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L? BOUNDS FOR PARAMETRIC MARCINKIEWICZ
INTEGRALS WITH MIXED HOMOGENEITY

FENG L1u, HUOXIONG WU AND DAIQING ZHANG

(Communicated by J. Pecari¢)

Abstract. In this paper we consider the parametric Marcinkiewicz integrals with mixed homo-
geneity along certain compound surfaces. Under the rather weakened size conditions on the
integral kernels both on the unit sphere and in the radial direction, the L” boundedness for such
operators are given. As applications, the corresponding results for parametric Marcinkiewicz
integral operators related to area integrals and Littlewood-Paley g; functions are also obtained.

1. Introduction

Let R", n > 2, be the n-dimensional Euclidean space and $"~! denote the unit
sphere in R" equipped with the induced Lebesgue measure do. Let o; > 1 (j =
1,...,n) be fixed real numbers. Define the function F : R" x (0,e0) — R by F(x,p) =
Z?zlxip’wf, x = (x1,...,x,). It is clear that for each fixed x € R", the function
F(x,p) is a decreasing function in p > 0. We let p(x) denote the unique solution of
the equation F(x,p) = 1. Fabes and Rivi¢re [14] showed that (R”, p) is a metric space
which is often called the mixed homogeneity space related to {a j}’;:l .For A >0, we
let A, be the diagonal n x n matrix A; = diag{A1%,...,A%}. Let R* := (0,0) and
@ :RT —R", we denote Ay(p(,))y by Ag(y) for y € R", where ' = A1y € st

The change of variables related to the spaces (R”,p) is given by the transforma-
tion

x1 =p®cosB---cosb, rcos6, |,

X2 =p*cosB---cosb, ,sinh, i,

Xp—1 = p%-1cos @ sin 6,

Xp =p*sin6.
Thus dx = p*~'J(¥')dpdo(x'), where p®~1J(x) is the Jacobian of the above trans-
formand o =¥ o, J(X') =X, 0 (x;-)z. Obviously, J(x') € €=(S""!) and there
exists M > 0 such that

1<J(X)<M, V¥ es
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It is easy to see that
px)=x|, fou=m=...=0,=1.

Let Q be integrable on §"~! and satisfy

[ QW wdow) =0, (1.1)

Q(Ax) =Q(x), Vs>0andx € R". (1.2)

Define the parabolic Marcinkiewicz integral operator .#, c p by

a0 = ([ |5 [ P ey 1) verr 1)

where p = 6 +i7(0,7 € R with 6 > 0) and h € A|(RT). Here Ay(R™) for y > 1
denotes the set of all measurable functions 2 on R™ satisfying the condition

/Y
[l = sup (R [ ofrar) " <=

It is easy to check that L”(R*) = A, (RT) C Ay (RY) C Ay (RT) for 0 <y <95 < eo.

When h(t) =1, we denote .#,qp by MHap. When o = ... = o, = 1, the
operator . p reduces to the classical parametric Marcinkiewicz integral operator de-
noted by Ugo p, which has been studied by many authors (see [1, 11, 18] et al.). When
p =1, Ug, is the classical Marcinkiewicz integral operator, which was introduced
by Stein [23] and investigated by many authors (see [2, 4, 12, 22, 26] for example).
When o; > 1 (j=1,...,n) and p =1, Xue, Ding and Yabuta [27] first proved that
Mq,p is bounded on LP(R") for 1 < p < oo, provided that Q € LI(S"!) for fixed
g > 1. Afterwards, Chen and Ding [5] (resp., [6]) extended the above result to the case
Qe L(logt L)Y/2(s"1) (resp., Q € H(5"~1)). Moreover, it follows from Wang, Chen
and Yu’s work [24] (also see [3]) that .Zq p isof type (p, p) for 2B/(2B—1) <p <2
if Qe Zg(s""!) for some B > 1, where

n— n— ﬁ /
Z5(s') = {QeLl(s 1),§:1S1npl [ 1e0 )|<log‘€ |) do(y) <o}, VB >0,
(1.4)

which was introduced by Grafakos and Stefanov [16] in the study of L? bounds for
singular integral operator with rough kernels. It follows from [16] that Fg (s ¢

Fp, (8" 1) for 0< By < By, and U, LI(S") C Fp (8" 1) forany B > 0. Moreover,
ﬂ Jﬁ Sn 1 gH Sn 1 g U Sn 1
B>1 B>1

and

() Zp(S"") ¢ Llog* L(s" ).
p>1
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Recently, we [19] improved the result of [24] to the case: Q € ﬁﬁ (") for some
B>1/2with 1+1/(2B)<p<1+2pB.

