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ON MIXED COMPLEX INTERSECTION BODIES

WEI WANG, RIGAO HE AND JUN YUAN ∗

(Communicated by J. Pečarić)

Abstract. Complex intersection bodies were introduced by Koldobsky, Paouris and Zymonopoulou.
In this paper some geometric inequalities for mixed complex intersection bodies which are dual
forms of inequalities for mixed complex projection bodies are established.

1. Introduction

Real intersection bodies have attracted increased interest since they are introduced
by Lutwak [20] . Intersection bodies were used to solve the important Busemann-Petty
problem (see [4, 5, 14, 24, 25]). More results and applications on intersection bodies
can be found in [2, 3, 7–9, 11–13, 16, 22, 23, 26].

Given a convex body A ⊂ C and convex bodies K1, . . . ,K2n ⊂ Cn , the mixed pro-
jection body ΠA(K1, . . . ,K2n) in a complex vector space was defined by Abardia and
Bernig [1] . Moreover, they established the following Minkowski inquality and Brunn-
Minkowski inequality for mixed complex projection bodies.

THEOREM A. [1] If K and L are convex bodies in Cn , then

V (ΠA
1 (K,L))2n−1 � V (ΠAK)2n−2V (ΠAL), (1.1)

with equality if and only if K and L are homothetic. Here ΠAK = ΠA(K, . . . ,K) and
ΠA

1 (K,L) = ΠA(K, . . . ,K,L) .

THEOREM B. [1] If K and L are convex bodies in Cn , then

V (ΠA(K +L))
1

2n(2n−1) � V (ΠAK)
1

2n(2n−1) +V(ΠAL)
1

2n(2n−1) , (1.2)

with equality if and only if K and L are homothetic.

As Lutwak [20] shows (see also [6]), there is a duality between projection bodies
and intersection bodies (that at present is not yet understood). Koldobsky, Paouris and
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Zymonopoulou [15] firstly introduced the complex intersection body and considered
the complex Busemann-Petty problem.

In this paper we shall introduce the mixed complex intersection body. Based on the
standard proof of geometric inequalities which was developed by Lutwak [18,19,21],
we establish the dual forms of inequalities (1.1) and (1.2) for mixed complex intersec-
tion bodies. Our main results can be stated as follows:

THEOREM 1.1. If K and L are star bodies in Cn , then

V (I C
1 (K,L))2n−2 � V (I CK)2n−3V (I CL), (1.3)

with equality if and only if K and L are dilates. The precise definitions of I C and I C
1

are introduced in Section 2.

THEOREM 1.2. If K and L are star bodies in C
n , then

V (I C(K+̃2L))
1

n(n−1) � V (I CK)
1

n(n−1) +V(I CL)
1

n(n−1) , (1.4)

with equality if and only if K and L are dilates.

This paper is organized as follows: In Section 2 we introduce above interrelated
notations and their background materials, and recall several needed Lemmas. Section
3 contains the proof of our main results.

2. Notation and background material

The real vector space Rn of real dimension n is replaced by a complex vector
space Cn of dimension n . We identify Cn with R2n using the standard mapping

ξ = (ξ1, . . . ,ξn) = (ξ11 + iξ12, . . . ,ξn1 + iξn2) �→ (ξ11,ξ12, . . . ,ξn1,ξn2). (2.1)

The unit ball B in Cn is given by

B = {ξ ∈ C
n :

n

∑
i=1

(ξ 2
i1 + ξ 2

i2) � 1}.

Its unit sphere can be denoted by S2n−1 . The volume of B ⊂ C
n is denoted by ω2n . A

compact set K ⊂ Cn is called a star body if its radial function ρ(K, ·) defined by

ρ(K,ξ ) = max{λ : λ ξ ∈ K}, ξ ∈ S2n−1 (2.2)

is positive and continuous on S2n−1 . For ξ ∈ S2n−1 , the complex hyperplane Hξ is
denoted by

Hξ = {z ∈ C
n : (z,ξ ) =

n

∑
k=1

zkξk = 0},

which is a (2n−2)-dimensional subspace of R2n orthogonal to the vectors

ξ = (ξ11,ξ12, . . . ,ξn1,ξn2) and ξ⊥ = (−ξ12,ξ11, . . . ,−ξn2,ξn1).
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Let K,L be star bodies in Cn , and λ1,λ2 � 0 (not both 0), the L2 radial sum
λ1 ·K+̃2λ2 ·L is a star body whose radial function is given by

