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Abstract. Lyapunov-type inequalities are established for a fractional differential equation under
mixed boundary conditions. Using such inequalities, we obtain intervals where certain Mittag-
Leffler functions have no real zeros.

1. Introduction

Lyapunov’s inequality [5] has proved useful in the study of spectral properties
of ordinary differential equations. The Lyapunov’s result can be stated as follows. If
q : [a,b] → R is a continuous function, then a necessary condition for the boundary
value problem

u′′(t)+q(t)u(t) = 0, a < t < b

u(a) = u(b) = 0

to have nontrivial solutions is that∫ b

a
|q(t)|dt >

4
b−a

· (1)

Since then many improvements of (1) have been developed and similar inequalities have
been obtained for other types of differential equations, as the Pachpatte monograph on
inequalities (see [8]) shows with detail.

The search for Lyapunov-type inequalities in which the differential equation de-
pends on a fractional differential operator has begun very recently (see [2, 3]). In [2], a
Lyapunov-type inequality was obtained for when the differential equation depends on
the Riemann-Liouville fractional derivative, i.e. for the boundary value problem

(aD
αu)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2,

u(a) = u(b) = 0,
(2)

Mathematics subject classification (2010): 34A08, 34A40, 26D10, 33E12.
Keywords and phrases: Lyapunov’s inequality, Caputo fractional derivative, mixed boundary condi-

tions, eigenvalue, Mittag-Leffler function.
The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud

University for its funding of this research through the Research Group Project no RGP-VPP-237.

c© � � , Zagreb
Paper MIA-18-33

443

http://dx.doi.org/10.7153/mia-18-33


444 M. JLELI AND B. SAMET

where aDα denotes the Riemann-Liouville fractional derivative of order α and q :
[a,b]→ R is a continuous function. In this case, the author in [2] proved that if (2) has
a nontrivial solution, then we have

∫ b

a
|q(t)|dt > Γ(α)

(
4

b−a

)α−1

. (3)

Clearly, if we let α = 2 in (3), one obtains Lyapunov’s classical inequality (1). Very
recently, in [3], the same author considered a differential equation that depends on the
Caputo fractional derivative. More precisely, he considered the fractional boundary
value problem

(Ca Dαu)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2,

u(a) = u(b) = 0,
(4)

where C
a Dα is the Caputo fractional derivative of order α and q : [a,b] → R is a con-

tinuous function. The author proved that if (4) has a nontrivial solution, then we have

∫ b

a
|q(t)|dt >

Γ(α)αα

[(α −1)(b−a)]α−1 · (5)

Similarly, if we let α = 2 in (5), one obtains Lyapunov’s classical inequality (1). In both
works [2, 3], some interesting applications to the localization of real zeros of certain
Mittag-Leffler functions were presented.

Motivated by the above cited works, we consider in this paper a fractional differ-
ential equation involving the Caputo fractional derivative of order α , α ∈ (0,2] , under
two types of mixed boundary conditions. More precisely, we consider the fractional
differential equation

(Ca Dαu)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2, (6)

under the boundary conditions

u(a) = 0, u′(b) = 0 (7)

or

u′(a) = 0, u(b) = 0. (8)

For each type of boundary conditions, a Lyapunov-type inequality is established. The
obtained results will be applied to obtain intervals where certain Mittag-Leffler func-
tions have no real zeros.
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2. Preliminaries

In this section, we recall the concepts of the Riemann-Liouville fractional integral
and the Caputo fractional derivative of order α � 0. For more details, we refer to [4].

DEFINITION 1. Let α � 0 and f be a real function defined on [a,b] . The Riemann-
Liouville fractional integral of order α is defined by (aI0 f ) ≡ f and

(aI
α f )(t) =

1
Γ(α)

∫ t

a
(t− s)α−1 f (s)ds, α > 0, t ∈ [a,b].

DEFINITION 2. The Caputo fractional derivative of order α � 0 is defined by
(Ca D0 f ) ≡ f and (Ca Dα f )(t) = (aIm−αDm f )(t) for α > 0, where m is the smallest
integer greater or equal to α .

The following result is standard within the fractional calculus theory involving the
Caputo differential operator (see [10]).

LEMMA 1. u ∈C[a,b] is a solution to (6) if and only if

u(t) = c0 + c1(t−a)− 1
Γ(α)

∫ t

a
(t− s)α−1q(s)u(s)ds,

where c0 and c1 are some real constants.

3. Main results

3.1. A Lyapunov-type inequality for (6)–(7)

We start by writing problem (6)–(7) in its equivalent integral form.

