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ON MIXED COMPLEX INTERSECTION BODIES

WEI WANG, RIGAO HE AND JUN YUAN*

(Communicated by J. Pecari¢)

Abstract. Complex intersection bodies were introduced by Koldobsky, Paouris and Zymonopoulou.
In this paper some geometric inequalities for mixed complex intersection bodies which are dual
forms of inequalities for mixed complex projection bodies are established.

1. Introduction

Real intersection bodies have attracted increased interest since they are introduced
by Lutwak [20]. Intersection bodies were used to solve the important Busemann-Petty
problem (see [4, 5, 14, 24, 25]). More results and applications on intersection bodies
can be found in [2, 3, 7-9, 11-13, 16, 22, 23, 26].

Given a convex body A C C and convex bodies Ki, ..., K, C C", the mixed pro-
jection body I (K{,...,K>,) in a complex vector space was defined by Abardia and
Bernig [1]. Moreover, they established the following Minkowski inquality and Brunn-
Minkowski inequality for mixed complex projection bodies.

THEOREM A. [1] If K and L are convex bodies in C", then
V(ITH(K, L))" > V(K 2V (TAL), (1.1)
with equality if and only if K and L are homothetic. Here TI'K =T1*(K,...,K) and
(K,L) =TA(K,...,K,L).

THEOREM B. [1] If K and L are convex bodies in C", then

. — . — . —
V(HA (K+L))20T > V(HAK) =) V(HAL) LTeZEn (1.2)

with equality if and only if K and L are homothetic.

As Lutwak [20] shows (see also [6]), there is a duality between projection bodies
and intersection bodies (that at present is not yet understood). Koldobsky, Paouris and
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Zymonopoulou [15] firstly introduced the complex intersection body and considered
the complex Busemann-Petty problem.

In this paper we shall introduce the mixed complex intersection body. Based on the
standard proof of geometric inequalities which was developed by Lutwak [18,19,21],
we establish the dual forms of inequalities (1.1) and (1.2) for mixed complex intersec-
tion bodies. Our main results can be stated as follows:

THEOREM 1.1. If K and L are star bodies in C", then
V(I (K,L)" 2 < V(K V(sL), (1.3)

with equality if and only if K and L are dilates. The precise definitions of € and ff
are introduced in Section 2.

THEOREM 1.2. If K and L are star bodies in C", then

V(ﬂC(KI—ZL))"("%U <V(FCK) T +V(ICL) T (1.4)

with equality if and only if K and L are dilates.

This paper is organized as follows: In Section 2 we introduce above interrelated
notations and their background materials, and recall several needed Lemmas. Section
3 contains the proof of our main results.

2. Notation and background material

The real vector space R" of real dimension 7 is replaced by a complex vector
space C" of dimension 1. We identify C” with R?" using the standard mapping

E=(&,....&) = En+iia,....En+ i) — (&11.812, -, Eu1 . En2)- (2.1)
The unit ball B in C" is given by

B={&eC": i(&ﬁ%é)sl}.

i=1

Its unit sphere can be denoted by S2*~!. The volume of B C C" is denoted by @,,. A
compact set K C C" is called a star body if its radial function p(K,-) defined by

p(K,E)=max{A: AE €K}, Ecs! (2.2)

is positive and continuous on §**~!. For & € $"~!, the complex hyperplane H; is
denoted by

He ={z€C": (3,8) =Y %& =0},
k=1
which is a (21 — 2)-dimensional subspace of R?" orthogonal to the vectors

E= (&8 s ) and EF = (=&, &1, —En En).



ON MIXED COMPLEX INTERSECTION BODIES 421

Let K,L be star bodies in C", and 41,4, > 0 (not both 0), the L, radial sum
A1+ K+2A; - L is a star body whose radial function is given by

p(A-K+22a L) = lip(K, )+ Map(L, ). (2.4)

Let Ki,...,K>, be star bodies in C", the dual mixed volume 17(K1 ,..,Kpp) has
the following integral representation [25]:

1
V(Kr oo Ka) = 52 [ P (K0 p(Kapot) (25)

where du is the standard spherical Lebesgue measure on 5§21 We write l72(K1 ey
Ky, -2,L) for V(Ki,...,Kz,—2,L,L), where the K; (i=1,...,2n—2) appear once and
L appears twice. For i >0, j >0 and i+ j < 2n, we write W; ;(K,L) for the dual mixed
volume V(K,...,K,B,...,B,L,...,L), where K appears 2n — i — j times, B appears
i times and L appears j times. The dual mixed volume VNV, j(K,K) will be written as
W;(K) and is called the dual ith quermassintegral of K.

