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BOUNDEDNESS FOR RIESZ–TYPE POTENTIAL OPERATORS

ON HERZ–MORREY SPACES WITH VARIABLE EXPONENT

JIANGLONG WU

(Communicated by I. Perić)

Abstract. In this paper, the Riesz-type potential operator of variable order β(x) is shown to

be bounded from the Herz-Morrey spaces MK̇α,λ
p1 ,q1 (·)(R

n) with variable exponent q1 (x) into the

weighted space MK̇α,λ
p2 ,q2 (·)(R

n,ω) , where ω = (1+ |x|)−γ(x) with some γ(x) > 0 and 1/q1 (x)−
1/q2 (x) = β(x)/n when q1 (x) is not necessarily constant at infinity. It is assumed that the
exponent q1 (x) satisfies the logarithmic continuity condition both locally and at infinity and
1 < q1(∞) � q1(x) � (q1)+ < ∞ (x ∈ R

n) .

1. Introduction

Last decade, we witness a strong rise of interest to the study of various mathemati-
cal problems in the so-called spaces with non-standard growth. This expression mainly
relates to the generalized Lebesgue spaces Lp(·)(Ω) (Ω ⊂ R

n) with variable order p(x)
(the generalized Lebesgue spaces with variable exponent), and to the corresponding
generalized Sobolev spaces Wm,p(·) .

Function spaces with variable exponent are being watched with keen interest not
in real analysis but also in partial differential equations and in applied mathematics
because they are applicable to the modeling for electrorheological fluids, mechanics of
the continuum medium and image restoration. In some problems of mechanics, there
arise variational problems with Lagrangians more complicated than is usually assumed
in variational calculus, for example, of the form |ξ |β (x) when the character of non-
linearity varies from point to point (Lagrangians of the plasticity theory, Lagrangians
of the mechanics of the so-called rheological fluids and others).

The theory of function spaces with variable exponent has rapidly made progress in
the past twenty years since some elementary properties were established by Kováčik-
Rákosnı́k [1]. One of the main problems on the theory is the boundedness of the Hardy-
Littlewood maximal operator on variable Lebesgue spaces. By virtue of the fine works
[2–13], some important conditions on variable exponent, for example, the log-Hölder
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conditions and the Muckenhoupt type condition, have been obtained (for more details
see [5, 6] et al).

In 2012, Almeida and Drihem [14] discuss the boundedness of a wide class of
sublinear operators on Herz spaces Kα(·),p

q(·) (Rn) and K̇α(·),p
q(·) (Rn) with variable exponent

α(·) and q(·) . Meanwhile, they also established Hardy-Littlewood-Sobolev theorems
for fractional integrals on variable Herz spaces. In 2013, Samko [15, 16] introduce a
new Herz type function spaces with variable exponent, where all the three parameters
are variable, and proved the boundedness of some sublinear operators. In [17], the
boundedness of operators are established in variable exponent Morrey spaces (for more
results see [18, 19, 20, 21] et al).

In this paper, the author will investigate mapping properties of the operator Iβ (·)
within the framework of the Herz-Morrey spaces MK̇α(·),λ

p,q(·) (Rn) with variable exponent

q(·) but fixed α ∈R and p∈ (0,∞) , where the Riesz-type potential operator of variable
order

Iβ (·)( f )(x) =
∫

Ω

f (y)
|x− y|n−β (x) dy, x ∈ Ω ⊂ R

n, 0 < β (x) < n.

2. Preliminaries

In this section, we define some function spaces with variable exponent, and give
basic properties and useful lemmas. Throughout this paper we will use the following
notation:

NOTATION

• Denote by |S| the Lebesgue measure and by χS the characteristic function for a
measurable set S ⊂ R

n .

• fS denotes the mean value of f on measurable set S , namely

fS :=
1
|S|

∫
S

f (x)dx.

• B(x,r) is the ball cenetered at x and of radius r ; B0 = B(0,1) .

• C denotes a constant that is independent of the main parameters involved but
whose value may differ from line to line.