In this paper, we will focus on the general operator .#}, g, with h € Ay(R").
Due to the presence of &, the kernel of ///h@p has the additional roughness in the
radial direction, which has received a large amount of attention of many authors in the
Euclidean setting, for example, see [10] for the case Q € L(log™ L)($"~1), [8, 9, 11]
for the case Q € H'(S""1), [1] for the case Q € L(log™ L)'/?(5"~!) or certain block
spaces on S"~1 On the other hand, in the Euclidean setting, to extend the results in
[16] to the singular integral operator with rough kernel both on the unit sphere and in
the radial direction

h(lyDQE)

Thof(x) :=p.v.
A T

fx—y)dy, xeR".
Fan and Sato [15] introduced the functions class ﬁ/; (S"‘l) in more general form,
which denotes the set of all functions Q € L!(§"~!) with satisfying

1 B
g/Sel;ll:)il //Sn—lxsn—l |Q(9)Q(W)‘ (10g m) dG(e)dG(W) < oo, ﬂ > O,
(1.5)

and showed that .Zg(S') C Z5(S") (for n > 2, the relation between .F5(S"~!) and
7 p(8"1) remains to be open). Moreover, they proved that 7, o is bounded on L”(R")
provided that 1 € A,(R™) for some y> 1 and Q € F5(S"~!) for B > max{2,7'} and
[1/p—1/2| <min{l/y,1/2} —1/B. Recently, we [21] extended the result of [15] to
the singular integral operators with mixed homogeneity in more general form, which is
listed as follows.

THEOREM A. ([21]) Let Py be a real polynomial on R with Py(0) =0 and
Py(t) >0 for t #£ 0, where N is the degree of Py, and let ¢ € §. Here § is the set of
all functions ¢ which satisfy:

(@ ¢ :RY — RT is continuous increasing €' function satisfying that ¢' is
monotonic;

(b) there exist constants Cy and cg such that 1¢'(t) > Cy¢(t) and ¢ (2t) < co¢ (1)
forall t > 0.

Suppose that h € Ay(R") for some y>1 and Q € ﬁﬁ (8"~1Y for some B >max{2,7}
satisfying (1.1)—(1.2). Then the singular integral operators Ty q py o defined by

Q(y)h(p(y))
R py)*

are bounded on LP(R") for p with satisfying |1/p—1/2| < min{1/y,1/2} —1/p.
The bounds are independent of the coefficients of Py, but depend on @, N, y,n and J3.

ThQ.py,0(f)(x) :=p.v. Jf(x—Apy(p)(¥))dy, x€R", (1.6)

REMARK 1. We remark that there are some model examples in the class §, such
as 1% (o0 > 0), 1%(In(1+1))P (o, > 0), tInln(e +1), real-valued polynomials P on
R with positive coefficients and P(0) =0 and so on. For ¢ € §, there exists a constant
By > 1 such that ¢(21) > By (1) (see [3]).
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Based on the above, we find it is natural to ask the following question.

QUESTION. For the general case o > 1(j = 1,...,n), is Myqp bounded on
LP(R™) under the same assumptions on Q and h as in Theorem A?

In this paper, we will give an affirmative answer to this question by treating a
family of operators, which is broader than .7}, q ,, . Precisely, let h, €, p be as in (1.3).
For a suitable mapping @ : R" — R”", we define the parabolic Marcinkiewicz integral
operator .%o p on R" by

1/2

AMn.0,0(f)(x) = (/()N\Fh,g,cp,p(f)(xﬁ)lz?) , x€R", (1.7)

where

Froep(f)(xt) = ! /p e Q)rp()) flx—D(y))dy.

