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OPERATOR INEQUALITIES ASSOCIATED WITH

TSALLIS RELATIVE OPERATOR ENTROPY

LIMIN ZOU

(Communicated by T. Furuta)

Abstract. In this paper, we present some operator inequalities related to Tsallis relative operator
entropy. Our results are refinements and generalizations of some existing inequalities.

1. Introduction

For two invertible positive operators A and B and λ ∈ (0, 1] , the Tsallis relative
operator entropy Tλ (A|B) and the relative operator entropy S (A|B) are defined by

Tλ (A|B) =
A#λ B−A

λ
,

S (A|B) = A1/2 log
(
A−1/2BA−1/2

)
A1/2,

where A#λ B = A1/2
(
A−1/2BA−1/2

)λ
A1/2 is the wieghted geometric mean. When λ =

1
2 , this is the geometric mean, denoted by A#B . Since

lim
λ→0

Tλ (A|B) = S (A|B) ,

the Tsallis relative operator entropy Tλ (A|B) introduced by Yanagi, Kuriyama and Fu-
ruichi [10] is a generalization of the relative operator entropy S (A|B) defined by Fujii
and Kamei [1]. For more information on the Tsallis relative entropy the reader is re-
ferred to [3–4] and the references therein.

Furuichi, Yanagi and Kuriyama [5] obtained the following inequalities:

T−λ (A|B) � S (A|B) � Tλ (A|B) , (1.1)

A−AB−1A � Tλ (A|B) � B−A. (1.2)

Meanwhile, they also proved that if a > 0, then

A#λ B− 1
a
A#λ−1B+

1−aλ

λaλ A � Tλ (A|B) � 1
a
B− 1−aλ

λaλ A#λB−A. (1.3)
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Putting λ → 0 in (1.3), we have

(1− loga)A− 1
a
AB−1A � S (A|B) � (loga−1)A+

1
a
B, (1.4)

which was due to Furuta [6] (see also [7]). The inequality (1.4) is a generalization of
the following result:

A−AB−1A � S (A|B) � B−A, (1.5)

which was shown in [2]. For more inequalities on the Tsallis relative operator entropy
the reader is referred to [8–9].

After seeing the inequalities (1.1), (1.2) and (1.5), it is hard not to be curious about
the relationship between T−λ (A|B) and A−AB−1A . This is a part of the motivation
for the present paper.

In this paper, we first discuss the relationship between T−λ (A|B) and A−AB−1A .
After that, we obtain a generalization of (1.1) and (1.3), and present a refinement of
(1.4).

2. Main results

We begin this section with the following result.

THEOREM 2.1. Let a > 0 and λ ∈ (0, 1] . For any invertible positive operators
A and B, we have

A− 1
a
AB−1A+

1−aλ

λaλ A � a−λ T−λ (A|B) . (2.1)

Proof. For a > 0 and λ ∈ (0, 1] , we have

1− 1
ax

� a−λ x−λ −1
−λ

− 1−aλ

λaλ , x > 0,

and so

I− 1
a
A1/2B−1A1/2 � a−λ

(
A−1/2BA−1/2

)−λ − I

−λ
− 1−aλ

λaλ I.

Multiplying both sides by A1/2 , we have

A− 1
a
AB−1A � a−λ A1/2

(
A−1/2BA−1/2

)−λ
A1/2 −A

−λ
− 1−aλ

λaλ A.

This completes the proof. �

REMARK 2.1. Putting a = 1 in (2.1), we have

A−AB−1A � T−λ (A|B) .
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It follows from (1.1), (1.2) and this last inequality that

A−AB−1A � T−λ (A|B) � S (A|B) � Tλ (A|B) � B−A, (2.2)

which is a refinement of (1.5).

THEOREM 2.2. Let a > 0 and λ ∈ (0, 1] . For any invertible positive operatorss
A and B, we have

−
(

loga+
1−aλ

λaλ

)
A+a−λT−λ (A|B)� S (A|B)� Tλ (A|B)− 1−aλ

λ
A#λB−(loga)A.

(2.3)

Proof. It is known [5] that for positive real number x ,

x−λ −1
−λ

� logx � xλ −1
λ

.

So, we have

a−λ x−λ −1
−λ

− 1−aλ

λaλ � logax � xλ −1
λ

+
aλ −1

λ
xλ .

That is

− loga+a−λ x−λ −1
−λ

− 1−aλ

λaλ � logx � xλ −1
λ

− 1−aλ

λ
xλ − loga.