• For any exponent 1 < q(x) < ∞ , we denote by q′(x) its conjugate exponent,
namely, 1/q(x)+1/q′(x) = 1.

• For A ∼ D , we mean that there is a constant C > 0 such thatC−1D � A � CD .

2.1. Function spaces with variable exponent

Let Ω be a measurable set in R
n with |Ω| > 0. We first define Lebesgue spaces

with variable exponent.
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DEFINITION 2.1. Let q(·) : Ω → (1,∞) be a measurable function.

(I) The variable Lebesgue spaces Lq(·)(Ω) is defined by

Lq(·)(Ω) = { f is measurable function : Fq( f/η) < ∞ for some constant η > 0},

where Fq( f ) :=
∫

Ω | f (x)|q(x)dx .

(II) The space Lq(·)
loc (Ω) is defined by

Lq(·)
loc (Ω) = { f is measurable function : f ∈ Lq(·)(Ω0) for all compact subsets

Ω0 ⊂ Ω}.

(III) The weighted Lebesgue space Lq(·)
ω (Ω) is defined by as the set of all mea-

surable functions for which

‖ f‖
L

q(·)
ω (Ω)

= ‖ω1/q(·) f‖Lq(·)(Ω) < ∞.

The Lebesgue space Lq(·)(Ω) is a Banach space when equipped with the norm

‖ f‖Lq(·)(Ω) = inf
{

η > 0 : Fq( f/η) =
∫

Ω

( | f (x)|
η

)q(x)
dx � 1

}
. (2.1)

Next we define some classes of variable exponent functions. Given a function
f ∈ L1

loc(Ω) , the Hardy-Littlewood maximal operator M is defined by

M f (x) = sup
r>0

r−n
∫

B(x,r)∩Ω
| f (y)|dy (x ∈ Ω),

where B(x,r) = {y ∈ R
n : |x− y|< r} .

DEFINITION 2.2. Given a measurable function q(·) defined on Ω , we write

q− := ess inf
x∈Ω

q(x), q+ := esssup
x∈Ω

q(x).

(I) q′− = ess inf
x∈Ω

q′(x) = q+
q+−1 , q′+ = esssup

x∈Ω
q′(x) = q−

q−−1 .

(II) Denote by P0(Ω) the set of all measurable functions q(·) : Ω → (0,∞) such
that

0 < q− � q(x) � q+ < ∞, x ∈ Ω.

(III) Denote by P(Ω) the set of all measurable functions q(·) : Ω → (1,∞) such
that

1 < q− � q(x) � q+ < ∞, x ∈ Ω.
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(IV) The set B(Ω) = {q(·) ∈ P(Ω) : the maximal operator M is bounded on
Lq(·)(Ω)}. Lq(·)(Ω) .

(V) The set C log
0 (Ω) consists of all locally log-Hölder continuous functions

q(·) : Ω → (0,∞) satisfies the condition

|q(x)−q(y)|� −C
ln(|x− y|) , |x− y|� 1/2, x,y ∈ Ω. (2.2)

(VI) The set C log
∞ (Ω) consists of all log-Hölder decay continuous functions

q(·) : Ω → (0,∞) at infinity satisfies the condition

|q(x)−q(∞)|� C∞

ln(e+ |x|) , x ∈ Ω, (2.3)

where q(∞) = lim|x|→∞ q(x) .

(VII) Denote by C log(Ω) := C log
0 (Ω) ∩ C log

∞ (Ω) the set of all globally log-
Hölder continuous functions (i.e. locally log-Hölder continuous and satisfies the
log-Hölder decay condition.) q(·) : Ω → (0,∞) .

REMARK 1.

(i) The logarithmic condition (2.2) is usually called the locally log-Hölder conti-
nuity or the Dini-Lipschitz condition.

(ii) The C log
∞ (Ω) condition is equivalent to the uniform continuity condition

|q(x)−q(y)|� C
ln(e+ |x|) , |y| � |x|, x,y ∈ Ω. (2.4)

The C log
∞ (Ω) condition was originally defined in this form in [4].