N p(y)-r
Clearly, .#),qp is the special case of .#}, oo, for ®(y) = y. Our main results can be
stated as follows:

THEOREM 1. Let ®(y) = (Pi(@(p(y))y},---, Pa(@(p()))yn) with Pi(t) being
real valued polynomials on R satisfying P;(0) =0 and ¢ € §. Suppose that h €

Ay(RT) for some y> 1 and Q € Fg(S"~") for some B > max{2,7}/2 satisfy-
ing (1.1)—(1.2). Then Mo, defined as in (1.7) are bounded on LP(R") for
p with satisfying |1/p—1/2] < min{1/y,1/2} —min{1/y +1/2,1}/(B+1). The
bounds are independent of the coefficients of P; for all 1 < j < n, but depend on
max < j<,deg(P;), p and ¢.

In particular, when P;(@(p(y)))y; = Ev(@(p()))®y; (1 < j <n), we have

THEOREM 2. Let ®(y) = Ap, (o) (y) with ¢ € and Py(t) =3\ ait’ with Py(t)
>0 for t #0. Suppose that h € Ay(RT) for some y> 1 and Q € ﬁﬁ (8"=Y) for
some B >max{2,y'}/2 satisfying (1.1)—(1.2). Then My oo p definedasin (1.7) are
bounded on LP(R") for p with satisfying |1/p—1/2| <min{1/¥,1/2} —min{1/y +
1/2,1}/(B+1). The bounds are independent of the coefficients of Py, but depend on
N,p and ¢@.

Furthermore, applying Theorems 1-2 with the fact that .Zg(S') C Z5(S!), we
obtain

THEOREM 3. Let n=2 and ®, h be as in Theorem 1. Suppose that Q € Fg(S")
for some B > max{2,Y}/2 satisfying (1.1)-(1.2). Then Myow, defined as in
(1.7) are bounded on LP(R?) for p with satisfying |1/p —1/2| < min{1/y,1/2} —
min{1/y +1/2,1}/(B+1). The bounds are independent of the coefficients of P; for
Jj=1,2, but depend on max<j<>deg(P;), p and ¢.
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THEOREM 4. Let n=2 and @, h be as in Theorem 2. Suppose that Q € Fg (sh
for some B > max{2,Y}/2 satisfying (1.1)—(1.2). Then Myow, defined as in
(1.7) are bounded on LP(R?) for p with satisfying |1/p —1/2| < min{1/y,1/2} —
min{1/yY +1/2,1}/(B+1). The bounds are independent of the coefficients of Py, but
dependon N, p and ¢.

REMARK 2. Compared with Theorem A, in our theorems, the range of f3 is re-
laxed to that 8 > max{1, ¥’ /2} and for the same 3 and ¥, the range of p is larger than
one in Theorem A. However, we don’t know whether the ranges of 8 and p are sharp,
which is interesting.

The rest of this paper is organized as follows. After recalling some preliminary
notations and lemmas in Section 2, we will prove the main results in Section 3. Finally,
we consider the L” bounds of the corresponding parametric Marcinkiewicz integral
operators related to area integrals and Littlewood-Paley g; functions in Section 4. We
would like to remark that the main methods employed in this paper is a combination of
ideas and arguments from [7, 25]. Throughout this paper, we let p’ satisfy 1/p+1/p' =
1. The letter C, sometimes with additional parameters, will stand for positive constants,
not necessarily the same one at each occurrence but is independent of the essential
variables.

2. Preliminary lemmas

Let A" =max <, deg(P;). For 1 <I<n,let P(t) :2;/:’/1 ait'. For 1 <s <A

and 1 <I1<n, let P (1) =35 aut’ and PO (1) = (P (1),..., P (1)). Set PO (1) =
0 and

Dy(y) = (P (@) B (@(p (0))Yh)-

Then we can write
y)f=iézy;a<”<<p<p<y>>>=ii Extao(p()) = X (LE-)o(p ()
=1 I=1i=1

where L; : R" — R" is the linear transformation given by

Li& = (ai &1, .., ain&)-

For each k € Z,t € RT and 1 < s < .4, we define the signed measures {0y} and
{l0k;s[} on R" by

— 1
()= —— 2D, (y) - €)W 4
Gk,t,.\(é) (2kt)p /2"*1t<p(y)<2ktexp( Y (y> &) p(y)a_p dy

— 1

O01() = i ey P 20) )
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LEMMA 1. ([22]) Suppose ®@(t) = 1% + Upt® + --- + Upt® and @ € §, where
U, ... U, are real parameters, and 0y,...,0 are distinct positive (not necessarily
integer) exponents. Then for any r > 0 and A € R\{0},

dt

/r exp(id®@(o(t)))—| < C(@)|Ap(r)™ |,
r/2 t

where € =min{1/0y,1/n} and C(@) doesn’t depend on Uy, ..., .