ρ(λ1 ·K+̃2λ2 ·L, ·)2 = λ1ρ(K, ·)2 + λ2ρ(L, ·)2. (2.4)

Let K1, . . . ,K2n be star bodies in Cn , the dual mixed volume Ṽ (K1, . . . ,K2n) has
the following integral representation [25]:

Ṽ (K1, . . . ,K2n) =
1
2n

∫
S2n−1

ρ(K1,u) · · ·ρ(K2n,u)du, (2.5)

where du is the standard spherical Lebesgue measure on S2n−1 . We write Ṽ2(K1, . . . ,
K2n−2,L) for Ṽ (K1, . . . ,K2n−2,L,L) , where the Ki (i = 1, . . . ,2n−2) appear once and
L appears twice. For i � 0, j � 0 and i+ j � 2n , we write W̃i, j(K,L) for the dual mixed
volume Ṽ (K, . . . ,K,B, . . . ,B,L, . . . ,L) , where K appears 2n− i− j times, B appears
i times and L appears j times. The dual mixed volume W̃i, j(K,K) will be written as
W̃i(K) and is called the dual i th quermassintegral of K .

Due to the work of Lutwak [17] , we have the dual Aleksandrov Fenchel inequality
for dual mixed volumes in Cn : If K1, . . . ,K2n are star bodies in Cn and 1 � m � 2n ,
then

Ṽ (K1, . . . ,K2n)m �
m

∏
j=1

Ṽ (Kj, . . . ,Kj,Km+1, . . . ,K2n), (2.6)

with equality if and only if K1, . . . ,Km are dilates.
A special case of inequality (2.6) is the following dual Minkowski inequality:

LEMMA 2.1. Let K,L be star bodies in Cn . If 0 � i � 2n−3 and 1 � j � 2n− i ,
then

W̃i, j(K,L)2n−i � W̃i(K)2n−i− jW̃i(L) j,

with equality if and only if K and L are dilates.

From (2.6), we have

LEMMA 2.2. If K is a star body in Cn and 0 � i < j � 2n−1 , then

ω j−i
2n W̃i(K)2n− j � W̃j(K)2n−i,

with equality if and only if K is a ball.

LEMMA 2.3. If K,L,Q are star bodies in Cn and 0 � i � 2n−3 , then

W̃i,2(K+̃2L,Q)
2

2n−i−2 � W̃i,2(K,Q)
2

2n−i−2 +W̃i,2(L,Q)
2

2n−i−2 ,

with equality if and only if K and L are dilates.
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Proof. By (2.5), (2.4) and Minkowski integral inequality [10] , we have

W̃i,2(K+̃2L,Q)
2

2n−i−2

=
( 1

2n

∫
S2n−1

(ρ(K,ξ )2 + ρ(L,ξ )2)
2n−i−2

2 ρ(Q,ξ )2dξ
) 2

2n−i−2

�
( 1

2n

∫
S2n−1

ρ(K,ξ )2n−i−2ρ(Q,ξ )2dξ
) 2

2n−i−2

+
( 1

2n

∫
S2n−1

ρ(L,ξ )2n−i−2ρ(Q,ξ )2dξ
) 2

2n−i−2

= W̃i,2(K,Q)
2

2n−i−2 +W̃i,2(L,Q)
2

2n−i−2 ,

with equality if and only if K and L are dilates.
Let K1, . . . ,K2n−2 be star bodies in Cn . The mixed complex intersection body

I C(K1, . . . ,K2n−2) is defined by

ρ(I C(K1, . . . ,K2n−2),ξ )2 =
1

(2n−2)π

∫
S2n−1∩Hξ

ρ(K1,ω) · · ·ρ(K2n−2,ω)dω , (2.7)

where dω is the standard spherical Lebesgue measure on S2n−1 and Hξ is a (2n−2)-
dimensional subspace of R2n orthogonal to the vectors ξ and ξ⊥ .

Obviously, every mixed complex intersection body corresponds to an origin sym-
metric convex body R2n which is invariant with respect to any coordinate-wise two-
dimensional rotation.