LEMMA 2. u∈C[a,b] is a solution to (6)–(7) if and only if u satisfies the integral
equation

u(t) =
∫ b

a
G(t,s)q(s)u(s)ds,

where G(t,s) = H(t,s)/Γ(α)(b− s)2−α and H(t,s) is given by

H(t,s) =

{
(α −1)(t−a)− (t− s)α−1(b− s)2−α , a � s � t � b,

(α −1)(t−a), a � t � s � b.
(9)

Proof. From Lemma 1, we have

u(t) = c0 + c1(t−a)− 1
Γ(α)

∫ t

a
(t− s)α−1q(s)u(s)ds,
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where c0 and c1 are some real constants. Since u(a) = 0, we get immediately that
c0 = 0. On the other hand, we have

u′(t) = c1− 1
Γ(α)

∫ t

a
(α −1)(t− s)α−2q(s)u(s)ds.

Since u′(b) = 0, we obtain that

c1 =
1

Γ(α)

∫ b

a
(α −1)(b− s)α−2q(s)u(s)ds.

Then, we get that

u(t) =
(α −1)(t−a)

Γ(α)

∫ b

a
(b− s)α−2q(s)u(s)ds− 1

Γ(α)

∫ t

a
(t− s)α−1q(s)u(s)ds,

which concludes the proof. �

LEMMA 3. For all (t,s) ∈ [a,b]× [a,b] , we have the following properties:

(i) If a < t < s < b then |H(t,s)| � (α −1)(s−a);

(ii) If a < s < t � b then |H(t,s)| � max{(2−α)(b− s),(α −1)(s−a)} .

Proof. The proof of (i) follows immediately from the definition (9) of H(t,s) .
Now, for a fixed s ∈ (a,b) , let us define the function

ϕs(t) = H(t,s) = (α −1)(t−a)− (t− s)α−1(b− s)2−α , t ∈ (s,b].

An easy computation shows us that

ϕ ′
s(t) = (α −1)

[
1−

(
b− s
t− s

)2−α
]

< 0, t ∈ (s,b).

On the other hand, we have

lim
t→s+

ϕs(t) = (α −1)(s−a) and ϕs(b) = (α −1)(b−a)−b+ s.

Hence, for a < s < t � b , we have

|H(t,s)| � max{|ϕs(s)|, |ϕs(b)|}.
However,

|ϕs(b))| = |(α −2)(b− s)+ (α −1)(s−a)|� max{(2−α)(b− s),(α −1)(s−a)},
since the two terms (α − 2)(b− s) , (α − 1)(s− a) are of opposite sign. this gives
(ii). �

From Lemma 3, we obtain immediately the following estimate.
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LEMMA 4. For all (t,s) ∈ [a,b]× [a,b] , we have the following property:

|H(t,s)| � max{α −1,2−α}(b−a).

Now, we are ready to prove our first Lyapunov-type inequality.

THEOREM 1. If a nontrivial continuous solution of the fractional boundary value
problem

(Ca Dαu)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2,

u(a) = u′(b) = 0,

exists, where q is a real and continuous function in [a,b] , then

∫ b

a
(b− s)α−2|q(s)|ds � Γ(α)

max{α −1,2−α}(b−a)
· (10)

Proof. Let B = C[a,b] be the Banach space endowed with norm

‖x‖∞ = max
a�t�b

|x(t)|, x ∈ B.

From Lemma 2, for all t ∈ [a,b] , we have

u(t) =
∫ b

a
G(t,s)q(s)u(s)ds.

From (9), we can write that

u(t) =
1

Γ(α)

∫ b

a
(b− s)α−2H(t,s)q(s)u(s)ds, t ∈ [a,b].

Now, an application of Lemma 4 yields

‖u‖∞ � max{α −1,2−α}(b−a)‖u‖∞

Γ(α)

∫ b

a
(b− s)α−2|q(s)|ds,

from which inequality in (10) follows. �
The case α = 2 can be deduced immediately form Theorem 1.

COROLLARY 1. If a nontrivial continuous solution of the boundary value problem

u′′(t)+q(t)u(t) = 0, a < t < b,

u(a) = u′(b) = 0,

exists, where q is a real and continuous function in [a,b] , then

∫ b

a
|q(s)|ds � 1

(b−a)
·
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3.2. A Lyapunov-type inequality for (6)–(8)

The following Lemma gives us an equivalent integral form of (6)–(8). The proof
is very similar to the proof of Lemma 2, so we omit it.

