schur-convex in In . The proof is completed.
�

By Theorems 2.1 and 2.2, one can easily see that for continuous functions the
concepts of multiplicative convexity, Wright type multiplicative convexity, and multi-
plicative Jensen convexity are equivalent. Thus, we can obtain the following corollary
which generalizes Proposition 2.3.5 in [8].
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COROLLARY 3.1. Let I be an open interval in R+ and f : I → R+ be con-
tinuous. Then the function F : In → R+ given by F(x) = F(x1, ...,xn) = f (x1) · · ·
f (xn),(x1, ...,xn) ∈ In , is multiplicatively Schur-convex if and only if f is multiplica-
tively convex.

EXAMPLE 3.1. By Remark 2.1 and Corollary 3.1, one can see that the functions

φ1(x) =
n

∏
i=1

1− xi

xi
, φ2(x) =

n

∏
i=1

1+ xi

1− xi
, φ3(x) =

n

∏
i=1

Γ(xi)

are multiplicatively Schur-convex on (0, 1
2 ]n , (0,1)n and [1,∞)n , respectively.

Put Gn(x) =
(

∏n
i=1 xi

) 1
n and An(x) = 1

n ∑n
i=1 xi . Since log(Gn(x), ...,Gn(x)) ≺

log(x1, ...,xn) , we can easily obtain the following inequalities:

(i) ∏n
i=1

1+xi
1−xi

�
(

1+Gn(x)
1−Gn(x)

)n
, 0 < xi < 1, i = 1, ...,n.

(ii) ∏n
i=1 Γ(xi) �

(
Γ(Gn(x))

)n
, xi � 1, i = 1, ...,n.

(iii) ∏n
i=1

1−xi
xi

�
(

1−Gn(x)
Gn(x)

)n
�
(

1−An(x)
An(x)

)n
, i.e., the Ky Fan type inequalities

Gn(x)
Gn(1− x)

� Gn(x)
1−Gn(x)

� An(x)
An(1− x)

, 0 < xi �
1
2
, i = 1, ...,n.

EXAMPLE 3.2. Let a,b > 0, by Remark 2.1, the function f (x) = a + b
x =

x−1(ax+b) is Wright type multiplicatively convex on R+ , and so the function ϕ(x) =

∏n
i=1

(
a+ b

xi

)
is multiplicatively Schur-convexon Rn

+ . Noting that log(Gn(x), ...,Gn(x))
≺ log(x1, ...,xn) and Gn(x) � An(x) , one can obtain the inequalities

n

∏
i=1

(
a+

b
xi

)
�
(

a+
b

Gn(x)

)n

�
(

a+
b

An(x)

)n

, xi > 0, i = 1,2, ...,n.

REMARK 3.1. I. C. Draghicescu [1] proposed the inequality
n

∏
i=1

(
a+

b
xi

)
�
(

a+
b

An(x)

)n

, xi > 0, i = 1,2, ...,n.

Some proofs of this inequality can be found in “Crux Mathematicorum, 30 (1) (2004),
p. 58–60”. Here we give another new proof and refine it.

4. A Hermite-Hadamard type inequality

Suppose that 0 < a < b and let f : [a,b] → R+ be a multiplicatively convex
function, C. P. Niculescu et al. [8, p. 82] obtained the following analogue of Hermite-
Hadamard inequality,

f (
√

ab) � exp

(
1

logb− loga

∫ b

a

log f (t)
t

dt

)
�
√

f (a) f (b). (4.1)

We will prove that (4.1) still holds for Wright type multiplicatively convex functions.
To this end, we first present the following lemma.



398 KAIZHONG GUAN

LEMMA 4.1. Suppose that f is a Wright type multiplicatively convex function
defined on [a,b] (0 < a < b) , and let s,t,u,v ∈ [a,b] with s � t � u � v and tu = sv,
then

f (t) f (u) � f (s) f (v). (4.2)

Proof. Set x = (t,u) and y = (s,v) , one can see that logx ≺ logy . By Theorem
3.2, we have f (t) f (u) � f (s) f (v), and so the proof is completed. �

THEOREM 4.1. Suppose that f is a Wright type multiplicatively convex and inte-
grable function defined on [a,b] , then (4.1) holds.

Proof. From (4.2) it follows that

f (
√

ab) = exp

(
1

logb− loga

∫ √
ab

a

log( f (
√

ab) · f (
√

ab))
x

dx

)

� exp

(
1

logb− loga

∫ √
ab

a

log f (x)+ log f
(

ab
x

)
x

dx

)(
x �

√
ab �

√
ab � ab

x

)

= exp

(
1

logb− loga

∫ √
ab

a

(
log f (x)

x
+

log f
(

ab
x

)
x

)
dx

)

= exp

(
1

logb− loga

(∫ √
ab

a

log f (x)
x

dx+
∫ b

√
ab

log f (x)
x

dx

))

= exp

(
1

logb− loga

∫ b

a

log f (x)
x

dx

)
,

and

√
f (a) f (b) = exp

(
1

logb− loga

∫ √
ab

a

log( f (a) · f (b))
x

dx

)

� exp

(
1

logb− loga

∫ √
ab

a

log f (x)+ log f
(

ab
x

)
x

dx

)(
a � x � ab

x
� b
)

= exp

(
1

logb− loga

∫ √
ab

a

(
log f (x)

x
+

log f
(

ab
x

)
x

)
dx

)

= exp

(
1

logb− loga

(∫ √
ab

a

log f (x)
x

dx+
∫ b

√
ab

log f (x)
x

dx

))

= exp

(
1

logb− loga

∫ b

a

log f (x)
x

dx

)
,

which finishes the proof. �
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