LEMMA 2. Let h € Ay(R™) for some 1 <y < e and 7= max{2,Y'}. Suppose
that Q € Fg(S"" 1) for some B >0 and satisfies (1.1)—(1.2). Then for any k € Z,
EEeR", t>0and 1 <s <N, there exists a positive constant C depends on @ such
that

() | Gra(€) — Grrmmi (€)] < Clo(2t) L :
(i) |G (8)] < Cllog [ (24 L&) P, if (24 L& | > 1.

Proof. By (2.1) and a change of variable, we have

|th\ g) O t:5— 1(€)|
s 2kt P /zA l1<p(y)<2t |exp(=27is(y) - &) —exp(=27iDs1(3) &)

< CloQM)LE| J3, 1h( L fy1192(6)]d o (6)
< C\(P(Zkt) L& |-

Then (i) holds. On the other hand, by a change of variable and Holder’s inequality, we
have

dr
n
58 = | / e 2mZLné 00(7) )Q o (0)h(r)
<c, fsnflexp< 2man§ 09(r)1)Q(6)J(6)dc(6 ‘|h E:
k Y 1y
<C<f22k,’1[ fsn—lexp< 2mZLT,§ 0o(r ”)Q )‘ %) .
(2.2)
If 1 <y<2,note that ¥ > 2, we get from (2.2) that
— 2kt . S n 2
Gera)] < C( S5, | yrexp (=271 3 Ln&-00(r)")(0)1(0)do(0)
n=
L -2, \ 1Y
x| fgr-vexp (2 21Ln§-6qo(r)">9(6)l(6)d6( | L)
n=
s 2 1Y
<C<f2k y fsn,lexp<—2m Zané-O(p(r)r’)Q(O)J(O)dG(O)‘ d—) .
n:
If y>2,then ¥ €[1,2). By Holder’s inequality we have
2 S 2dr\1/2
5. _ / . n -
16 ()] <C(/2,H, /S’Hexp( 2mn§1Ln§ 60(r)")Q(0)J(0)da(6) ) .
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Thus we have

- 2kt & 2dr\1/7
s@l<e( [, /Snlexp(—zmnzlL,,g.e<p(r)n)g(e)1(e)da(e) o)
(2.3)
Let
24  ~ 2dr
1,(7,73.(5)::/2,{71[ /Snlexp(—Zm;ILn’g’.O(p(r)”>Q(0)J(9)dG(9) =

We can write

ks s(5)]

= | B Il vpexp (—Zniréan’g' (6-w)p(1)" ) Q(0)Q(W)J(8)T(w)do (8)do () &

<//(s"71)2 Q(G)W‘Aiki,eXp(_zmniLné'(G—W)(P(l’)”>?’d6(6)dc(wy

(2.4)
Let .
Iy (0,w) = /ﬁiltexp ( —2mi Yy Ly&- (6 _W)(p(,,)n> ﬂ

n=1 g
Applying Lemma 1, we have

Tiss£(0,w)] < C(9)|@(21)°Ly& - (6 —w)| /",

Combining the trivial inequality |l ; = (6,w)| < C with the fact that 7/ (log?)P is in-
creasing in (eP, ), we have

(log2eP*|LLE - (0 —w)[™)P
(log|p (241 L.])”
where L& = L& /|L&|. This together (2.4) with the fact that Q € F5 (5"~ ') implies

ka5 (§)] < C(@) (log @24 L&) P, if |@(2%)'Lig| > 1. (2.6)
Together with (2.3) leads to (ii). This proves Lemma 2. [

s (8,w)] < C(9) ,if Jp2)'LEI>1,  (25)

