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Abstract. In this paper we consider the parametric Marcinkiewicz integrals with mixed homo-
geneity along certain compound surfaces. Under the rather weakened size conditions on the
integral kernels both on the unit sphere and in the radial direction, the Lp boundedness for such
operators are given. As applications, the corresponding results for parametric Marcinkiewicz
integral operators related to area integrals and Littlewood-Paley g∗λ functions are also obtained.

1. Introduction

Let Rn, n � 2, be the n -dimensional Euclidean space and Sn−1 denote the unit
sphere in Rn equipped with the induced Lebesgue measure dσ . Let α j � 1 ( j =
1, . . . ,n ) be fixed real numbers. Define the function F : Rn×(0,∞)−→R by F(x,ρ) =
∑n

j=1 x2
jρ−2α j , x = (x1, . . . ,xn) . It is clear that for each fixed x ∈ Rn , the function

F(x,ρ) is a decreasing function in ρ > 0. We let ρ(x) denote the unique solution of
the equation F(x,ρ) = 1. Fabes and Rivière [14] showed that (Rn,ρ) is a metric space
which is often called the mixed homogeneity space related to {α j}n

j=1 . For λ > 0, we
let Aλ be the diagonal n× n matrix Aλ = diag{λ α1 , . . . ,λ αn} . Let R+ := (0,∞) and
ϕ : R+ → R+ , we denote Aϕ(ρ(y))y

′ by Aϕ(y) for y ∈ Rn , where y′ = Aρ(y)−1y ∈ Sn−1 .
The change of variables related to the spaces (Rn,ρ) is given by the transforma-

tion

x1 = ρα1 cosθ1 · · ·cosθn−2 cosθn−1,

x2 = ρα2 cosθ1 · · ·cosθn−2 sinθn−1,

· · · · · · · · · ,
xn−1 = ραn−1 cosθ1 sinθ2,

xn = ραn sinθ1.

Thus dx = ρα−1J(x′)dρdσ(x′) , where ρα−1J(x′) is the Jacobian of the above trans-
form and α = ∑n

j=1 α j, J(x′) = ∑n
j=1 α j(x′j)2 . Obviously, J(x′) ∈ C ∞(Sn−1) and there

exists M > 0 such that
1 � J(x′) � M, ∀ x′ ∈ Sn−1.
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It is easy to see that

ρ(x) = |x|, if α1 = α2 = . . . = αn = 1.

Let Ω be integrable on Sn−1 and satisfy∫
Sn−1

Ω(u)J(u)dσ(u) = 0, (1.1)

Ω(Asx) = Ω(x), ∀ s > 0 and x ∈ Rn. (1.2)

Define the parabolic Marcinkiewicz integral operator Mh,Ω,ρ by

Mh,Ω,ρ( f )(x) =
(∫ ∞

0

∣∣∣ 1
tρ

∫
ρ(y)�t

Ω(y)h(ρ(y))
ρ(y)α−ρ f (x− y)dy

∣∣∣2 dt
t

)1/2
, x ∈ Rn, (1.3)

where ρ = σ + iτ (σ ,τ ∈ R with σ > 0) and h ∈ Δ1(R+) . Here Δγ(R+) for γ � 1
denotes the set of all measurable functions h on R+ satisfying the condition

‖h‖Δγ(R+) = sup
R>0

(
R−1

∫ R

0
|h(t)|γdt

)1/γ
< ∞.

It is easy to check that L∞(R+) = Δ∞(R+) � Δγ2(R
+) � Δγ1(R

+) for 0 < γ1 < γ2 < ∞ .
When h(t) ≡ 1, we denote Mh,Ω,ρ by MΩ,ρ . When α1 = . . . = αn = 1, the

operator MΩ,ρ reduces to the classical parametric Marcinkiewicz integral operator de-
noted by μΩ,ρ , which has been studied by many authors (see [1, 11, 18] et al.). When
ρ = 1, μΩ,ρ is the classical Marcinkiewicz integral operator, which was introduced
by Stein [23] and investigated by many authors (see [2, 4, 12, 22, 26] for example).
When α j � 1 ( j = 1, . . . ,n) and ρ = 1, Xue, Ding and Yabuta [27] first proved that
MΩ,ρ is bounded on Lp(Rn) for 1 < p < ∞ , provided that Ω ∈ Lq(Sn−1) for fixed
q > 1. Afterwards, Chen and Ding [5] (resp., [6]) extended the above result to the case
Ω∈ L(log+ L)1/2(Sn−1) (resp., Ω ∈H1(Sn−1)). Moreover, it follows from Wang, Chen
and Yu’s work [24] (also see [3]) that MΩ,ρ is of type (p, p) for 2β/(2β −1)< p < 2β
if Ω ∈ Fβ (Sn−1) for some β > 1, where

Fβ (Sn−1) :=
{

Ω∈L1(Sn−1) : sup
ξ∈Sn−1

∫
Sn−1

|Ω(y′)|
(

log
1

|ξ · y′|
)β

dσ(y′)< ∞
}
, ∀ β > 0,

(1.4)
which was introduced by Grafakos and Stefanov [16] in the study of Lp bounds for
singular integral operator with rough kernels. It follows from [16] that Fβ1

(Sn−1) �
Fβ2

(Sn−1) for 0 < β2 < β1 , and
⋃

q>1 Lq(Sn−1) � Fβ (Sn−1) for any β > 0. Moreover,

⋂
β>1

Fβ (Sn−1) � H1(Sn−1) �
⋃

β>1

Fβ (Sn−1)

and ⋂
β>1

Fβ (Sn−1) � L log+ L(Sn−1).
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Recently, we [19] improved the result of [24] to the case: Ω ∈ Fβ (Sn−1) for some
β > 1/2 with 1+1/(2β ) < p < 1+2β .

In this paper, we will focus on the general operator Mh,Ω,ρ with h ∈ Δγ (R+) .
Due to the presence of h , the kernel of Mh,Ω,ρ has the additional roughness in the
radial direction, which has received a large amount of attention of many authors in the
Euclidean setting, for example, see [10] for the case Ω ∈ L(log+ L)(Sn−1) , [8, 9, 11]
for the case Ω ∈ H1(Sn−1) , [1] for the case Ω ∈ L(log+ L)1/2(Sn−1) or certain block
spaces on Sn−1 . On the other hand, in the Euclidean setting, to extend the results in
[16] to the singular integral operator with rough kernel both on the unit sphere and in
the radial direction

Th,Ω f (x) := p.v.