Next we define the Herz-Morrey spaces with variable exponent. Let Bk = B(0,2k)
= {x ∈ R

n : |x| � 2k} , Ak = Bk \Bk−1 and χk = χAk
for k ∈ Z .

DEFINITION 2.3. Suppose that α ∈ R, 0 � λ < ∞, 0 < p < ∞ , q(·) ∈ P(Rn) .
The Herz-Morrey space with variable exponent MK̇α ,λ

p,q(·)(R
n) is definded by

MK̇α ,λ
p,q(·)(R

n) =
{

f ∈ Lq(·)
loc (Rn\{0}) : ‖ f‖

MK̇α,λ
p,q(·)(Rn)

< ∞
}
,

where

‖ f‖
MK̇α,λ

p,q(·)(R
n)

= sup
k0∈Z

2−k0λ
( k0

∑
k=−∞

2kα p‖ f χ
k
‖p

L
q(·) (Rn)

) 1
p
.
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Compare the variable Herz-Morrey space MK̇α ,λ
p,q(·)(R

n) with the variable Herz

space K̇α ,p
q(·) (R

n) , where

K̇α ,p
q(·) (R

n) =
{

f ∈ Lq(·)
loc (Rn\{0}) :

∞

∑
k=−∞

2kα p‖ f χk‖p
Lq(·)(Rn)

< ∞
}
,

Obviously, MK̇α ,0
p,q(·)(R

n) = K̇α ,p
q(·) (R

n) .
we can see that our result below generalize the result in the setting of the Herz-

Morrey space with variable exponent, which proved by Izuki in [22]. And when λ = 0,
our main result is also valid.

In this paper, we denote by q(x) bounded exponents on Ω . Thus, q(x) is not
allowed to tend to infinity. Similarly, when dealing with the conjugate space and con-
sidering singular and maximal operators, we have to exclude the tendency of q(x) to 1.
Therefore, in the sequel, we assume that variable exponent belongs to P(Ω) .

2.2. Recent results for Riesz-type potential Iβ (·)

In this part we recall some recent results for Riesz-type potential operator Iβ (·) .
The order β (x) of the potential is not assumed to be continuous. We assume that it is a
measurable function on Ω satisfying the following assumptions

β0 := ess inf
x∈Ω

β (x) > 0

esssup
x∈Ω

p(x)β (x) < n

⎫⎬
⎭ . (2.5)

The boundedness of the Riesz-type potential operator Iβ (·) from the space Lp(·)(Rn)
with the variable exponent p(x) into the space Lq(·)(Rn) with the limiting Sobolev ex-
ponent

1
q(x)

=
1

p(x)
− β (x)

n
(2.6)

was an open problem for a long time. It was solved in the case of bounded domains.
First, in [23], in the case of bounded domains Ω , there was proved the following con-
ditional result.

THEOREM A. Let Ω be a bounded open set in R
n , p(·) ∈ C log(Ω)∩P(Ω)

and β (x) satisfy assumptions (2.5). Define q(x) by (2.6). If the maximal operator is
bounded in the space Lp(·)(Ω) , then the Sobolev theorem

‖Iβ (·)( f )‖Lq(·)(Ω) � C‖ f‖Lp(·)(Ω)

is valid.

After Diening [8] proved the boundedness of the maximal operator over bounded
domains, the validity of the Sobolev theorem for bounded domains became an uncon-
ditional statement.
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In 2008, in the case of bounded sets, Almeida, Hasanov and Samko [17] proved
the boundedness of the maximal operator in variable exponent Morrey spaces, and in
2009, Hästö [24] used his new ”local-to-global” approach to extend the result of [17]
about the maximal operator to the whole space R

n .
In 2010, in the case of bounded sets, Guliyev, Hasanov and Samko [25] considered

the boundedness of the Riesz-type potential operator Iβ (·) on the generalized variable
exponent Morrey type spaces.

For the whole space R
n , the Sobolev theorem was proved by Diening [26], under

the condition that the exponent p(x) is constant outside some ball of large radius.