Due to the work of Lutwak [17], we have the dual Aleksandrov Fenchel inequality

for dual mixed volumes in C": If Kj,...,Ky, are star bodies in C" and 1 < m < 2n,
then
~ m ~
V(Ki,....K)" <[]V(Kj,....Kj, Kni1,- ., Kon), (2.6)
j=1

with equality if and only if K,...,K,, are dilates.
A special case of inequality (2.6) is the following dual Minkowski inequality:

LEMMA 2.1. Let K,L be star bodiesin C". If 0<i<2n—3 and 1 < j<2n—i,
then

Wi (K, L) < Wi(K)* Wi (L),
with equality if and only if K and L are dilates.
From (2.6), we have

LEMMA 2.2. If K is a star body in C" and 0 <i< j<2n—1, then
O WK > W (K
with equality if and only if K is a ball.
LEMMA 2.3. If K,L,Q are star bodies in C" and 0 <i<2n—3, then
Wiz (KT2L, Q)72 < Wi (K, Q)72 + Wia(L, Q) 72,

with equality if and only if K and L are dilates.
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Proof. By (2.5), (2.4) and Minkowski integral inequality [10], we have

~ ~ 2
Wi2(K+2L,Q)7==2

B (%/52”1(p(K7§)2+p(L7§)2)2L2¥p(Q7§)2d§>ﬁ
< (Z_In /SzH p(K, 5>2"”'*2P(Q,€>2d€> e
- <$ /SzH P(L.E2p (0. ) 2—22

- 5 B ,
= Wia(K,Q) =72 +W;5(L,Q) -2,

with equality if and only if K and L are dilates.
Let Ki,...,Kp,—» be star bodies in C". The mixed complex intersection body
IC(Ky,...,Kry_2) is defined by

1

p(jC(K17...,K2n72)7€)2 = m

Lo p(Ki0):p(Kay 2. 0)d0, (2.7)
S2n71QH§

where d is the standard spherical Lebesgue measure on S>*~! and Hg isa (2n—2)-
dimensional subspace of R?* orthogonal to the vectors & and .

Obviously, every mixed complex intersection body corresponds to an origin sym-
metric convex body R?* which is invariant with respect to any coordinate-wise two-
dimensional rotation.

Ky =---=Ky—io»=K and Ky,—j_1 = --- = Kp,—o = L, the mixed complex
intersection body #€(Kj,...,Ky,_2) is written as #C(K,L). If L=B, Z(K,L)
is written as .#C(K) and is called the ith complex intersection body of K. We sim-

1

ply write .#CK rather than fOCK , which was first defined by Koldobsky, Paouris and
Zymonopoulou [15]. In particular, ¥°B =, | a)z;:zB’ since for every & € §2'~1,

1 Wp—2
—_— do = . O
2n—-2)m /SZHIQHé @ T

p(jCBvé)z =

3. Main results
LEMMA 3.1. If Ky,...,Kou—2,L1,...,Loy—o are star bodies in C", then

Va(Kiy. o Kon-2, 7 (L. .. Lon—2)) = Va(L1,.. ., Lan—2, (K1, ..., Kap-2)).
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Proof. By (2.5), (2.7) and Fubini’s theorem, we have

Va(Kis. .. Kon2, 7 (L. .. Loy —2))

- Z_In/sznﬂp(jC(Lh---aLG—z),é)zp(Kl’(S)"'P(Kzn—z,é)d‘g

- M/SZH [/SZ,H u p(Ll’w)'"p(L2n727w)dw]p(Kl7§)"'P(K2n727§)d§
MHe

- M/s%l [/SZHQH P(KMS)"'P(Kzn—z,é)dé]P(Ll,w)'--p(LG_g,w)dw

1
~ /52»«4 p(IC (K1, Kon2), ) p (L1, 0) - p(La—2, ®)d

=Vo(Ly,...,. Loy, 9(K1,...,Kan_2)). O

If Ki=---=Ky, ;=K and Ky, ; | =--- = Kp,_» = B, then Lemma 3.1
reduces to

LEMMA 3.2. If K,Ly,...,Ly,_» are star bodies in C", then
Win(K, 7€ (L1,...,Lon—2)) = Va(Li,...,Lon—2, I K).