∫
Rn

h(|y|)Ω(y′)
|y|n f (x− y)dy, x ∈ Rn.

Fan and Sato [15] introduced the functions class F̃β (Sn−1) in more general form,
which denotes the set of all functions Ω ∈ L1(Sn−1) with satisfying

sup
ξ ′∈Sn−1

∫∫
Sn−1×Sn−1

|Ω(θ )Ω(w)|
(

log
1

|(θ −w) ·ξ ′|
)β

dσ(θ )dσ(w) < ∞, β > 0,

(1.5)
and showed that Fβ (S1) ⊂ F̃β (S1) (for n > 2, the relation between Fβ (Sn−1) and
F̃β (Sn−1) remains to be open). Moreover, they proved that Th,Ω is bounded on Lp(Rn)
provided that h ∈ Δγ(R+) for some γ > 1 and Ω ∈ F̃β (Sn−1) for β > max{2,γ ′} and
|1/p−1/2|< min{1/γ ′, 1/2}−1/β . Recently, we [21] extended the result of [15] to
the singular integral operators with mixed homogeneity in more general form, which is
listed as follows.

THEOREM A. ([21]) Let PN be a real polynomial on R with PN(0) = 0 and
PN(t) > 0 for t 
= 0 , where N is the degree of PN , and let ϕ ∈ F . Here F is the set of
all functions φ which satisfy:

(a) φ : R+ → R+ is continuous increasing C 1 function satisfying that φ ′ is
monotonic;

(b) there exist constants Cφ and cφ such that tφ ′(t) �Cφ φ(t) and φ(2t) � cφ φ(t)
for all t > 0 .
Suppose that h∈ Δγ(R+) for some γ > 1 and Ω ∈ F̃β (Sn−1) for some β > max{2,γ ′}
satisfying (1.1)–(1.2) . Then the singular integral operators Th,Ω,PN ,ϕ defined by

Th,Ω,PN ,ϕ ( f )(x) := p.v.
∫

Rn

Ω(y)h(ρ(y))
ρ(y)α f (x−APN(ϕ)(y))dy, x ∈ Rn, (1.6)

are bounded on Lp(Rn) for p with satisfying |1/p− 1/2| < min{1/γ ′,1/2}− 1/β .
The bounds are independent of the coefficients of PN , but depend on ϕ , N, γ, n and β .

REMARK 1. We remark that there are some model examples in the class F , such
as tα (α > 0), tα(ln(1+ t))β (α,β > 0), t ln ln(e+ t) , real-valued polynomials P on
R with positive coefficients and P(0) = 0 and so on. For ϕ ∈ F , there exists a constant
Bϕ > 1 such that ϕ(2t) � Bϕϕ(t) (see [3]).
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Based on the above, we find it is natural to ask the following question.

QUESTION. For the general case α j � 1( j = 1, . . . ,n) , is Mh,Ω,ρ bounded on
Lp(Rn) under the same assumptions on Ω and h as in Theorem A?

In this paper, we will give an affirmative answer to this question by treating a
family of operators, which is broader than Mh,Ω,ρ . Precisely, let h, Ω, ρ be as in (1.3).
For a suitable mapping Φ : Rn → Rn , we define the parabolic Marcinkiewicz integral
operator Mh,Ω,Φ,ρ on Rn by

Mh,Ω,Φ,ρ( f )(x) :=
(∫ ∞

0
|Fh,Ω,Φ,ρ( f )(x,t)|2 dt

t

)1/2
, x ∈ Rn, (1.7)

where

Fh,Ω,Φ,ρ( f )(x,t) :=
1
tρ

∫
ρ(y)�t

Ω(y)h(ρ(y))
ρ(y)α−ρ f (x−Φ(y))dy.

Clearly, Mh,Ω,ρ is the special case of Mh,Ω,Φ,ρ for Φ(y) = y . Our main results can be
stated as follows:

THEOREM 1. Let Φ(y) = (P1(ϕ(ρ(y)))y′1, . . . ,Pn(ϕ(ρ(y)))y′n) with Pj(t) being
real valued polynomials on R satisfying Pj(0) = 0 and ϕ ∈ F . Suppose that h ∈
Δγ(R+) for some γ > 1 and Ω ∈ F̃β (Sn−1) for some β > max{2,γ ′}/2 satisfy-
ing (1.1)–(1.2) . Then Mh,Ω,Φ,ρ defined as in (1.7) are bounded on Lp(Rn) for
p with satisfying |1/p− 1/2| < min{1/γ ′,1/2}−min{1/γ ′ + 1/2,1}/(β + 1) . The
bounds are independent of the coefficients of Pj for all 1 � j � n, but depend on
max1� j�n deg(Pj), ρ and ϕ .

In particular, when Pj(ϕ(ρ(y)))y′j = PN(ϕ(ρ(y)))α j y′j (1 � j � n) , we have

THEOREM 2. Let Φ(y) = APN(ϕ)(y) with ϕ ∈ F and PN(t) = ∑N
i=1 aiti with PN(t)

> 0 for t 
= 0 . Suppose that h ∈ Δγ(R+) for some γ > 1 and Ω ∈ F̃β (Sn−1) for
some β > max{2,γ ′}/2 satisfying (1.1)–(1.2) . Then Mh,Ω,Φ,ρ defined as in (1.7) are
bounded on Lp(Rn) for p with satisfying |1/p−1/2|< min{1/γ ′,1/2}−min{1/γ ′+
1/2,1}/(β +1) . The bounds are independent of the coefficients of PN , but depend on
N, ρ and ϕ .

Furthermore, applying Theorems 1–2 with the fact that Fβ (S1) ⊂ F̃β (S1) , we
obtain

THEOREM 3. Let n = 2 and Φ, h be as in Theorem 1 . Suppose that Ω ∈Fβ (S1)
for some β > max{2,γ ′}/2 satisfying (1.1)–(1.2) . Then Mh,Ω,Φ,ρ defined as in
(1.7) are bounded on Lp(R2) for p with satisfying |1/p− 1/2| < min{1/γ ′,1/2}−
min{1/γ ′ + 1/2,1}/(β + 1) . The bounds are independent of the coefficients of Pj for
j = 1,2 , but depend on max1� j�2 deg(Pj), ρ and ϕ .
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THEOREM 4. Let n = 2 and Φ, h be as in Theorem 2 . Suppose that Ω ∈Fβ (S1)
for some β > max{2,γ ′}/2 satisfying (1.1)–(1.2) . Then Mh,Ω,Φ,ρ defined as in
(1.7) are bounded on Lp(R2) for p with satisfying |1/p− 1/2| < min{1/γ ′,1/2}−
min{1/γ ′+1/2,1}/(β +1) . The bounds are independent of the coefficients of PN , but
depend on N, ρ and ϕ .