LEMMA 3. Let 2 :R" — R" be a polynomial mapping, where 2(t) = (Py(t),. ..,
P,(1)) with P; being are real polynomial defined on R™ . Suppose that h € A,(R™) for
some y> 1 and ¢ € §, then the operator M o, defined as

7 - 2 (o)™

Mz on(f)(x) :=sup ; t

r>0

satisfies

100Nl @) < Cpllbllay) [ lp@ny, ¥ <p <o
The constant C, is independent of the coefficients of P; for 1 < j < n, but depends on
Q.
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Proof. By Holder’s inequality we have
dt 2r de\1/7
<l ([ 1£6e= 2’ $)

t

[ 1= 2oupmn®

From this and invoking Lemma 2.2 in [20], Lemma 3 is obtained. [

LEMMA 4. Let Q € L'(S"™) and h € Ay(RT) for some y> 1. Suppose that
@ €F. Thenfor |1/p—1/2| <min{1/2,1/7Y} and 1 <s < A, we have

2 1/2
2
I3 [ 1o esaban) ], <l (S leP) s @7
12
H( Ot g4t H(Z|gk\> iy Y1SIS2(28)

keZ Lr(R") keZ

The constant C is independent of the coefficients of P; for 1 < j <n, but depends on
Q.

Proof. To prove this lemma, we use a similar argument as in the proof of [13,
Theorem 7.5]. Since Ay(R") C Ay(R™) for y > 2, we only prove this lemma for the
case 1 <y<2and |l/p—1/2| < 1/y. By the duality, it suffices to prove (2.7) for
2<p<2y/(2—7). Let ¢= (p/2) and {gi}rez € LP(R",¢?). Then there exists a
nonnegative function f € L4 (]R") with unit norm such that

H ) Lo () _/"k Z/ |G sss * gu()[Pdt f(x)dx.  (2.9)

kEZ
By a change of variable and Holder’s inequality, we have

/Rn /12 | * g (x) | 2dt f (x)dx
S //2 /j i,/s 1|gk (x—Dy(A))[|Q0)ldo(y /)|h(r)|£>2dtf(x)dx
<@l [ ,1/ % ([ s Rian) ot >)”|2h<r>|ﬂ)2dtf<x>dx

<O [ [ ] et @) Pl o) ()T a0
<l e [ M@0,

/ |G res + 81 dt

(2.10)
where

9= [ a0 dot) Lar

Note that |[a(-)[*"7 € Ayj—y) (RT) and ¢ > (y/(2—7))'. Using Lemma 3, Minkowski’s
inequality and the similar arguments as in getting [13, Theorem 7.4], we have

1M (f) oy < Call Rl 1 501 ||h|| ey |1l e - (2.11)
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Combining (2.9)—(2.11) with Holder’s inequality implies

|(S [ o0 waupar)
keZ

for 2 < p <2y/(2— 7). This proves (2.7). It remains to prove (2.8). By the similar
argument as in getting (2.7), it suffices to prove (2.8) for 2 < p < 2y/(2 —y). Fixed
t€[1,2], let ¢ = (p/2) and {gi}rez € LP(R",£*). Then there exists a nonnegative
function f € L7(R") with unit norm such that

H(Z|G’<”*g’<| Lo (") —/ D |0k % gr ()P f (x)dx (2.12)

keZ keZ

(Z \gk|2>1/2

keZ

< CllAllayw+)

LP(RM) LP(RM)

By a change of variable and Holder’s inequality, we have

/ |Gy * i (x) |2 f (x)dx

<[ lt/_gﬂ|gkx @, (410" o () () L[ (x)ax

<l [ | /2 [ se=aanPie0)ldo) | ] s

2kt
<Ol [, [ [ o= @@ )RIR0) R 7 flx)as
<l e [, GNP,

where

2k dr
0= [, [ S+ )P TR0 lde ()

k—1; Jgn—1

Thus

|( o) [} oy < ClIE ey [ 6@ X JaPas.  213)

keZ keZ

By the similar argument as in getting (2.11), we have
1G(F)la(eny < Cqll Q| sn1y HhH &)1l (2.14)

Combining (2.13) with Holder’s inequality implies

(Z)

for 2 < p < 2y/(2—1y), where C is independent of 7. This proves (2.8). Lemma 4 is
proved. [