THEOREM B. Let Ω = R
n, 0 < β = const < n, and let p(·)∈C log

0 (Rn)∩P(Rn)
be constant outside some large ball B(0,r) . Define q(x) by (2.6). If esssupx∈Rn p(x) <
n/β , then

‖Iβ ( f )‖Lq(·)(Rn) � C‖ f‖Lp(·)(Rn).

Another version of the Sobolev theorem for the space R
n was proved in [27] for

the exponents p(x) not necessarily constant in a neigbourhood of infinity, but with
some “extra” power weight fixed to infinity and under the assumption that p(x) takes
its minimal value at infinity.

THEOREM C. Let Ω = R
n , β (x) meet conditions (2.5) and

esssup
x∈Rn

p(∞)β (x) < n. (2.7)

Suppose that p(·) ∈ C log(Rn)∩P(Rn) and

1 < p(∞) � p(x) � p+ < ∞. (2.8)

Then the following weighted Sobolev-type estimate is valid for the operator Iβ (·) :∥∥∥(1+ |x|)−γ(x)Iβ (·)( f )
∥∥∥

Lq(·)(Rn)
� C‖ f‖Lp(·)(Rn),

where q(x) is defined by (2.6), and

γ(x) = C∞β (x)
(
1− β (x)

n

)
� n

4
C∞, (2.9)

C∞ being the Dini-Lipschitz constant from (2.3) which q(·) is replaced by p(·) .
In 2013, in the case of unbounded sets, Guliyev and Samko [28] considered the

boundedness of the Riesz-type potential operator Iβ (·) on the generalized variable ex-
ponent Morrey type spaces.

REMARK 2. Under the assumptions of Theorem 2.2, similar conclusion of Theo-
rem 2.2 is also valid to the fractional maximal operator ( see [27])

Mβ (·)( f )(x) = sup
r>0

1

|B(x,r)|n−β (x)

∫
B(x,r)

| f (y)|dy.
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2.3. Auxiliary propositions and lemmas

In this part we state some auxiliary propositions and lemmas which will be needed
for proving our main theorems. And we only describe partial results we need.

PROPOSITION 2.1. Let q(·) ∈ P(Rn) .

(I) If q(·) ∈ C log(Rn) , then we have q(·) ∈ B(Rn) .

(II) q(·) ∈ B(Rn) if and only if q′(·) ∈ B(Rn) .

The first part in Proposition 2.1 is independently due to Cruz-Uribe, Fiorenza and
Neugebauer [4] and to Nekvinda [12] respectively. The second of Proposition 2.1 be-
longs to Diening (see Theorem 8.1 in [7] or Theorem 1.2 in [3]).

REMARK 3. Since

|q′(x)−q′(y)| � |q(x)−q(y)|
(q−−1)2 ,

it follows at once that if q(·)∈C log(Rn) , then so does q′(·)—i.e., if the condition hold,
then M is bounded on Lq(·)(Rn) and Lq′(·)(Rn) . Furthermore, Diening has proved
general results on Musielak-Orlicz spaces.

The next lemma is known as the generalized Hölder’s inequality on Lebesgue
spaces with variable exponent, and the proof can be found in [1, 5, 6].

LEMMA 2.1. (generalized Hölder’s inequality) Suppose that q(·)∈P(Rn) , then
for any f ∈ Lq(·)(Rn) and any g ∈ Lq′(·)(Rn) , we have

∫
Rn

| f (x)g(x)|dx � Cq‖ f‖Lq(·)(Rn)‖g‖Lq′(·)(Rn), (2.10)

where Cq = 1+1/q−−1/q+ .

The following lemma can be found in [22]. Here we only state the parts what we
need.

LEMMA 2.2.

(I) Let q(·) ∈ B(Rn) . Then there exist positive constants δ ∈ (0,1) and C > 0
such that

‖χS‖Lq(·)(Rn)

‖χB‖Lq(·)(Rn)
� C

( |S|
|B|

)δ

for all balls B in R
n and all measurable subsets S ⊂ B.
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(II) Let q(·) ∈ B(Rn) . Then there exists a positive constant C > 0 such that

C−1 � 1
|B| ‖χB‖Lq(·)(Rn)‖χB‖Lq′(·)(Rn) � C (2.11)

for all balls B in R
n .