REMARK 2. Compared with Theorem A, in our theorems, the range of β is re-
laxed to that β > max{1, γ ′/2} and for the same β and γ , the range of p is larger than
one in Theorem A. However, we don’t know whether the ranges of β and p are sharp,
which is interesting.

The rest of this paper is organized as follows. After recalling some preliminary
notations and lemmas in Section 2, we will prove the main results in Section 3. Finally,
we consider the Lp bounds of the corresponding parametric Marcinkiewicz integral
operators related to area integrals and Littlewood-Paley g∗λ functions in Section 4. We
would like to remark that the main methods employed in this paper is a combination of
ideas and arguments from [7, 25]. Throughout this paper, we let p′ satisfy 1/p+1/p′ =
1. The letter C , sometimes with additional parameters, will stand for positive constants,
not necessarily the same one at each occurrence but is independent of the essential
variables.

2. Preliminary lemmas

Let N = max1� j�n deg(Pj) . For 1 � l � n , let Pl(t) = ∑N
i=1 ai,lt i . For 1 � s � N

and 1 � l � n , let P(s)
l (t) = ∑s

i=1 ai,lt i and P(s)(t) = (P(s)
1 (t), . . . ,P(s)

n (t)). Set P(0)(t) =
0 and

Φs(y) = (P(s)
1 (ϕ(ρ(y)))y′1, . . . ,P

(s)
n (ϕ(ρ(y)))y′n).

Then we can write

Φs(y) ·ξ =
n

∑
l=1

ξly
′
lP

(s)
l (ϕ(ρ(y))) =

n

∑
l=1

s

∑
i=1

ξly
′
lai,lϕ(ρ(y))i =

s

∑
i=1

(Liξ · y′)ϕ(ρ(y))i,

(2.1)
where Li : Rn → Rn is the linear transformation given by

Liξ = (ai,1ξ1, . . . ,ai,nξn).

For each k ∈ Z, t ∈ R+ and 1 � s � N , we define the signed measures {σk,t;s} and
{|σk,t;s|} on Rn by

σ̂k,t;s(ξ ) =
1

(2kt)ρ

∫
2k−1t<ρ(y)�2kt

exp(−2π iΦs(y) ·ξ )
Ω(y)h(ρ(y))

ρ(y)α−ρ dy;

|̂σk,t;s|(ξ ) =
1

(2kt)ρ

∫
2k−1t<ρ(y)�2kt

exp(−2π iΦs(y) ·ξ )
|Ω(y)h(ρ(y))|

ρ(y)α−ρ dy.



458 F. LIU, H. WU AND D. ZHANG

LEMMA 1. ([22]) Suppose Φ(t) = tα1 + μ2tα2 + · · ·+ μntαn and ϕ ∈ F , where
μ2, . . . ,μn are real parameters, and α1, . . . ,αn are distinct positive (not necessarily
integer) exponents. Then for any r > 0 and λ ∈ R\{0} ,∣∣∣∫ r

r/2
exp(iλ Φ(ϕ(t)))

dt
t

∣∣∣ � C(ϕ)|λ ϕ(r)α1 |−ε ,

where ε = min{1/α1,1/n} and C(ϕ) doesn’t depend on μ2, . . . ,μn .

LEMMA 2. Let h ∈ Δγ(R+) for some 1 < γ � ∞ and γ̃ = max{2,γ ′} . Suppose
that Ω ∈ F̃β (Sn−1) for some β > 0 and satisfies (1.1)–(1.2) . Then for any k ∈ Z ,
ξ ∈ Rn , t > 0 and 1 � s � N , there exists a positive constant C depends on ϕ such
that

(i)
∣∣σ̂k,t;s(ξ )− σ̂k,t;s−1(ξ )

∣∣ � C|ϕ(2kt)sLsξ |;
(ii) |σ̂k,t;s(ξ )| � C(log |ϕ(2kt)sLsξ |)−β/γ̃ , if |ϕ(2kt)sLsξ |> 1 .

Proof. By (2.1) and a change of variable, we have∣∣σ̂k,t;s(ξ )− σ̂k,t;s−1(ξ )
∣∣

� 1
(2kt)ρ

∫
2k−1t<ρ(y)�2kt

|exp(−2π iΦs(y) ·ξ )− exp(−2π iΦs−1(y) ·ξ )| |Ω(y)h(ρ(y))|
ρ(y)α−ρ dy

� C|ϕ(2kt)sLsξ |
∫ 2kt
2k−1t |h(r)| dr

r

∫
Sn−1 |Ω(θ )|dσ(θ )

� C|ϕ(2kt)sLsξ |.
Then (i) holds. On the other hand, by a change of variable and Hölder’s inequality, we
have

|σ̂k,t;s(ξ )| =
∣∣∣ 1
(2kt)ρ

∫ 2kt

2k−1t

∫
Sn−1

exp
(
−2π i

s

∑
η=1

Lηξ ·θϕ(r)η
)

Ω(θ )J(θ )dσ(θ )h(r)
dr

r1−ρ

∣∣∣
� C

∫ 2kt
2k−1t

∣∣∣∫Sn−1 exp
(
−2π i

s
∑

η=1
Lηξ ·θϕ(r)η

)
Ω(θ )J(θ )dσ(θ )

∣∣∣|h(r)| dr
r

� C
(∫ 2kt

2k−1t

∣∣∣∫Sn−1 exp
(
−2π i

s
∑

η=1
Lη ξ ·θϕ(r)η

)
Ω(θ )J(θ )dσ(θ )

∣∣∣γ ′
dr
r

)1/γ ′
.