If K1 = · · · = K2n−i−2 = K and K2n−i−1 = · · · = K2n−2 = L , the mixed complex
intersection body I C(K1, . . . ,K2n−2) is written as I C

i (K,L) . If L = B , I C
i (K,L)

is written as I C
i (K) and is called the i th complex intersection body of K . We sim-

ply write I CK rather than I C
0 K , which was first defined by Koldobsky, Paouris and

Zymonopoulou [15] . In particular, I CB =
√

ω2n−2

π
B , since for every ξ ∈ S2n−1 ,

ρ(I CB,ξ )2 =
1

(2n−2)π

∫
S2n−1∩Hξ

dω =
ω2n−2

π
. �

3. Main results

LEMMA 3.1. If K1, . . . ,K2n−2,L1, . . . ,L2n−2 are star bodies in Cn , then

Ṽ2(K1, . . . ,K2n−2,I
C(L1, . . . ,L2n−2)) = Ṽ2(L1, . . . ,L2n−2,I

C(K1, . . . ,K2n−2)).
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Proof. By (2.5), (2.7) and Fubini’s theorem, we have

Ṽ2(K1, . . . ,K2n−2,I
C(L1, . . . ,L2n−2))

=
1
2n

∫
S2n−1

ρ(I C(L1, . . . ,L2n−2),ξ )2ρ(K1,ξ ) · · ·ρ(K2n−2,ξ )dξ

=
1

2n(2n−2)π

∫
S2n−1

[∫
S2n−1∩Hξ

ρ(L1,ω) · · ·ρ(L2n−2,ω)dω
]
ρ(K1,ξ ) · · ·ρ(K2n−2,ξ )dξ

=
1

2n(2n−2)π

∫
S2n−1

[∫
S2n−1∩Hω

ρ(K1,ξ ) · · ·ρ(K2n−2,ξ )dξ
]
ρ(L1,ω) · · ·ρ(L2n−2,ω)dω

=
1
2n

∫
S2n−1

ρ(I C(K1, . . . ,K2n−2),ω)2ρ(L1,ω) · · ·ρ(L2n−2,ω)dω

= Ṽ2(L1, . . . ,L2n−2,I
C(K1, . . . ,K2n−2)). �

If K1 = · · · = K2n−i−2 = K and K2n−i−1 = · · · = K2n−2 = B , then Lemma 3.1
reduces to

LEMMA 3.2. If K,L1, . . . ,L2n−2 are star bodies in C
n , then

W̃i,2(K,I C(L1, . . . ,L2n−2)) = Ṽ2(L1, . . . ,L2n−2,I
C
i K).

The special case of Lemma 3.2, where L1 = · · · = L2n− j−2 = L and L2n− j−1 =
· · · = L2n−2 = B , states as follows:

LEMMA 3.3. Let K and L be star bodies in Cn . If 0 � i � 2n−2 and 0 � j �
2n−2 , then

W̃i,2(K,I C
j L) = W̃j,2(L,I C

i K).

Take K1 = · · · = K2n−2 = B in Lemma 3.1 and note that I CB =
√

ω2n−2

π
B to get

LEMMA 3.4. If L1, . . . ,L2n−2 are star bodies in Cn , then

W̃2n−2(I C(L1, . . . ,L2n−2)) =
ω2n−2

π
Ṽ2(L1, . . . ,L2n−2,B). (3.1)

For L1 = · · · = L2n−i−2 = K and L2n−i−1 = · · · = L2n−2 = L, identity (3.1) becomes

W̃2n−2(I C
i (K,L)) =

ω2n−2

π
W̃2,i(K,L), (3.2)

and for L = B,

W̃2n−2(I C
i K) =

ω2n−2

π
W̃i+2(K). (3.3)

Next, we establish a generalization of Theorem 1.1.
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THEOREM 3.5. Let K and L be star bodies in Cn . If 0 � i � 2n−2 and 1 � j �
2n−3 , then

W̃i(I C
j (K,L))2n−2 � W̃i(I CK)2n− j−2W̃i(I CL) j, (3.4)

with equality if and only if K and L are dilates.

Proof. Case i < 2n−2. Suppose that Q is a star body in Cn . From Lemma 3.2,
the dual Aleksandrov-Fenchel inequality (2.6) and Lemma 2.1, it follows that

W̃i,2(Q,I C
j (K,L))2n−2

= Ṽ2(K, . . . ,K,L, . . . ,L,I C
i Q)2n−2

� Ṽ2(K,I C
i Q)2n− j−2Ṽ2(L,I C

i Q) j

= W̃i,2(Q,I CK)2n− j−2W̃i,2(Q,I CL) j

� W̃i(Q)
(2n−i−2)(2n−2)

2n−i W̃i(I CK)
2(2n− j−2)

2n−i W̃i(I CL)
2 j

2n−i .