REMARK 4.
(i) If q1(·), q2(·) ∈ C log(Rn)∩P(Rn) , then we see that q′

1
(·), q2(·) ∈ B(Rn) .

Hence we can take positive constants 0 < δ1 < 1/(q′
1
)+, 0 < δ2 < 1/(q2)+ such that

‖χS‖
Lq′1(·)(Rn)

‖χB‖
Lq′1(·)(Rn)

� C

( |S|
|B|

)δ1

,
‖χS‖Lq2(·)(Rn)

‖χB‖Lq2(·)(Rn)
� C

( |S|
|B|

)δ2

(2.12)

hold for all balls B in R
n and all measurable subsets S ⊂ B ( see [22, 29]).

(ii) On the other hand, Kopaliani [10] has proved the conclusion: If the exponent
q(·) ∈ P(Rn) equals to a constant outside some large ball, then q(·) ∈ B(Rn) if and
only if q(·) satisfies the Muckenhoupt type condition

sup
Q:cube

1
|Q| ‖χQ‖Lq(·)(Rn)‖χQ‖Lq′(·)(Rn) < ∞.

3. Main result and its proof

Our main result can be stated as follows.

THEOREM 3.1. Suppose that Ω = R
n, q1(·) ∈ C log(Rn) ∩ P(Rn) , and β (x)

meet conditions (2.5) and (2.7) which q1(·) instead of p(·) . Define the variable ex-
ponent q2(·) by

1
q2(x)

=
1

q1(x)
− β (x)

n
.

Let q1(·), q′
2
(·) satisfies condition (2.8), and 0 < p1 � p2 < ∞, λ > 0, λ −nδ2 < α <

λ + nδ1 , where δ1 ∈ (0,1/(q′1)+) and δ2 ∈ (0,1/(q2)+) are the constants appearing
in (2.12). Then∥∥∥(1+ |x|)−γ(x)Iβ (·)( f )

∥∥∥
MK̇α,λ

p2 ,q2 (·)(R
n)

� C‖ f‖
MK̇α,λ

p1 ,q1 (·)(Rn)
,

where γ(x) is defined as in (2.9), and the Dini-Lipschitz constant is max(C∞,2C∞/(p−−
1)2) when condition (2.3)’s q(·) is replaced by q1(·) .

COROLLARY 3.1. Under the assumptions of Theorem 3.1, in the Herz-Morrey
space with variable exponent, the estimate of Sobolev exponent

1
q2(x)

=
1

q1(x)
− β (x)

n



RIESZ-TYPE POTENTIAL OPERATORS 479

is also valid for the fractional maximal operator

Mβ (·)( f )(x) = sup
r>0

1

|B(x,r)|n−β (x)

∫
B(x,r)

| f (y)|dy,

that is ∥∥∥(1+ |x|)−γ(x)Mβ (·)( f )
∥∥∥

MK̇α,λ
p2 ,q2 (·)(R

n)
� C‖ f‖

MK̇α,λ
p1 ,q1 (·)(R

n)
.

Proof of the theorem 3.1. For any f ∈ MK̇α ,λ
p,q(·)(R

n) , if we denote f j := f · χ j =
f · χAj for each j ∈ Z , then we can write

f (x) =
∞

∑
j=−∞

f (x) · χ j(x) =
∞

∑
j=−∞

f j(x).