(2.2)
If 1 < γ � 2, note that γ ′ � 2, we get from (2.2) that

|σ̂k,t;s(ξ )| � C
(∫ 2kt

2k−1t

∣∣∣∫Sn−1 exp
(
−2π i

s
∑

η=1
Lη ξ ·θϕ(r)η

)
Ω(θ )J(θ )dσ(θ )

∣∣∣2
×

∣∣∣∫Sn−1 exp
(
−2π i

s
∑

η=1
Lη ξ ·θϕ(r)η

)
Ω(θ )J(θ )dσ(θ )

∣∣∣γ ′−2
dr
r

)1/γ ′

� C
(∫ 2kt

2k−1t

∣∣∣∫Sn−1 exp
(
−2π i

s
∑

η=1
Lη ξ ·θϕ(r)η

)
Ω(θ )J(θ )dσ(θ )

∣∣∣2 dr
r

)1/γ ′
.

If γ > 2, then γ ′ ∈ [1,2) . By Hölder’s inequality we have

|σ̂k,t;s(ξ )| � C
(∫ 2kt

2k−1t

∣∣∣∫
Sn−1

exp
(
−2π i

s

∑
η=1

Lη ξ ·θϕ(r)η
)

Ω(θ )J(θ )dσ(θ )
∣∣∣2 dr

r

)1/2
.
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Thus we have

|σ̂k,t;s(ξ )| � C
(∫ 2kt

2k−1t

∣∣∣∫
Sn−1

exp
(
−2π i

s

∑
η=1

Lηξ ·θϕ(r)η
)

Ω(θ )J(θ )dσ(θ )
∣∣∣2 dr

r

)1/γ̃
,

(2.3)
Let

Ik,t,s(ξ ) :=
∫ 2kt

2k−1t

∣∣∣∫
Sn−1

exp
(
−2π i

s

∑
η=1

Lηξ ·θϕ(r)η
)

Ω(θ )J(θ )dσ(θ )
∣∣∣2 dr

r
.

We can write

|Ik,t,s(ξ )|
=

∣∣∣∫ 2kt
2k−1t

∫∫
(Sn−1)2 exp

(
−2π i

s
∑

η=1
Lη ξ · (θ−w)ϕ(r)η

)
Ω(θ )Ω(w)J(θ )J(w)dσ(θ )dσ(w) dr

r

∣∣∣
�

∫∫
(Sn−1)2

|Ω(θ )Ω(w)|
∣∣∣∫ 2kt

2k−1t
exp

(
−2π i

s

∑
η=1

Lη ξ · (θ −w)ϕ(r)η
)dr

r

∣∣∣dσ(θ )dσ(w).

(2.4)
Let

Ĩk,t,s,ξ (θ ,w) :=
∫ 2kt

2k−1t
exp

(
−2π i

s

∑
η=1

Lη ξ · (θ −w)ϕ(r)η
)dr

r
.

Applying Lemma 1, we have

|Ĩk,t,s,ξ (θ ,w)| � C(ϕ)|ϕ(2kt)sLsξ · (θ −w)|−1/s.

Combining the trivial inequality |Ĩk,t,s,ξ (θ ,w)| � C with the fact that t/(logt)β is in-

creasing in (eβ ,∞) , we have

|Ĩk,t,s,ξ (θ ,w)| � C(ϕ)

(
log2eβ s|L′

sξ · (θ −w)|−1
)β(

log |ϕ(2kt)sLsξ |
)β , if |ϕ(2kt)sLsξ | > 1, (2.5)

where L′
sξ = Lsξ/|Lsξ | . This together (2.4) with the fact that Ω ∈ F̃β (Sn−1) implies

|Ik,t,s(ξ )| � C(ϕ)(log |ϕ(2kt)sLsξ |)−β , if |ϕ(2kt)sLsξ | > 1. (2.6)

Together with (2.3) leads to (ii). This proves Lemma 2. �

LEMMA 3. Let P : R+ →Rn be a polynomialmapping, where P(t)= (P1(t), . . . ,
Pn(t)) with Pj being are real polynomial defined on R+ . Suppose that h ∈ Δγ(R+) for
some γ > 1 and ϕ ∈ F , then the operator MP,ϕ,h defined as

MP,ϕ,h( f )(x) := sup
r>0

∣∣∣∫ 2r

r
f (x−P(ϕ(t)))h(t)

dt
t

∣∣∣
satisfies

‖MP,ϕ,h( f )‖Lp(Rn) � Cp‖h‖Δγ(R+)‖ f‖Lp(Rn), γ ′ < p � ∞.

The constant Cp is independent of the coefficients of Pj for 1 � j � n, but depends on
ϕ .
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Proof. By Hölder’s inequality we have∣∣∣∫ 2r

r
| f (x−P(ϕ(t)))h(t)

dt
t

∣∣∣ � C‖h‖Δγ(R+)

(∫ 2r

r
| f (x−P(ϕ(t)))|γ ′ dt

t

)1/γ ′
.

From this and invoking Lemma 2.2 in [20], Lemma 3 is obtained. �

LEMMA 4. Let Ω ∈ L1(Sn−1) and h ∈ Δγ(R+) for some γ > 1 . Suppose that
ϕ ∈ F . Then for |1/p−1/2|< min{1/2,1/γ ′} and 1 � s � N , we have∥∥∥(

∑
k∈Z

∫ 2

1
|σk,t;s ∗ gk|2dt

)1/2∥∥∥
Lp(Rn)

� C
∥∥∥(

∑
k∈Z

|gk|2
)1/2∥∥∥

Lp(Rn)
; (2.7)

∥∥∥(
∑
k∈Z

|σk,t;s ∗ gk|2dt
)1/2∥∥∥

Lp(Rn)
� C

∥∥∥(
∑
k∈Z

|gk|2
)1/2∥∥∥

Lp(Rn)
, ∀ 1 � t � 2. (2.8)

The constant C is independent of the coefficients of Pj for 1 � j � n, but depends on
ϕ .