2)!/2 <Cllh
[(Zlowss i) 7)), ) < Cltlagee
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Let {A4}xez be a collection of € (0,) functions with satisfying the following
conditions:

supp(A) C [@(2°T) " (25 )71
LS 220 = 15 Jaa) i </,
keZ

where C is independent of ¢ and k. For each k € Z, we define the multiplier operators
S in R" by
Sif(8) = M(ILsS[)f(S)- (2.15)

By the arguments similar to those used in [26, Proposition 3.1], one can easily get
the following lemma. The details are omitted here.

LEMMA 5. Let Sg be as in (2.15) and {gj,} be arbitrary functions in LP(R").
Then
(1) for each fixed 1 < p<2and 1 <q< p,

/2114
H 2| X Sitkgik df) <C / 18kl dt
jEZ/ keZ Lr(R") keZ JEZ Ly Rn
(2.16)
(ii) for each fixed 2 < p < oo and 1 < g < p’,
2 2 \1/2y9 q/2
> D Sitk8jka dl) / H 2 |8kl ) ) .
eZ/I keZ Lr(R") keZ LP(R")
(2.17)

In order to prove our results, we need the following lemma.

LEMMA 6. ([13]) Let r and d be two positive integers and {vy,...,v4} CR" bea
collection of vectors which spans R”. Then there exists a subcollection {uy,... ,u,} C
{V1,...,va} and constants {kjs}1<j<a,1<s<r Such that

Vi =kjiur+ -+ kjrur

for j=1,....d.

3. Proofs of main results

This section is devoted to the proofs of main results. We need only to prove The-
orem 1 in section 1.

Proof. Now we begin to prove Theorem 1. This proof is based on the ideas in [7]
and some techniques from [25]. Let ¢ € § and B, be as in Remark 1. For simplicity,
we denote 7 =max{2,y'}. For s € {1,...,.4}, let ry = rank(L,) . By Lemma 6, there
are two nonsingular linear transformations H; : R> — R’s and G, : R" — R" such that

\Hm! Gs&| < L& | < Gi|Hsm Gi&|, for & € R, (3.1)
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where C, > 1 and 7 is a projection operator from R" to R". For a function ¢ €
%¢(R) such that ¢ =1 for |t| < 1/2 and ¢ =0 for |¢| > 1. Let y(t) = ¢(¢*). For
keZ,t e RT, & € R" and 1 <5< .4, we define the signed measures {5} by

Prrzs(&) = Orrs (€ H v(lo2) Him! Gi&El)— Ot ( Hl// lp(2"t) Hym)! Gi&l).

[=s+1 =5
(3.2)
Here we use the convention [];cga; = 1. Itis easy to see that

N
Orn = 3, Miss- (3.3)
s=1

It follows from Lemma 2, (3.1) and the trivial estimate |6ys(&)| < C that for 1 < s <
</V’

|lirs (§)] < C(@) min{1, 9(2)°|LsE |}, (3.4)
ks (€)] < C() (log|@(251) L& |)P/Tif |p(2%1)* L] > 1. (35)
By the definition of oy ., we have
0
Fraop(f)x) =Y 2P G+ f(). (3.6)
f=—oo0

Then by (3.3) and (3.6) we can write
1/2

Mhoop(f)(x) = <fo ‘ 7% 2k Gy g # f () dt)
< Z 2k6<fo | Ok * £ )\2%>1/2

k=—oo
2k+1

1 c(kezz/ v+ FOP )

diN1/2 (3.7)
|Okson % f(x) F__
= o</ z )
l
S ([ % e spar)”
keZ
1 "y
={5= GEJ/Zhgcbp\(f)( )-
s=1
It suffices to prove that
| Ah0.0.p.5llr@®e) < CllflLr@n) (3:8)

for 27(B+1)/((7+2)B) <p <2¥(B+1)/((1—2)B+27) and s € {1,...,.4}. By
the definition of S}, we can write

2

My0.o.p.s(f Z/ ‘szs ZS1+kSl+kf> ) ) Y - (3.9)

keZ i€Z
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In what follows, we will estimate the ||}, 0.o.p.s(f)||zr(®e) in two cases: p >2
and p < 2. The idea is taken from [25], which was originated from [17]. We first
establish a rough L? estimate by the Littlewood-Paley theory, and then give a delicate
L? -boundedness by Plancherel’s theorem and the Fourier transform estimates. Finally,
the desired estimates will be obtained by the interpolation.