It follows that

−
(

loga+
1−aλ

λaλ

)
A+a−λ T−λ (A|B) � S (A|B) � Tλ (A|B)− 1−aλ

λ
A#λ B−(loga)A.

This completes the proof. �

REMARK 2.2. Putting a = 1 in (2.3), we obtain (1.1).

THEOREM 2.3. Let a > 0 , λ ∈ (0, 1] . For any invertible positive operators A
and B, we have

(1− loga)A− 1
a
AB−1A � −

(
1−aλ

λaλ + loga

)
A+a−λT−λ (A|B)

� S (A|B)

� (loga)A+Tλ (A|B)+
1−aλ

λaλ A#λ B

� (loga−1)A+
1
a
B.

(2.4)
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Proof. The first part of (2.4) follows from (2.1). The second part of (2.4) is the
first part of (2.3). We can replace a by a−1 in (2.3) to give the third part of (2.4). The
last part of (2.4) follows from the second part of (1.3). �

REMARK 2.3. The inequality (2.4) is a refinement of (1.4). Putting a = 1 in (2.4),
we get (2.2).

THEOREM 2.4. Let a > 0 , λ ∈ (0, 1] and v ∈ [0, 1] . For any invertible positive
operators A and B, we have

l3A#λ B− l1A#λ−1B+ l2A � Tλ (A|B) � l1B− l2A#λ B− l3A, (2.5)

where

l1 =
aλ−1

v
(
aλ −1

)
+1

, l2 =
v
(
1−aλ)

vλ
(
aλ −1

)
+ λ

, l3 =
(λ −1+ v)aλ +1− v

vλ
(
aλ −1

)
+ λ

.

Proof. Note that

1
λ

(( x
a

)λ −1

)
=

xλ −1
λ

+ xλ a−λ −1
λ

, (2.6)

1
λ

(( x
a

)λ −1

)
= a−λ xλ −1

λ
+

a−λ −1
λ

. (2.7)

It follows from (2.6) and (2.7) that

1
λ

(( x
a

)λ −1

)
= v

(
xλ −1

λ
+ xλ a−λ −1

λ

)
+(1− v)

(
a−λ xλ −1

λ
+

a−λ −1
λ

)

=
v
(
aλ −1

)
+1

aλ · xλ −1
λ

+
(
v
(
xλ −1

)
+1
) a−λ −1

λ
.

(2.8)
Since

xλ −1
λ

� x−1

for any x > 0 and λ ∈ (0, 1] , we have

1
λ

(( x
a

)λ −1

)
� x

a
−1, a > 0. (2.9)

Combining (2.8) and (2.9), we have

xλ −1
λ

� aλ−1

v
(
aλ −1

)
+1

x− v
(
1−aλ)

vλ
(
aλ −1

)
+ λ

xλ − (λ −1+ v)aλ +1− v

vλ
(
aλ −1

)
+ λ

. (2.10)
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Substituting x by x−1 in (2.10), we have

1
λ

((
1
x

)λ
−1

)
� aλ−1

v
(
aλ −1

)
+1

1
x
− v

(
1−aλ)

vλ
(
aλ −1

)
+ λ

(
1
x

)λ

− (λ −1+ v)aλ +1− v

vλ
(
aλ −1

)
+ λ

.

By a small calculation we know that

1
λ

((
1
x

)λ
−1

)
= −x−λ · x

λ −1
λ

and so

(λ −1+ v)aλ +1− v

vλ
(
aλ −1

)
+ λ

xλ − aλ−1

v
(
aλ −1

)
+1

xλ−1 +
v
(
1−aλ)

vλ
(
aλ −1

)
+ λ

� xλ −1
λ

. (2.11)

It follows from (2.10) and (2.11) that

l3
(
A−1/2BA−1/2

)λ − l1
(
A−1/2BA−1/2

)λ−1 + l2I

�
(
A−1/2BA−1/2

)λ − I

λ
� l1A−1/2BA−1/2− l2

(
A−1/2BA−1/2

)λ − l3I.

Multiplying A1/2 from both sides, we have

l3A#λ B− l1A#λ−1B+ l2A � Tλ (A|B) � l1B− l2A#λ B− l3A.

This completes the proof. �

REMARK 2.4. Putting v = 1 in (2.5), we get (1.3). Putting v = 1 and λ → 0 in
(2.5), we obtain (1.4).
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