Proof. To prove this lemma, we use a similar argument as in the proof of [13,
Theorem 7.5]. Since Δγ(R+) ⊂ Δ2(R+) for γ � 2, we only prove this lemma for the
case 1 < γ � 2 and |1/p− 1/2| < 1/γ ′ . By the duality, it suffices to prove (2.7) for
2 < p < 2γ/(2− γ) . Let q = (p/2)′ and {gk}k∈Z ∈ Lp(Rn, �2) . Then there exists a
nonnegative function f ∈ Lq(Rn) with unit norm such that∥∥∥(

∑
k∈Z

∫ 2

1
|σk,t;s ∗ gk|2dt

)1/2∥∥∥2

Lp(Rn)
=

∫
Rn

∑
k∈Z

∫ 2

1
|σk,t;s ∗ gk(x)|2dt f (x)dx. (2.9)

By a change of variable and Hölder’s inequality, we have∫
Rn

∫ 2

1
|σk,t;s ∗ gk(x)|2dt f (x)dx

�
∫

Rn

∫ 2

1

(∫ 2kt

2k−1t

∫
Sn−1

|gk(x−Φs(Ary
′))||Ω(y′)|dσ(y′)|h(r)|dr

r

)2
dt f (x)dx

� C‖Ω‖L1(Sn−1)

∫
Rn

∫ 2

1

(∫ 2kt

2k−1t

(∫
Sn−1
|gk(x−Φs(Ary

′))|2|Ω(y′)|dσ(y′)
)1/2|h(r)|dr

r

)2
dt f (x)dx

� C‖h‖γ
Δγ(R+)

∫
Rn

∫ 2

1

∫ 2kt

2k−1t

∫
Sn−1

|gk(x−Φs(Ary
′))|2|Ω(y′)|dσ(y′)|h(r)|2−γ dr

r
dt f (x)dx

� C‖h‖γ
Δγ(R+)

∫
Rn

M̃( f )(x)|gk(x)|2dx,

(2.10)
where

M̃( f )(x) =
∫ 2

1

∫ 2kt

2k−1t

∫
Sn−1

f (x+ Φs(Ary
′))|h(r)|2−γ |Ω(y′)|dσ(y′)

dr
r

dt.

Note that |h(·)|2−γ ∈Δγ/(2−γ)(R+) and q > (γ/(2−γ))′ . Using Lemma 3, Minkowski’s
inequality and the similar arguments as in getting [13, Theorem 7.4], we have

‖M̃( f )‖Lq(Rn) � Cq‖Ω‖L1(Sn−1)‖h‖2−γ
Δγ(R+)‖ f‖Lq(Rn). (2.11)
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Combining (2.9)–(2.11) with Hölder’s inequality implies

∥∥∥(
∑
k∈Z

∫ 2

1
|σk,t;s ∗ gk|2dt

)1/2∥∥∥
Lp(Rn)

� C‖h‖Δγ(R+)

∥∥∥(
∑
k∈Z

|gk|2
)1/2∥∥∥

Lp(Rn)

for 2 < p < 2γ/(2− γ) . This proves (2.7). It remains to prove (2.8). By the similar
argument as in getting (2.7), it suffices to prove (2.8) for 2 < p < 2γ/(2− γ) . Fixed
t ∈ [1,2] , let q = (p/2)′ and {gk}k∈Z ∈ Lp(Rn, �2) . Then there exists a nonnegative
function f ∈ Lq(Rn) with unit norm such that

∥∥∥(
∑
k∈Z

|σk,t;s ∗ gk|2
)1/2∥∥∥2

Lp(Rn)
=

∫
Rn

∑
k∈Z

|σk,t;s ∗ gk(x)|2 f (x)dx. (2.12)

By a change of variable and Hölder’s inequality, we have∫
Rn

|σk,t;s ∗ gk(x)|2 f (x)dx

�
∫

Rn

∣∣∣∫ 2kt

2k−1t

∫
Sn−1

|gk(x−Φs(Ary
′))||Ω(y′)|dσ(y′)|h(r)|dr

r

∣∣∣2 f (x)dx

� C‖Ω‖L1(Sn−1)

∫
Rn

∣∣∣∫ 2kt

2k−1t

(∫
Sn−1

|gk(x−Φs(Ary
′))|2|Ω(y′)|dσ(y′)

)1/2|h(r)|dr
r

∣∣∣2 f (x)dx

� C‖h‖γ
Δγ(R+)

∫
Rn

∫ 2kt

2k−1t

∫
Sn−1

|gk(x−Φs(Ary
′))|2|Ω(y′)|dσ(y′)|h(r)|2−γ dr

r
f (x)dx

� C‖h‖γ
Δγ(R+)

∫
Rn

G̃( f )(x)|gk(x)|2dx,

where

G̃( f )(x) =
∫ 2kt

2k−1t

∫
Sn−1

f (x+ Φs(Ary
′))|h(r)|2−γ |Ω(y′)|dσ(y′)

dr
r

.

Thus∥∥∥(
∑
k∈Z

|σk,t;s ∗ gk|2
)1/2∥∥∥2

Lp(Rn)
� C‖h‖γ

Δγ(R+)

∫
Rn

G̃( f )(x) ∑
k∈Z

|gk(x)|2dx. (2.13)

By the similar argument as in getting (2.11), we have

‖G̃( f )‖Lq(Rn) � Cq‖Ω‖L1(Sn−1)‖h‖2−γ
Δγ(R+)‖ f‖Lq(Rn). (2.14)

Combining (2.13) with Hölder’s inequality implies∥∥∥(
∑
k∈Z

|σk,t;s ∗ gk|2
)1/2∥∥∥

Lp(Rn)
� C‖h‖Δγ(R+)

∥∥∥(
∑
k∈Z

|gk|2
)1/2∥∥∥

Lp(Rn)
,

for 2 < p < 2γ/(2− γ) , where C is independent of t . This proves (2.8). Lemma 4 is
proved. �
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Let {λk}k∈Z be a collection of C ∞(0,∞) functions with satisfying the following
conditions:

supp(λk) ⊂ [ϕ(2k+1)−1,ϕ(2k−1)−1];

0 � λk � 1; ∑
k∈Z

λ 2
k (t) = 1; |dλk(t)/dt| � C/t,

where C is independent of t and k . For each k ∈ Z , we define the multiplier operators
Sk in Rn by

Ŝk f (ξ ) = λk(|Lsξ |) f̂ (ξ ). (2.15)

By the arguments similar to those used in [26, Proposition 3.1], one can easily get
the following lemma. The details are omitted here.