Case 1. 27(B+1)/((7+2)B) < p < 2: Applying (2.16), we know that for 1 <
q<p

|09 )y < € 2 ) / s Syvaf ) gy 3710)
For fixed i € Z, let
s N\ 1/2
50 @ = (2 [ s e Sicnropar)'”
kEZ
Next, we prove the following inequality
1/2
< .
I(3 [ weraba) ™| <e| (D), @)

keZ keZ

for arbitrary functions {gx}scz in L?(R", (?).

The main idea of the proof of (3.11) is taken from [13]. For 1 </ < .4, let ¥ be
a radial function in R” defined by W(£°) = w(|E°]), where £° € R, y is asin (3.2).
Define J; and X;,; by

Jif (x) == f(G (Hf ® idgn—n )x)

and
Xk,t;lf(x) = Jl_l((qlk,t;l by 5[@"*’1 )+ Jif)(x),

where Wy, = @(28) 71 ((2) 7Ix0), x° € R, H[ (resp., G}) is the transpose of
H; (resp., G;), H; and G are as in (3.2). Let X; be given by

X1 f(x) := sup sup Xy f(x)|.
te[1,2] keZ

Then for s <1 < ./, we have
Xif(x) <G o (Myy ®@idga-n) 0 i) f (x),

where M(;) denotes the Hardy-Littlewood maximal operator on R, x = (x%,x") €
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R x R"", Hence we have

|2 rmeoora) |

LP(R)
CH( S PV o (M) @ idg-n) 0 Ji(i)(- )|2d’>1/2 iﬁ(Rn)
3 /
s CH(/EZ‘JZ o (M (l)®ldR"*'l)OJz(gk)(')|2>l 2H/pU’(R”) (3.12)

p/2
<Gl o fon (|3, M i) ()] 0R) ™ e
p/2
<Gl fyon Jon (2 Wilg0(0)P)

<al (g leor) |

LP(R1)

dxVdx!

Also, by (3.2) and the definitions of X; ,;, we have

Hizs * 8k(X) = O pis * X100 Xpp w8k (%) — Ok pis—1 % Xgis © - 0 Xpe s 8k (X).
(3.13)
Thus by (2.7), (3.13) and using the estimate (3.12) repeatedly, we can obtain (3.11).

Invoking (3.11) and the Littlewood-Paley theory, we get

Cp, o) fllrwny, 11/p—1/2|<1/7.
(3.14)

s ey <G| (3 I8iear )

keZ

w (R")

On the other hand, by Plancherel’s theorem, we know that

FisF 2 5 (E)PAALLED (&) PdEd
itz = T, [ @R L ED e

kez/,ﬂ §)|2/1 | s (§)7ddE,

where Aj = {E €R": (27K 1) = L |LE| < (2741751, Using (3.4)=(3.5), we
have

s (Ol 2 mny < Cls,p, @)Bill £l 2 ey (3.15)
where
B, is l> -2,

By interpolation between (3.14) and (3.15), there exists a constant €, € ((¥+

2)/(2(B+1)),1) such that

1Tis (F)lrn) < Cls.p, @)~ B || flluoeny, for 27(B+1)/(7+2)B) <p <2.
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Thus for fixed 29(B+1)/((7+2)B) < p < 2, we can choose 1 < g < p such that
qepB /7> 1. Then