LEMMA 5. u∈C[a,b] is a solution to (6)–(8) if and only if u satisfies the integral
equation

u(t) =
∫ b

a
G(t,s)q(s)u(s)ds,

where G(t,s) is given by

G(t,s) =
1

Γ(α)

{
(b− s)α−1− (t− s)α−1, a � s � t � b,

(b− s)α−1, a � t � s � b.
(11)

The following estimate can be deduced immediately from the definition (11) of G(t,s) .

LEMMA 6. For all (t,s) ∈ [a,b]× [a,b] , we have the following property:

0 � G(t,s) � 1
Γ(α)

(b− s)α−1·

Now, we got the necessary tools to prove our second Lyapunov-type inequality.

THEOREM 2. If a nontrivial continuous solution of the fractional boundary value
problem

(Ca Dαu)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2,

u′(a) = u(b) = 0,

exists, where q is a real and continuous function in [a,b] , then

∫ b

a
(b− s)α−1|q(s)|ds � Γ(α)· (12)

Proof. From Lemma 5, for all t ∈ [a,b] , we have

u(t) =
∫ b

a
G(t,s)q(s)u(s)ds.

Now, an application of Lemma 6 yields

‖u‖∞ � ‖u‖∞
1

Γ(α)

∫ b

a
(b− s)α−1|q(s)|ds,

from which inequality in (12) follows. �
The case α = 2 can be deduced immediately form Theorem 2.
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COROLLARY 2. If a nontrivial continuous solution of the boundary value problem

u′′(t)+q(t)u(t) = 0, a < t < b,

u′(a) = u(b) = 0,

exists, where q is a real and continuous function in [a,b] , then∫ b

a
(b− s)|q(s)|ds � 1·

4. Applications: Non-existence of real zeros of certain Mittag-Leffler functions

The Mittag-Leffler function with two parameters [6, 7, 9] is defined by the series
expansion

Eα ,β (z) =
∞

∑
k=0

zk

Γ(kα + β )
, α > 0β > 0, and z ∈ C,

which is analytic on the whole complex plane.
In this section, using our Lyapunov-type inequalities, we obtain intervals where

certain Mittag-Leffler functions have no real zeros. We confine z ∈ R and consider the
real zeros of the Mittag-Leffler functions Eα ,β (z) . Obviously Eα ,β (z) > 0 for all z � 0.
Thus, the real zeroes of Eα ,β (z) , if any, must be negative real numbers.

THEOREM 3. Let 1 < α � 2 . Then, the Mittag-Leffler function Eα ,1(x) has no
real zeros for

x ∈
(
−Γ(α)

(α −1)
max{α −1,2−α} ,0

]

Proof. Let a = 0 and b = 1, and consider the following fractional Sturm-Liouville
eigenvalue problem

(C0 Dαu)(t)+ λu(t) = 0, 0 < t < 1, (13)

u(0) = u′(1) = 0. (14)

From [1], we know that the eigenvalues λ ∈ R of (13)–(14) are the solutions to

Eα ,1(−λ ) = 0, (15)

and the corresponding eigenfunctions are given by

u(t) = tEα ,2(−λ tα), t ∈ [0,1].

By Theorem 1, if a real eigenvalue λ of (13)–(14) exists, i.e. −λ is a zero of (15), then

λ
∫ 1

0
(1− s)α−2ds � Γ(α)

max{α −1,2−α} ,

that is,

λ � Γ(α)
(α −1)

max{α −1,2−α} ,

which concludes the proof. �
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THEOREM 4. Let 1 < α � 2 . Then, the Mittag-Leffler function Eα ,1(x) has no
real zeros for

x ∈ (−αΓ(α), 0].

Proof. Let a = 0 and b = 1, and consider the following fractional Sturm-Liouville
eigenvalue problem

(C0 Dαu)(t)+ λu(t) = 0, 0 < t < 1, (16)

u′(0) = u(1) = 0. (17)

From [1], we know that the eigenvalues λ ∈ R of (16)–(17) are the solutions to

Eα ,1(−λ ) = 0, (18)

and the corresponding eigenfunctions are given by

u(t) = Eα ,1(−λ tα), t ∈ [0,1].

By Theorem 2, if a real eigenvalue λ of (16)–(17) exists, i.e. −λ is a zero of (18), then

λ
∫ 1

0
(1− s)α−1 ds � Γ(α),

that is,
λ � αΓ(α),

which concludes the proof. �
Observe now that for 1 < α � 2, we have

α � α −1
max{α −1,2−α},

which implies that(
−Γ(α)

(α −1)
max{α −1,2−α} ,0

]
⊂ (−αΓ(α), 0].

Then Theorem 4 is more general than Theorem 3.
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