LEMMA 5. Let Sk be as in (2.15) and {g j,k,t} be arbitrary functions in Lp(Rn) .
Then

(i) for each fixed 1 < p < 2 and 1 < q < p,

∥∥∥(
∑
j∈Z

∫ 2

1

∣∣∣ ∑
k∈Z

S j+kg j,k,t

∣∣∣2dt
)1/2∥∥∥q

Lp(Rn)
� C ∑

k∈Z

∥∥∥(
∑
j∈Z

∫ 2

1
|g j,k,t |2dt

)1/2∥∥∥q

Lp(Rn)
;

(2.16)
(ii) for each fixed 2 < p < ∞ and 1 < q < p′ ,

∥∥∥(
∑
j∈Z

∫ 2

1

∣∣∣ ∑
k∈Z

S j+kg j,k,t

∣∣∣2dt
)1/2∥∥∥q

Lp(Rn)
� C ∑

k∈Z

(∫ 2

1

∥∥∥(
∑
j∈Z

|g j,k,t |2
)1/2∥∥∥2

Lp(Rn)
dt

)q/2
.

(2.17)

In order to prove our results, we need the following lemma.

LEMMA 6. ([13]) Let r and d be two positive integers and {ν1, . . . ,νd}⊂Rr be a
collection of vectors which spans Rr . Then there exists a subcollection {u1, . . . ,ur} ⊂
{ν1, . . . ,νd} and constants {k js}1� j�d,1�s�r such that

ν j = k j1u1 + · · ·+ k jrur

for j = 1, . . . ,d .

3. Proofs of main results

This section is devoted to the proofs of main results. We need only to prove The-
orem 1 in section 1.

Proof. Now we begin to prove Theorem 1. This proof is based on the ideas in [7]
and some techniques from [25]. Let ϕ ∈ F and Bϕ be as in Remark 1. For simplicity,
we denote γ̃ = max{2,γ ′} . For s ∈ {1, . . . ,N } , let rs = rank(Ls) . By Lemma 6, there
are two nonsingular linear transformations Hs : Rrs → Rrs and Gs : Rn → Rn such that

|Hsπn
rsGsξ | � |Lsξ | � Cn|Hsπn

rsGsξ |, for ξ ∈ Rn, (3.1)
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where Cn > 1 and πn
rs is a projection operator from Rn to Rrs . For a function φ ∈

C ∞
0 (R) such that φ ≡ 1 for |t| � 1/2 and φ ≡ 0 for |t| > 1. Let ψ(t) = φ(t2) . For

k ∈ Z, t ∈ R+, ξ ∈ Rn and 1 � s � N , we define the signed measures {μk,t;s} by

μ̂k,t;s(ξ ) = σ̂k,t;s(ξ )
N

∏
l=s+1

ψ(|ϕ(2kt)lHlπn
rl
Glξ |)− σ̂k,t;s−1(ξ )

N

∏
l=s

ψ(|ϕ(2kt)lHlπn
rl
Glξ |).
(3.2)

Here we use the convention ∏ j∈ /0 a j = 1. It is easy to see that

σk,t;N =
N

∑
s=1

μk,t;s. (3.3)

It follows from Lemma 2, (3.1) and the trivial estimate |σ̂k,t;s(ξ )| � C that for 1 � s �
N ,

|μ̂k,t;s(ξ )| � C(ϕ)min{1,ϕ(2kt)s|Lsξ |}, (3.4)

|μ̂k,t;s(ξ )| � C(ϕ)(log |ϕ(2kt)sLsξ |)−β/γ̃ , if |ϕ(2kt)sLsξ | > 1. (3.5)

By the definition of σk,t;s , we have

Fh,Ω,Φ,ρ( f )(x,t) =
0

∑
k=−∞

2kρ σk,t;N ∗ f (x). (3.6)

Then by (3.3) and (3.6) we can write

Mh,Ω,Φ,ρ( f )(x) =
(∫ ∞

0

∣∣∣ 0
∑

k=−∞
2kρ σk,t;N ∗ f (x)

∣∣∣2 dt
t

)1/2

�
0
∑

k=−∞
2kσ

(∫ ∞
0 |σk,t;N ∗ f (x)|2 dt

t

)1/2

=
1

1−2−σ

(
∑
k∈Z

∫ 2k+1

2k
|σ0,t;N ∗ f (x)|2 dt

t

)1/2

=
1

1−2−σ

(∫ 2

1
∑
k∈Z

|σk,t;N ∗ f (x)|2 dt
t

)1/2

� 1
1−2−σ

N

∑
s=1

(∫ 2

1
∑
k∈Z

|μk,t;s ∗ f (x)|2dt
)1/2

:=
1

1−2−σ

N

∑
s=1

Mh,Ω,Φ,ρ ,s( f )(x).

(3.7)

It suffices to prove that

‖Mh,Ω,Φ,ρ ,s‖Lp(Rn) � C‖ f‖Lp(Rn) (3.8)

for 2γ̃(β +1)/((γ̃ +2)β ) < p < 2γ̃(β +1)/((γ̃ −2)β +2γ̃) and s ∈ {1, . . . ,N } . By
the definition of Sk , we can write

Mh,Ω,Φ,ρ ,s( f )(x) =
(

∑
k∈Z

∫ 2

1

∣∣∣μk,t;s ∗
(

∑
i∈Z

Si+kSi+k f
)
(x)

∣∣∣2dt
)1/2

. (3.9)
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In what follows, we will estimate the ‖Mh,Ω,Φ,ρ ,s( f )‖Lp(Rn) in two cases: p > 2
and p < 2. The idea is taken from [25], which was originated from [17]. We first
establish a rough Lp estimate by the Littlewood-Paley theory, and then give a delicate
L2 -boundedness by Plancherel’s theorem and the Fourier transform estimates. Finally,
the desired estimates will be obtained by the interpolation.

Case 1. 2γ̃(β +1)/((γ̃ +2)β ) < p < 2: Applying (2.16), we know that for 1 <
q < p

‖Mh,Ω,Φ,ρ ,s( f )‖q
Lp(Rn) � C ∑

i∈Z

∥∥∥(
∑
k∈Z

∫ 2

1
|μk,t;s ∗ Si+k f |2dt

)1/2∥∥∥q

Lp(Rn)
. (3.10)

For fixed i ∈ Z , let

Ii,s f (x) :=
(

∑
k∈Z

∫ 2

1
|μk,t;s ∗ Si+k f (x)|2dt

)1/2
.