Because of 0 < p1/p2 � 1, we apply inequality

( ∞

∑
i=−∞

|ai|
)p1/p2

�
∞

∑
i=−∞

|ai|p1/p2 , (3.1)

and obtain∥∥∥(1+ |x|)−γ(x)Iβ (·)( f )
∥∥∥

MK̇α,λ
p2 ,q2 (·)(R

n)

= sup
k0∈Z

2−k0λ p1

( k0

∑
k=−∞

2kα p2

∥∥∥(1+ |x|)−γ(x)Iβ (·)( f ) · χk

∥∥∥p2

Lq2 (·)(Rn)

)p1/p2

� C sup
k0∈Z

2−k0λ p1

( k0

∑
k=−∞

2kα p1

∥∥∥(1+ |x|)−γ(x)Iβ (·)( f ) · χk

∥∥∥p1

Lq2 (·)(Rn)

)

� C sup
k0∈Z

2−k0λ p1

( k0

∑
k=−∞

2kα p1

( k−2

∑
j=−∞

∥∥∥(1+ |x|)−γ(x)Iβ (·)( f j) · χ
k

∥∥∥
Lq2 (·)(Rn)

)p1

)

+C sup
k0∈Z

2−k0λ p1

( k0

∑
k=−∞

2kα p1

( k+1

∑
j=k−1

∥∥∥(1+ |x|)−γ(x)Iβ (·)( f j) · χk

∥∥∥
Lq2 (·)(Rn)

)p1

)

+C sup
k0∈Z

2−k0λ p1

( k0

∑
k=−∞

2kα p1

( ∞

∑
j=k+2

∥∥∥(1+ |x|)−γ(x)Iβ (·)( f j) · χk

∥∥∥
Lq2 (·)(Rn)

)p1

)

≡: C(E1 +E2 +E3).

First we estimate E2 . Using the Theorem 2.2, we have

E2 = sup
k0∈Z

2−k0λ p1

( k0

∑
k=−∞

2kα p1

( k+1

∑
j=k−1

∥∥∥(1+ |x|)−γ(x)Iβ (·)( f j) · χ
k

∥∥∥
Lq2 (·)(Rn)

)p1

)

� C sup
k0∈Z

2−k0λ p1

( k0

∑
k=−∞

2kα p1

( k+1

∑
j=k−1

‖ f j · χ
k
‖

Lq1 (·)(Rn)

)p1

)
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� C sup
k0∈Z

2−k0λ p1

( k0

∑
k=−∞

2kα p1‖ f · χ
k
‖p1

Lq1 (·)(Rn)

)

� C‖ f‖p1

MK̇α,λ
p1 ,q1 (·)(R

n)
.

For E1 . Note that when x∈ Ak, j � k−2, and y∈ Aj , then |x−y|� |x|,2|y|� |x| .
Therefore, using the generalized Hölder’s inequality, we have

|Iβ (·)( f j)(x) · χ
k
(x)| �

∫
Aj

| f (y)|
|x− y|n−β (x)dy · χ

k
(x)

� C2
−kn |x|β (x)

∫
Aj

| f j(y)|dy · χ
k
(x)

� C2
−kn‖ f j‖

L
q1 (·)

(Rn)
‖χ j‖

L
q′
1
(·)

(Rn)
· |x|β (x)χ

k
(x).

(3.2)

Notice that

Iβ (·)(χBk
)(x) � Iβ (·)(χBk

)(x) · χBk
(x) =

∫
Bk

1

|x− y|n−β (x)dy · χBk
(x)

� C|x|β (x) · χBk
(x)

� C|x|β (x) · χk(x).

(3.3)

Using Theorem 2.2, Lemma 2.2, (2.12), (3.2) and (3.3), we have

∥∥∥(1+ |x|)−γ(x)Iβ (·)( f j) · χ
k
(·)

∥∥∥
L

q2 (·)
(Rn)

� C2
−kn‖ f j‖

L
q1 (·)

(Rn)
‖χ j‖L

q′
1
(·)

(Rn)

∥∥∥(1+ |x|)−γ(x)| · |β (x) · χ
k
(·)

∥∥∥
L

q2 (·)
(Rn)

� C2
−kn‖ f j‖

L
q1 (·)

(Rn)
‖χ j‖

L
q′
1
(·)

(Rn)

∥∥∥(1+ |x|)−γ(x)Iβ (·)(χBk
)
∥∥∥

L
q2 (·)

(Rn)

