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PROPERTIES OF MODIFIED BESSEL FUNCTIONS AND

COMPLETELY MONOTONIC DEGREES OF DIFFERENCES

BETWEEN EXPONENTIAL AND TRIGAMMA FUNCTIONS
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(Communicated by N. Elezović)

Abstract. In the paper, the author establishes inequalities, monotonicity, convexity, and uni-
modality for functions concerning the modified Bessel functions of the first kind and compute
the completely monotonic degrees of differences between the exponential and trigamma func-
tions.

1. Introduction

For smoothness and consecution, we split this section into six subsections.

1.1. An inequality and complete monotonicity

In [7, Lemma 2], the inequality

ψ ′(t) < e1/t −1 (1.1)

on (0,∞) was obtained and applied, where ψ(t) stands for the digamma function which
may be defined by the logarithmic derivative

ψ(t) = [lnΓ(t)]′ =
Γ′(t)
Γ(t)

and Γ(t) is the classical Euler gamma function which may be defined for ℜz > 0 by

Γ(z) =
∫ ∞

0
tz−1e−t d t.

The derivatives ψ ′(z) and ψ ′′(z) are respectively called the tri- and tetra-gamma func-
tions.
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In [15, Theorem 3.1], [16, Theorem 1.1], and [17], among other things, the in-
equality (1.1) was generalized to a complete monotonicity respectively by different and
elementary approaches, which reads that the difference

h(t) = e1/t −ψ ′(t) (1.2)

is completely monotonic, that is, (−1)k−1h(k−1)(t) � 0 for k ∈ N , on (0,∞) and

lim
t→∞

h(t) = 1. (1.3)

1.2. Integral representations

In [16, Theorem 1.2], among other things, it was established that

e1/z−
k

∑
m=0

1
m!

1
zm =

1
zk+1

[
1

(k+1)!
+

∫ ∞

0

Ik+2
(
2
√

t
)

t(k+2)/2
e−zt d t

]
(1.4)

and

e1/z−
k

∑
m=0

1
m!

1
zm =

1
k!(k+1)!

∫ ∞

0
1F2(1;k+1,k+2;t)tke−zt dt (1.5)

for ℜz > 0 and k ∈ {0}∪N , where the modified Bessel function of the first kind

Iν(z) =
∞

∑
k=0

1
k!Γ(ν + k+1)

(
z
2

)2k+ν
(1.6)

for ν ∈ R and z ∈ C , the hypergeometric series

pFq(a1, . . . ,ap;b1, . . . ,bq;x) =
∞

∑
n=0

(a1)n · · · (ap)n

(b1)n · · ·(bq)n

xn

n!
(1.7)

for bi /∈ {0,−1,−2, . . .} , and the shifted factorial (a)0 = 1 and

(a)n = a(a+1) · · ·(a+n−1) (1.8)

for n > 0 and any real or complex number a . This gives an answer to an open problem
posed in [21]. See also [20, Chapter 6].

By virtue of (1.4) or (1.5) for k = 0 and the well known formula

ψ(n)(z) = (−1)n+1
∫ ∞

0

un

1− e−u e−zu du (1.9)

for n = 1, see [1, p. 260, 6.4.1], we can easily derive that

h(z) = 1+
∫ ∞

0

[
I1

(
2
√

u
)

√
u

− u
1− e−u

]
e−zu du (1.10)

for ℜz > 0. See the equation (4.3) in [16].
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1.3. Lower bounds for a modified Bessel function of the first kind

By the complete monotonicity obtained in [15, Theorem 3.1] and [16, Theo-
rem 1.1] for h(t) , by the integral representation (1.10), and by Lemma 2.6 below, it
was deduced in [15, Theorem 7.1] that

αI1(x) >
(x/2)3

1− e−(x/2)2
and I1(x) �

1
β
(

x
2

)3

1− exp
[− 1

β
(

x
2

)2] (1.11)

on (0,∞) if and only if α � 1 and β � 1. More strongly, it was discovered in [15,
Theorem 5.1] that, when β � 1, the function

Fβ (u) =
u

1− e−u

√
βu

I1
(
2
√

βu
) (1.12)

is decreasing on (0,∞) ; when 0 < β < 1, it is unimodal (that is, it has a unique maxi-
mum) and 1

Fβ (u) is convex on (0,∞) .