Next, we prove the following inequality

∥∥∥(
∑
k∈Z

∫ 2

1
|μk,t;s ∗ gk|2dt

)1/2∥∥∥
Lp(Rn)

� C
∥∥∥(

∑
k∈Z

|gk|2
)1/2∥∥∥

Lp(Rn)
(3.11)

for arbitrary functions {gk}k∈Z in Lp(Rn, �2) .
The main idea of the proof of (3.11) is taken from [13]. For 1 � l � N , let Ψ be

a radial function in Rrl defined by Ψ̂(ξ 0) = ψ(|ξ 0|) , where ξ 0 ∈ Rrl , ψ is as in (3.2).
Define Jl and Xk,t;l by

Jl f (x) := f (Gτ
l (H

τ
l ⊗ idRn−rl )x)

and

Xk,t;l f (x) := J−1
l ((Ψk,t;l ⊗ δRn−rl )∗ Jl f )(x),

where Ψk,t;l = ϕ(2kt)−lrl Ψ(ϕ(2kt)−lx0) , x0 ∈ Rrl , Hτ
l (resp., Gτ

l ) is the transpose of
Hl (resp., Gl ), Hl and Gl are as in (3.2). Let Xl be given by

Xl f (x) := sup
t∈[1,2]

sup
k∈Z

|Xk,t;l f (x)|.

Then for s � l � N , we have

Xl f (x) � Cl [J−1
l ◦ (M(l)⊗ idRn−rl )◦ Jl] f (x),

where M(l) denotes the Hardy-Littlewood maximal operator on Rrl , x = (x0,x1) ∈
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Rrl ×Rn−rl . Hence we have

∥∥∥(
∑

k∈Z

∫ 2
1 |Xl(gk)(·)|2dt

)1/2∥∥∥p

Lp(Rn)

� C
∥∥∥(

∑
k∈Z

∫ 2
1 |J−1

l ◦ (M(l)⊗ idRn−rl )◦ Jl(gk)(·)|2dt
)1/2∥∥∥p

Lp(Rn)

� C
∥∥∥(

∑
k∈Z

|J−1
l ◦ (M(l)⊗ idRn−rl )◦ Jl(gk)(·)|2

)1/2∥∥∥p

Lp(Rn)

� Cl|Jl|
∫
Rn−rl

∫
Rrl

(
∑

k∈Z
|M(l)[Jl(gk)(·,x1)](x0)|2

)p/2
dx0dx1

� Cl|Jl|
∫
Rn−rl

∫
Rrl

(
∑

k∈Z
|Jl(gk)(x0,x1)|2

)p/2
dx0dx1

� Cl

∥∥∥(
∑

k∈Z
|(gk)(·)|2

)1/2∥∥∥p

Lp(Rn)
.

(3.12)

Also, by (3.2) and the definitions of Xk,t;l , we have

μk,t;s ∗ gk(x) = σk,t;s ∗Xk,t;s+1 ◦ · · · ◦Xk,t;N gk(x)−σk,t;s−1 ∗Xk,t;s ◦ · · · ◦Xk,t;N gk(x).
(3.13)

Thus by (2.7), (3.13) and using the estimate (3.12) repeatedly, we can obtain (3.11).
Invoking (3.11) and the Littlewood-Paley theory, we get

‖Ii,s f‖Lp(Rn) �Cp

∥∥∥(
∑
k∈Z

|Si+k f |2
)1/2∥∥∥

Lp(Rn)
�C(p,ϕ)‖ f‖Lp(Rn), |1/p−1/2|< 1/γ̃.

(3.14)
On the other hand, by Plancherel’s theorem, we know that

‖Ii,s f‖2
L2(Rn) = ∑

k∈Z

∫ 2

1

∫
Rn

|μ̂k,t;s(ξ )|2λ 2
i+k(|Lsξ |)| f̂ (ξ )|2dξdt

� ∑
k∈Z

∫
Λi+k

| f̂ (ξ )|2
∫ 2

1
|μ̂k,t;s(ξ )|2dtdξ ,

where Λi+k = {ξ ∈ Rn : ϕ(2i+k+1)−s � |Lsξ | � ϕ(2i+k−1)−s} . Using (3.4)–(3.5), we
have

‖Ii,s( f )‖L2(Rn) � C(s,ρ ,ϕ)Bi‖ f‖L2(Rn), (3.15)

where

Bi :=
{

B−is
ϕ , i > −2,

|i|−β/γ̃ , i � −2.
(3.16)

By interpolation between (3.14) and (3.15), there exists a constant εp ∈ ((γ̃ +
2)/(2(β +1)),1) such that

‖Ii,s( f )‖Lp(Rn) � C(s,ρ ,ϕ)1−εpB
εp
i ‖ f‖Lp(Rn), for 2γ̃(β +1)/((γ̃ +2)β ) < p < 2.
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Thus for fixed 2γ̃(β + 1)/((γ̃ + 2)β ) < p < 2, we can choose 1 < q < p such that
qεpβ/γ̃ > 1. Then

∑
i∈Z

‖Ii,s( f )‖q
Lp(Rn) � C(s,ρ ,ϕ)

(
∑

i>−2
B
−isεpq
ϕ + ∑

i�−2
|i|−qεpβ/γ̃

)
‖ f‖q

Lp(Rn)

� C(s,ρ ,ϕ)‖ f‖q
Lp(Rn)

for 2γ̃(β +1)/((γ̃ +2)β ) < p < 2, which together with (3.10) implies

‖Mh,Ω,Φ,ρ ,s( f )‖Lp(Rn) � C(s,ρ ,ϕ)‖ f‖Lp(Rn), for 2γ̃(β +1)/((γ̃ +2)β ) < p < 2.
(3.17)

Case 2. 2 < p < 2γ̃(β +1)/((γ̃ −2)β +2γ̃) : It follows from (2.17) that

‖Mh,Ω,Φ,ρ ,s( f )‖q
Lp(Rn) � C ∑

i∈Z

(∫ 2

1

∥∥∥(
∑
k∈Z

|μk,t;s ∗ Si+k f |2
)1/2∥∥∥2

Lp(Rn)
dt

)q/2
(3.18)

for 2 < p < ∞ and 1 < q < p′ . Let

Ji,t,s f (x) :=
(

∑
k∈Z

|μk,t;s ∗ Si+k f (x)|2
)1/2

.