� C2
−kn‖ f j‖

L
q1 (·)

(Rn)
‖χ j‖

L
q′
1
(·)

(Rn)
‖χBk

‖
L

q1 (·)
(Rn)

� C2
−kn‖χBk

‖
L

q1 (·)
(Rn)

‖ f j‖
L

q1 (·)
(Rn)

‖χBj
‖

L
q′
1
(·)

(Rn)

� C‖ f j‖
L

q1 (·)
(Rn)

‖χBj
‖

L
q′
1
(·)

(Rn)

‖χBk
‖

L
q′
1
(·)

(Rn)

� C2( j−k)nδ1‖ f j‖
L

q1 (·)
(Rn)

.

(3.4)
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On the other hand, note the following fact

‖ f j‖
L

q1 (·)
(Rn)

= 2− jα
(
2 jα p1‖ f j‖p1

L
q1 (·)

(Rn)

)1/p1

� 2− jα
( j

∑
i=−∞

2iα p1‖ fi‖p1

L
q1 (·)

(Rn)

)1/p1

= 2 j(λ−α)
(

2− jλ
( j

∑
i=−∞

2iα p1‖ fi‖p1

L
q1 (·)

(Rn)

)1/p1

)

� C2 j(λ−α)‖ f‖
MK̇α,λ

p1 ,q1 (·)(R
n)

.

(3.5)

Thus, combining (3.4) and (3.5), and using α < λ +nδ1 , it follows that

E1 = sup
k0∈Z

2−k0λ p1

( k0

∑
k=−∞

2kα p1

( k−2

∑
j=−∞

∥∥∥(1+ |x|)−γ(x)Iβ (·)( f j) · χk

∥∥∥
Lq2 (·)(Rn)

)p1

)

� C sup
k0∈Z

2−k0λ p1

( k0

∑
k=−∞

2kα p1

( k−2

∑
j=−∞

2( j−k)nδ1‖ f j‖
L

q1 (·)
(Rn)

)p1

)

� C‖ f‖p1

MK̇α,λ
p1 ,q1 (·)(Rn)

sup
k0∈Z

2−k0λ p1

( k0

∑
k=−∞

2kα p1

( k−2

∑
j=−∞

2( j−k)nδ12 j(λ−α)
)p1

)

� C‖ f‖p1

MK̇α,λ
p1 ,q1 (·)(R

n)
sup
k0∈Z

2−k0λ p1

( k0

∑
k=−∞

2kλ p1

( k−2

∑
j=−∞

2( j−k)(nδ1+λ−α)
)p1

)

� C‖ f‖p1

MK̇α,λ
p1 ,q1 (·)(Rn)

sup
k0∈Z

2−k0λ p1

( k0

∑
k=−∞

2kλ p1

)

� C‖ f‖p1

MK̇α,λ
p1 ,q1 (·)(R

n)
.

Now, let us turn to estimate for E3 . Note that when x ∈ Ak, j � k+2, and y ∈ Aj ,
then |x− y| � |y|,2|x| � |y| . Therefore, using the generalized Hölder’s inequality, we
have

∣∣∣(1+ |x|)−γ(x)Iβ (·)( f j)(x) · χk(x)
∣∣∣ � (1+ |x|)−γ(x)

∫
Aj

| f (y)|
|x− y|n−β (x) dy · χk(x)

� C
∫

Aj

| f (y)|(1+ |x|)−γ(x)|y|β (x)−ndy · χk(x)

� C2
− jn‖ f j‖

L
q1 (·)

(Rn)

∥∥∥(1+ |x|)−γ(x)| · |β (x)χ j (·)
∥∥∥

L
q′
1

(·)
(Rn)

· χ
k
(x).

(3.6)
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Similar to (3.3), we have

Iβ (·)(χBj
)(x) � Iβ (·)(χBj

)(x) · χBj
(x) =

∫
Bj

1

|x− y|n−β (x) dy · χBj
(x)

� C|x|β (x) · χBj
(x)

� C|x|β (x) · χ j(x).