(3.5)

By the equality conditions of Lemma 2.1, equality in (3.5) holds if and only if
Q,I CK and I CL are dilates.

Set Q = I C
j (K,L) and note that W̃i,2(Q,Q) = W̃i(Q) to obtain the desired inequal-

ity (3.4). If there is equality in (3.4), then there exist λ1,λ2 > 0 such that

I C
j (K,L) = λ1I

CK = λ2I
CL. (3.6)

From equality in (3.4), it follows that

λ 2n− j−2
1 λ j

2 = 1.

Moreover, (3.2), (3.3) and (3.6) imply

λ 2
1 =

W̃2, j(K,L)
W̃2(K)

and λ 2
2 =

W̃2, j(K,L)
W̃2(L)

.

Hence, we have
W̃2, j(K,L)2n−2 = W̃2(K)2n− j−2W̃2(L) j,

which implies, by Lemma 2.1, that K and L are dilates.
The case i = 2n−2 follows from (3.2), (3.3) and Lemma 2.1. �

REMARK 1. Taking for j = 1 in Theorem 3.5, it becomes

W̃i(I C
1 (K,L))2n−2 � W̃i(I CK)2n−3W̃i(I CL),

with equality if and only if K and L are dilates.
This is just a dual form of the following Minkowski inequality of mixed complex

projection bodies for general volume which was given by Abardia and Bernig [1] :

Wi(ΠC
1 (K,L))2n−1 � Wi(ΠCK)2n−2Wi(ΠCL),

with equality if and only if K and L are homothetic.
An immediate consequence of Theorem 3.5 states as follows:
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THEOREM 3.6. Let K,L be star bodies in Cn and M be a subset of Cn . Suppose
K,L ⊂ M , 0 � i � 2n−2 and 1 � j � 2n−2 . If either

W̃i(I C
j (K,Q)) = W̃i(I C

j (L,Q)), for all Q ⊂ M , (3.7)

or
W̃i(I C

j (Q,K)) = W̃i(I C
j (Q,L)), for all Q ⊂ M , (3.8)

hold, then it follows that K = L.

Proof. Suppose that (3.7) holds. Take K for Q in (3.7), use Theorem 3.5 to get

W̃i(I CK) � W̃i(I CL), (3.9)

with equality if and only if K and L are dilates. Take L for Q in (3.7), use Theorem
3.5 to get

W̃i(I CL) � W̃i(I CK).

Hence, there is equality in (3.9) and thus, there is a λ > 0 for which K = λL . But
equality in (3.9) implies that λ = 1.

The same argument shows that condition (3.8) implies that K = L . �
Taking L = B in Theorem 3.5, we have that

COROLLAY 3.7. Let K be a star body in Cn . If 0 � i � 2n− 2 and 0 < j �
2n−2 , then

W̃i(I C
j K)2n−2 �

(ω2n−2

π

) (2n−i) j
2 ω j

2nW̃i(I CK)2n− j−2,

with equality if and only if K is a ball.

Moreover, a generalization of Corollay 3.7 will be established.

THEOREM 3.8. Let K be a star body in Cn . If 0 � i < j � 2n−2 and 0 � k �
2n−2 , then

W̃k(I C
j K)2n−i−2 �

(√
ω2n−2

π
ω

1
2n−k
2n

)( j−i)(2n−k)

W̃k(I C
i K)2n− j−2, (3.10)

with equality if and only if K is a ball.

Proof. From (3.3), it follows that the case k = 2n−2 of inequality (3.10) reduces
to Lemma 2.2, and hence, it may be assumed that k < 2n−2.

Suppose that Q is a star body in Cn , from Lemma 3.3,

W̃k,2(Q,I C
j K) = W̃j,2(K,I C

k Q). (3.11)

By (2.6), we have

W̃j,2(K,I C
k Q)2n−i−2 � W̃2n−2(I C

k Q) j−iW̃i,2(K,I C
k Q)2n− j−2. (3.12)
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From (3.3) and Lemma 2.2, it follows that

W̃2n−2(I C
k Q) =

ω2n−2

π
W̃k+2(Q) � ω2n−2

π
ω

2
2n−k
2n W̃k(Q)

2n−k−2
2n−k , (3.13)

with equality if and only if Q is a ball.
For the second term on the right of (3.12), note that by Lemma 3.3,

W̃i,2(K,I C
k Q) = W̃k,2(Q,I C

i K).