By the similar arguments in getting (3.11) and (2.8), we have∥∥∥(
∑
k∈Z

|μk,t;s ∗ gk|2dt
)1/2∥∥∥

Lp(Rn)
� C

∥∥∥(
∑
k∈Z

|gk|2
)1/2∥∥∥

Lp(Rn)
(3.19)

for arbitrary functions {gk}k∈Z in Lp(Rn, �2) . This inequality together with the Little-
wood-Paley theory, we have for i ∈ Z and t ∈ [1,2] ,

‖Ji,t,s f‖Lp(Rn) �C(p,ϕ)
∥∥∥(

∑
k∈Z

|Si+k f |2
)1/2∥∥∥

Lp(Rn)
�C‖ f‖Lp(Rn), |1/p−1/2|< 1/γ̃.

(3.20)
On the other hand, by the same argument as in getting (3.15), we have

‖Ji,t,s f‖L2(Rn) � C(s,ρ ,ϕ)Bi‖ f‖L2(Rn), (3.21)

where Bi is as in (3.16). By interpolating between (3.20) and (3.21), for fixed 2 < p <
2γ̃(β +1)/((γ̃ −2)β +2γ̃) , we can choose q∈ (1, p′) and γp ∈ ((γ̃ +2)/(2(β +1)),1)
such that qγpβ/γ̃ > 1 and

‖Ji,t,s f‖Lp(Rn) �C(s,ρ ,ϕ)1−γpB
γp
i ‖ f‖Lp(Rn), for 2 < p < 2γ̃(β +1)/((γ̃−2)β +2γ̃).

Combining this with (3.18) yields that

‖Mh,Ω,Φ,ρ ,s( f )‖q
Lp(Rn) � C(s,ρ ,ϕ)

(
∑

i>−2

B
−isγpq
ϕ + ∑

i�−2

|i|−qγpβ/γ̃
)
‖ f‖q

Lp(Rn)

� C(s,ρ ,ϕ)‖ f‖q
Lp(Rn)

for 2 < p < 2γ̃(β + 1)/((γ̃ − 2)β + 2γ̃) . This together with (3.17) implies (3.8) and
completes the proof of Theorem 1. �
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4. Additional results

As applications of our main results, we shall obtain the Lp bounds for the corre-
sponding parametric Marcinkiewicz integral operators M ∗

h,Ω,Φ,λ ,ρ and Mh,Ω,Φ,S,ρ re-
lated to the Littlewood-Paley g∗λ -function and the area integral S , respectively. In what
follows, we set γ̃ = max{2,γ ′} . Let Fh,Ω,Φ,ρ( f ) be as in (1.7), we define the operators
M ∗

h,Ω,Φ,λ ,ρ and Mh,Ω,Φ,S,ρ by

M ∗
h,Ω,Φ,λ ,ρ( f )(x) :=

(∫∫
Rn+1

+

( t
t + |x− y|

)nλ |Fh,Ω,Φ,ρ( f )(y,t)|2 dydt
tn+1

)1/2
,

where λ > 0 and Rn+1
+ = Rn× (0,∞) ;

Mh,Ω,Φ,S,ρ( f )(x) :=
(∫∫

Γ(x)
|Fh,Ω,Φ,ρ( f )(y, t)|2 dydt

tn+1

)1/2
,

where Γ(x) = {(y, t) ∈ Rn+1
+ : |x− y|< t} .

THEOREM 5. Let Φ, h, Ω be as in Theorem 1 . Then for 2 � p < 2γ̃(β +1)/((γ̃−
2)β + 2γ̃) , there exists constants C(ρ ,ϕ) which are independent of the coefficients of
Pj for 1 � j � n such that

‖M ∗
h,Ω,Φ,λ ,ρ( f )‖Lp(Rn) � C(ρ ,ϕ)‖ f‖Lp(Rn); (4.1)

‖Mh,Ω,Φ,S,ρ( f )‖Lp(Rn) � C(ρ ,ϕ)‖ f‖Lp(Rn). (4.2)

The proof of Theorem 5 is based on the following lemma.

LEMMA 7. Let λ > 1 . Then there exists a constant C(λ ,n) such that for any
nonnegative locally integrable function g on Rn ,∫

Rn
(M ∗

h,Ω,Φ,λ ,ρ( f )(x))2g(x)dx � C(λ ,n)
∫

Rn
(Mh,Ω,Φ,ρ( f )(x))2M(g)(x)dx,

where M is the usual Hardy-Littlewood maximal operator on Rn .

Proof. By the definition of M ∗
h,Ω,Φ,λ ,ρ , we have

∫
Rn

(M ∗
h,Ω,Φ,λ ,ρ( f )(x))2g(x)dx

=
∫

Rn

∫∫
Rn+1

+

( t
t + |x− y|

)nλ |Fh,Ω,Φ,ρ( f )(y,t)|2 dydt
tn+1 g(x)dx

�
∫

Rn

∫ ∞

0
|Fh,Ω,Φ,ρ( f )(y,t)|2

(
sup
t>0

1
tn

∫
Rn

( t
t + |x− y|

)nλ
g(x)dx

)dt
t

dy

� C(λ ,n)
∫

Rn
(Mh,Ω,Φ,ρ( f )(y))2M(g)(y)dy

for λ > 1. This proves Lemma 7. �
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Proof. Now we prove Theorem 5. First we prove (4.1). For 2 � p < 2γ̃(β +
1)/((γ̃ −2)β +2γ̃) , by the duality we have

‖M ∗
h,Ω,Φ,λ ,ρ( f )‖2

Lp(Rn) = sup
‖g‖Lq(Rn)�1

∫
Rn

(M ∗
h,Ω,Φ,λ ,ρ( f )(x))2g(x)dx,

where q = (p/2)′ and the supremum is taken over all g satisfying ‖g‖Lq(Rn) � 1. By
the Lp bounds of M , Hölder’s inequality, Lemma 7 and Theorem 1, we get

‖M ∗
h,Ω,Φ,λ ,ρ( f )‖2

Lp(Rn) � C(λ ,n) sup
‖g‖Lq(Rn)�1

∫
Rn(M ρ

h,Ω,Φ( f )(x))2M(g)(x)dx

� C(λ ,n)‖Mh,Ω,Φ,ρ( f )‖2
Lp(Rn)

� C(λ ,n,ρ ,ϕ)‖ f‖2
Lp(Rn), 2 � p < 2γ̃(β +1)/((γ̃ −2)β +2γ̃).

Thus (4.1) holds. On the other hand, it is easy to check that

Mh,Ω,Φ,S,ρ( f )(x) � 2nλ/2M ∗
h,Ω,Φ,λ ,ρ( f )(x),

which combining with (4.1) implies (4.2). Theorem 5 is proved. �
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