(3.7)

Using Theorem 2.2, Lemma 2.2, (2.12), (3.6) and (3.7), we obtain∥∥∥(1+ |x|)−γ(x)Iβ (·)( f j) · χk

∥∥∥
L

q2 (·)
(Rn)

� C2
− jn‖ f j‖

L
q1 (·)

(Rn)
‖χk‖L

q2 (·)
(Rn)

∥∥∥(1+ |x|)−γ(x)| · |β (x)χ j (·)
∥∥∥

L
q′
1
(·)

(Rn)

� C2
− jn‖ f j‖

L
q1 (·)

(Rn)
‖χk‖L

q2 (·)
(Rn)

∥∥∥(1+ |x|)−γ(x)Iβ (·)(χBj
)
∥∥∥

L
q′
1

(·)
(Rn)

� C2
− jn‖ f j‖

L
q1 (·)

(Rn)
‖χk‖L

q2 (·)
(Rn)

‖χBj
‖

L
q′
2
(·)

(Rn)

� C2
− jn‖χBj

‖
L

q′
2
(·)

(Rn)
‖ f j‖

L
q1 (·)

(Rn)
‖χBk

‖
L

q2 (·)
(Rn)

� C‖ f j‖
L

q1 (·)
(Rn)

‖χBk
‖

L
q2 (·)

(Rn)

‖χBj
‖

L
q2 (·)

(Rn)

� C2
(k− j)nδ2‖ f j‖

L
q1 (·)

(Rn)
.

(3.8)

Therefore, combining (3.5) and (3.8), and using α > λ −nδ2 , it follows that

E3 = sup
k0∈Z

2−k0λ p1

( k0

∑
k=−∞

2kα p1

( ∞

∑
j=k+2

∥∥∥(1+ |x|)−γ(x)Iβ (·)( f j) · χ
k

∥∥∥
Lq2 (·)(Rn)

)p1

)

� C sup
k0∈Z

2−k0λ p1

( k0

∑
k=−∞

2kα p1

( ∞

∑
j=k+2

2
(k− j)nδ2‖ f j‖

L
q1 (·)

(Rn)

)p1

)

� C‖ f‖p1

MK̇α,λ
p1 ,q1 (·)(R

n)
sup
k0∈Z

2−k0λ p1

( k0

∑
k=−∞

2kα p1

( ∞

∑
j=k+2

2
(k− j)nδ2 2 j(λ−α)

)p1

)

� C‖ f‖p1

MK̇α,λ
p1 ,q1 (·)(R

n)
sup
k0∈Z

2−k0λ p1

( k0

∑
k=−∞

2kλ p1

( ∞

∑
j=k+2

2
(k− j)(α+nδ2−λ)

)p1

)

� C‖ f‖p1

MK̇α,λ
p1 ,q1 (·)(R

n)
sup
k0∈Z

2−k0λ p1

( k0

∑
k=−∞

2kλ p1

)

� C‖ f‖p1

MK̇α,λ
p1 ,q1 (·)(Rn)

.

Combining the estimates for E1 , E2 and E3 yields∥∥∥(1+ |x|)−γ(x)Iβ (·)( f )
∥∥∥

MK̇α,λ
p2 ,q2 (·)(Rn)

� C‖ f‖
MK̇α,λ

p1 ,q1 (·)(R
n)
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and then completes the proof of Theorem 3.1.

Proof of the corollary 3.1. The statement of the corollary follows from the point-
wise estimate

Mβ (·)( f )(x) � CIβ (·)(| f |)(x), (3.9)

where C does not depend on f and x . To prove (3.9), we observe that for any x ∈ R
n ,

there exists an r = rx such that

Mβ (·)( f )(x) � 2

|B(x,rx)|n−β (x)

∫
B(x,rx)

| f (y)|dy.

and on the other hand

Iβ (·)(| f |)(x) �
∫

B(x,rx)

| f (y)|
|x− y|n−β (x) dy � C

|B(x,rx)|n−β (x)

∫
B(x,rx)

| f (y)|dy. �
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