The special case of Lemma 3.2, where Ly = --- =Ly, j o =L and Ly, ; | =
-+ =1Ln,_» = B, states as follows:

LEMMA 3.3. Let K and L be star bodies in C". If 0 <i<2n—2 and 0 < j <
2n—2, then
Wia(K, L) = Wia(L. IEK).

Take K| = --- = K»,_» = B in Lemma 3.1 and note that .#°B = 1/ %B to get

LEMMA 3.4. If Ly,...,Ly,—» are star bodies in C", then

Wop—2

Wan2(FC(Ly,... \Lyy_)) = ——Va(Li,. Lan-2,B). (3.1)
For Li=---=Ly,_ir=Kand Ly,_; | == Ly,_2 =L, identity (3.1) becomes
Wan-2( I (K.L)) = 2K L), (3:2)
and for L= B,
War2(SCK) = 22 W0(K). (3.3)

Next, we establish a generalization of Theorem 1.1.
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THEOREM 3.5. Let K and L be star bodiesin C". [f0<i<2n—2and 1 < j<
2n—3, then B B o '
Wi £ (L) < Wi K2 W (oCLy), (3.4)
with equality if and only if K and L are dilates.

Proof. Case i < 2n—2. Suppose that Q is a star body in C". From Lemma 3.2,
the dual Aleksandrov-Fenchel inequality (2.6) and Lemma 2.1, it follows that

Wia(Q,-7F (K, L))"

=W(K,...,K,L,...,.L,.7£Q)* 2

<Va(K,IEQ)*" T2V (L, 7€ Q) (3:5)
_ ~i72(Q7jCK)2n—j—2ﬁ'/i72(Q7jCL)j

(2n—i—=2)(2n—-2) ~ 2(2n7j.72)

<W(0) T Wi (I CK) B Wi CL) B

By the equality conditions of Lemma 2.1, equality in (3.5) holds if and only if
0, €K and €L are dilates. B N

Set Q= JJ-C(K ,L) and note that W; »(Q, Q) = W;(Q) to obtain the desired inequal-
ity (3.4). If there is equality in (3.4), then there exist 4,4, > 0 such that

IC(KL) =M IK =29CL. (3.6)
From equality in (3.4), it follows that
Qn—j—24j
Aln / 12’ =1.

Moreover, (3.2), (3.3) and (3.6) imply
a2 WKL)

22 — W27J(K7L)
; ) — eV
Wa(K)

W)

Hence, we have _ B o '
W, j(K,L)*" "% = Wa(K)*" /=Wy (L),
which implies, by Lemma 2.1, that K and L are dilates.
The case i = 2n — 2 follows from (3.2), (3.3) and Lemma 2.1. [J

REMARK 1. Taking for j =1 in Theorem 3.5, it becomes
ﬁ/i(le(K7L))2n—2 < W/i(jCK)Zn_3ﬁ7i(ch),
with equality if and only if K and L are dilates.

This is just a dual form of the following Minkowski inequality of mixed complex
projection bodies for general volume which was given by Abardia and Bernig [1]:

Wi(TT§ (K, L))" > Wi(TT°K) > 2W;(TT°L),

with equality if and only if K and L are homothetic.
An immediate consequence of Theorem 3.5 states as follows:
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THEOREM 3.6. Let K,L be star bodies in C" and .# be a subset of C". Suppose
K.LC #,0<i<2n—2and 1 < j<2n—2. If either

Wi(7f (K, Q)) = Wi(#f (L,Q)), for allQC .4, (3.7)
or B N
Wi(I5(Q,K)) = Wi(#(Q.L)), for all QC ., (3.8)
hold, then it follows that K = L.
Proof. Suppose that (3.7) holds. Take K for Q in (3.7), use Theorem 3.5 to get

Wi(.7K) < Wi(.#CL), (3.9)

with equality if and only if K and L are dilates. Take L for Q in (3.7), use Theorem
3.5 to get
Wi(7CL) < Wi(£CK).
Hence, there is equality in (3.9) and thus, there is a A > 0 for which K = AL. But
equality in (3.9) implies that L = 1.
The same argument shows that condition (3.8) implies that K = L. [J

Taking L = B in Theorem 3.5, we have that

COROLLAY 3.7. Let K be a star body in C". If 0<i<2n—2 and 0 < j <
2n—2, then

(n—i)j

w2n72) Tz w{nVT/,-(JCK)zn_j_z,

07 ( gCrr\2n—2

g (2

with equality if and only if K is a ball.
Moreover, a generalization of Corollay 3.7 will be established.