Apply Lemma 2.1 to the quantity on the right and get:

W̃i,2(K,I C
k Q) = W̃k,2(Q,I C

i K) � W̃k(Q)
2n−k−2
2n−k W̃k(I C

i K)
2

2n−k , (3.14)

with equality if and only if Q and IiK are dilates.
Now take Q = I C

j K , note that W̃k,2(Q,Q) = W̃k(Q) , and combine (3.11) with
(3.12), (3.13) and (3.14) to obtain the desired inequality of Theorem 1.1.

From the equality conditions of inequalities (3.13) and (3.14), we have that I C
i K

and I C
j K must be centered balls. Thus there exist λ ,μ > 0, such that

I C
i K = λB, and I C

j K = μB. (3.15)

Let r =
ω2n−2

π
, if there is equality in (3.10), it follows that

μ2n−i−2 = r
j−i
2 λ 2n− j−2,

equivalently,

ω j−i
2n

(λ 2ω2n

r

)2n− j−2
=

( μ2ω2n

r

)2n−i−2
.

Moreover, (3.3) and (3.15) imply

W̃i+2(K) =
λ 2ω2n

r
and W̃j+2(K) =

μ2ω2n

r
.

Hence, we have
ω j−i

2n W̃i+2(K)2n− j−2 = W̃j+2(K)2n−i−2,

which implies, by Lemma 2.2, that K is a ball. �

An important generalization of Theorem 1.2 will be established as follows:

THEOREM 3.9. Let K and L be star bodies in Cn . If 0 � i � 2n−2 and 0 � j �
2n−4 , then

W̃i(I C
j (K+̃2L))

4
(2n−i)(2n− j−2) � W̃i(I C

j K)
4

(2n−i)(2n− j−2) +W̃i(I C
j L)

4
(2n−i)(2n− j−2) , (3.16)

with equality if and only if K and L are dilates.
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Proof. Suppose that M is a star body in Cn . From Lemma 3.3, Lemma 2.3 and
Lemma 2.1, it follows that

W̃i,2(M,I C
j (K+̃2L))

2
2n− j−2

= W̃j,2(K+̃2L,I C
i M)

2
2n− j−2

� W̃j,2(K,I C
i M)

2
2n− j−2 +W̃j,2(L,I C

i M)
2

2n− j−2

= W̃i,2(M,I C
j K)

2
2n− j−2 +W̃i,2(M,I C

j L)
2

2n− j−2

� W̃i(M)
2(2n−i−2)

(2n−i)(2n− j−2) [W̃i(I C
j K)

4
(2n−i)(2n− j−2) +W̃i(I C

j L)
4

(2n−i)(2n− j−2) ].

Take I C
j (K+̃2L) for M to obtain the desired inequality (3.16).

By the equality conditions of Lemma 2.1, equality in (3.16) holds if and only if
M,I C

j K and I C
j L are dilates. If there is equality in (3.16), then there exist λ1,λ2 > 0,

such that
I C

j (K) = λ1I j(K+̃2L) and I C
j L = λ2I j(K+̃2L). (3.17)

From equality in (3.16), it follows that

λ
4

2n− j−2
1 + λ

4
2n− j−2
2 = 1.

On the other hand, (3.3) and (3.17) imply

λ 2
1 =

W̃j+2(K)

W̃j+2(K+̃2L)
and λ 2

2 =
W̃j+2(L)

W̃j+2(K+̃2L)
.

Hence, we have

W̃j+2(K+̃2L)
2

2n− j−2 = W̃j+2(K)
2

2n− j−2 +W̃j+2(L)
2

2n− j−2 ,

which implies, by Lemma 2.3, that K and L are dilates. �

REMARK 2. Taking j = 0 in Theorem 3.9, it becomes

W̃i(I C(K+̃2L))
2

(2n−i)(n−1) � W̃i(I CK)
2

(2n−i)(n−1) +W̃i(I CL)
2

(2n−i)(n−1) ,

with equality if and only if K and L are dilates.
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