31Dl < Cls.p @) 3, Bo™ 2+ 3 i) £

i€Z i>-2 i<-2

<C(s,p, AN 7p )
for 27(B+1)/((7+2)B) < p < 2, which together with (3.10) implies

[ 2thow.p.s(F)lLr@n < Cls;ps @) fllLr@n), for 27(B+1)/((7+2)B) <p ?321~ |
17

Case2. 2<p<2¥y(B+1)/(y—2)B+2%): Itfollows from (2.17) that

#0055y ) < €3, SIS s wsicar)”
IS

keZ

2912

q/2
LP(Rn)dz) (3.18)

for2<p<owand 1 <g<p'. Let

st @)= (T ks S/ () v

keZ

By the similar arguments in getting (3.11) and (2.8), we have

(S s, o, <l (S s)

keZ keZ

3.19
(e (3.19)

for arbitrary functions {gy }xcz in L? (R”,éz) . This inequality together with the Little-
wood-Paley theory, we have for i € Z and ¢ € [1,2],

| Zissfllor @ <Clp.@ H(ZI&HJ\) H

keZ

iy Sl [1/p=1/21<1/7.
(3.20)

On the other hand, by the same argument as in getting (3.15), we have
Hfi.,t.,sf”Lz(R") < C(S,p7 qo)Bi”fHLZ(R")v (3'21)

where B; is as in (3.16). By interpolating between (3.20) and (3.21), for fixed 2 < p <

27(B+1)/((7—2)B +27), we can choose g € (1,p') and ¥, € ((7+2)/(2(B+1)),1)
such that ¢y,8/7 > 1 and

| Zirsfllr@mn < C(s,p, ¢)' "Bl £l Lr(mny, for 2<p <2§(B+1)/((7—2)B+27).
Combining this with (3.18) yields that

|00 ) < Cs.p @) 3 By 3 1187 ) 8
i>-2 i<-2
< C(s:p, @) )

for 2 < p <27(B+1)/((#—2)B +27). This together with (3.17) implies (3.8) and
completes the proof of Theorem 1. [
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4. Additional results

As applications of our main results, we shall obtain the L? bounds for the corre-
sponding parametric Marcinkiewicz integral operators ///h* Q.0 Ap and 005, Te-
lated to the Littlewood-Paley g; -function and the area integral S, respectively. In what
follows, we set ¥ =max{2,7'}. Let Fj 0 ¢ ,(f) be as in (1.7), we define the operators
%}::Q,(D,)L,p and ///h7g7q>757p by

t dydt\1/2
oo = ([, (=) o0 )

where A >0 and R = R” x (0,00);
dydt\1/2
M o.05,0(f // |Froop(f y7)|2tny+1> ;

where T'(x) = {(y,1) e R" . |x—y| <1}.

THEOREM 5. Let @, h, Q be as in Theorem 1. Then for 2 < p <2¥(B+1)/((7—

2)B +27), there exists constants C(p, @) which are independent of the coefficients of
Pj for 1 < j <n suchthat

|-y 0.0 2.0 (P)llLr@ey < C(0, @)1 S|l Lr(rr); (4.1)

| An.0.0.50(F)llLr @) < CPs @) fllLrme)- (4.2)

The proof of Theorem 5 is based on the following lemma.

LEMMA 7. Let A > 1. Then there exists a constant C(A,n) such that for any
nonnegative locally integrable function g on R",

L g0, (NE)P80dx < Cun) [ (Angop(5))M(g) 00,
where M is the usual Hardy-Littlewood maximal operator on R”".

Proof. By the definition of .Z,’(, ¢ ; o We have

/(xf/mmpu)(x))z (o
= [ (=) oot 00 PG st

/ / [Fho.o.p (), N ( OPtln /n<m>nlg(x)dx>$dy

<cm [ (Maop (N DPME )

for A > 1. This proves Lemma 7. [
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Proof.  Now we prove Theorem 5. First we prove (4.1). For 2 < p < 2¥(f +
1)/((7—2)B +27), by the duality we have

| igonp D = s [ (Mges ()00 st

lgllza(rn <1

where g = (p/2)’ and the supremum is taken over all g satisfying ||g|| o) < 1. By
the L? bounds of M, Holder’s inequality, Lemma 7 and Theorem 1, we get

-y 0.5 p (O IEp(ny SCAym) — sup o (Mg o (f)(x))*M(g) (x)dx

llgllzammy<1

)|, (1) e
P D)y geys 2< P <27 +1)/((F-2)p+27).

Thus (4.1) holds. On the other hand, it is easy to check that

My owsp(f)(x) < 2nl/2//297q>717p (f)(x),

which combining with (4.1) implies (4.2). Theorem 5 is proved. [J]

<
<
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