THEOREM 3.8. Let K be a star body in C". If 0 <i< j<2n—2and 0 < k<
2n—2, then

B | G U |
e (e N T SE R R )

with equality if and only if K is a ball.

Proof. From (3.3), it follows that the case k = 2n — 2 of inequality (3.10) reduces
to Lemma 2.2, and hence, it may be assumed that k < 2n —2.
Suppose that Q is a star body in C", from Lemma 3.3,

Wi2(Q, 71 K) = Wia(K, 7 Q). (3.11)
By (2.6), we have

Wia(K, 70" 72 < Way o (I£ Q) Wi (K, 7E Q)72 (3.12)
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From (3.3) and Lemma 2.2, it follows that

Wp—>  2p ~ k-2

Wp—2 ~ n
wzzn "W (Q) %, (3.13)

Wan 2(IL0Q) = Wi2(0) <

with equality if and only if Q is a ball.
For the second term on the right of (3.12), note that by Lemma 3.3,

Wia(K, 7 Q) = Wia (0, ZEK).

Apply Lemma 2.1 to the quantity on the right and get:

Wia (K, 7£0) = Win (0, IEK) < Wk(Q) e Wk(ch)z” k (3.14)

with equality if and only if Q and .#K are dilates.

Now take Q = fﬂjCK , note that WM(Q7 0) = V~Vk(Q), and combine (3.11) with
(3.12), (3.13) and (3.14) to obtain the desired inequality of Theorem 1.1.

From the equality conditions of inequalities (3.13) and (3.14), we have that %CK
and JJ-CK must be centered balls. Thus there exist A,y > 0, such that

JEK=AB, and J{K=uB. (3.15)
Wp—2 . . . .
Let r= , if there is equality in (3.10), it follows that
p2n-i? = r%—ix{2n—j—27
equivalently,
i A2y, N\ 2n—i—2 - U2 @o, \ 2n—i-2
©an ( r ) a < r ) '
Moreover, (3.3) and (3.15) imply
(17 212(92n g 20)2}1
Wia(K) = 52 and Wyia(K) = 522
Hence, we have o N ‘
wén_lVVH-Z(K)zn j—2 Wj+2(K>2n7172’

which implies, by Lemma 2.2, that K is a ball. [

An important generalization of Theorem 1.2 will be established as follows:

THEOREM 3.9. Let K and L be star bodiesin C". [f0<i<2n—2and 0 < j <
2n—4, then

~ 4 4 4
W(f (KF,L)) Cr02n=7-2) <W(JCK) T2 —|—W(fCL) @077 (3.16)

with equality if and only if K and L are dilates.
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Proof. Suppose that M is a star body in C". From Lemma 3.3, Lemma 2.3 and
Lemma 2.1, it follows that

i ~ 2
Wia(M, 7 (K+,L)) 7772
7 ~ 2
=W,2(K+oL, IEM) 772
_ 5 B ,
<Wja(K, ‘ﬁzCM) =2+ Wio(L, Lﬁch) n=j-2

_ o 2
= Wia(M, I K) 7T+ Win(M, 7 L) 772

- 2(2n—i—2)

< Wi (M) T3 Wy (.7 CK) BT 4 W (7 CL) T,

Take JJ-C(K 1,L) for M to obtain the desired inequality (3.16).
By the equality conditions of Lemma 2.1, equality in (3.16) holds if and only if
M, fﬂjCK and fﬂjCL are dilates. If there is equality in (3.16), then there exist A;,4, >0,
such that B N
IE(K) =M.7(K+2L) and IFL=1,.7(K+,L). (3.17)

From equality in (3.16), it follows that

4 4
3112)17]72 +A«22’17]72 — 1

On the other hand, (3.3) and (3.17) imply

Wita(K Wiia(L
Wii2(K+2L) Wii2(K+2L)

Hence, we have
7 T NI T 2 - 2
Wjia (K4 L) 77772 = Wi o (K) 7772 4 Wio (L) 77772,
which implies, by Lemma 2.3, that K and L are dilates. [

REMARK 2. Taking j =0 in Theorem 3.9, it becomes

2

~ ~ 2 2
W,-(JC(K—i-zL)) Z=)=D) W,-(fCK) =i (n=T1) —l—W,-(fCL) @1 |

with equality if and only if K and L are dilates.
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