1.4. Necessary and sufficient conditions

For α,β > 0, let
hα ,β (t) = αeβ/t −ψ ′(t) (1.13)

on (0,∞) . In [15], among other things, the following necessary and sufficient condi-
tions for the function hα ,β (t) to be completely monotonic on (0,∞) were obtained.

THEOREM 1.1. ([15, Theorem 4.1]) The function h1,β (t) is completely monotonic
on (0,∞) if and only if β � 1 .

If β � 1 and αβ � 1 , the function hα ,β (t) is completely monotonic on (0,∞) .
A necessary condition for the function hα ,β (t) to be completely monotonic on

(0,∞) is αβ � 1 .
If 0 < β < 1 , the condition

αβ � max
u∈(0,∞)

Fβ (u) > 1 (1.14)

is necessary and sufficient for hα ,β (t) to be completely monotonic on (0,∞) , where

lim
u→0+

Fβ (u) = 1 and lim
u→∞

Fβ (u) = 0 (1.15)

for all β > 0 .

1.5. Completely monotonic degree

The notion “completely monotonic degree” was created in [6, Definition 1], which
may be regarded as a slight but essential modification of [9, Definition 1.5]. This defi-
nition may be further modified as follows.
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DEFINITION 1.1. Let f (x) be a completely monotonic function on (0,∞) and de-
note f (∞) = limx→∞ f (x) . If for some r ∈R the function xr[ f (x)− f (∞)] is completely
monotonic on (0,∞) but xr+ε [ f (x)− f (∞)] is not for any positive number ε > 0, then
we say that the number r is the completely monotonic degree of f (x) with respect to
x ∈ (0,∞) ; if for all r ∈ R each and every xr[ f (x)− f (∞)] is completely monotonic
on (0,∞) , then we say that the completely monotonic degree of f (x) with respect to
x ∈ (0,∞) is ∞ .

In [6, p. 9890], the notation degx
cm[ f (x)] was designed to denote the completely

monotonic degree r of f (x) with respect to x ∈ (0,∞) . We can redevelop the above
Definition 1.1 as follows. If f : (0,∞) → [0,∞) is a C∞ -function, then

degx
cm[ f (x)] = sup{r ∈ R | xr[ f (x)− f (∞)] is completely monotonic}. (1.16)

It is clear that the completely monotonic degree degx
cm[ f (x)] of any completely mono-

tonic function f (x) on (0,∞) is at leat 0 .
We claim that the completely monotonic degree degx

cm[ f (x)] equals ∞ if and only
if f (x) is nonnegative and identically constant. It is clear that degx

cm[0] = ∞ , as defined
in [6, p. 9891, (4)]. Conversely, if degx

cm[ f (x)] = ∞ , then xr[ f (x)− f (∞)] is always
completely monotonic on (0,∞) for any number r � 0. This means that

{xr[ f (x)− f (∞)]}′ = rxr−1[ f (x)− f (∞)]+ xr f ′(x)

= xr−1{r[ f (x)− f (∞)]+ x f ′(x)}
� 0,

that is,
r[ f (x)− f (∞)]+ x f ′(x) � 0 (1.17)

is valid on (0,∞) for all r � 0. A result on [5, p. 98] asserts that for a completely
monotonic function f on (0,∞) the strict inequality (−1)k−1 f (k−1)(t) > 0 for k ∈ N

holds unless f (x) is constant. This implies that, if f (x) is not identically constant, then
f (x)− f (∞) > 0 and f ′(x) < 0 on (0,∞) . Consequently, the inequality (1.17) may be
rearranged as

r < − x f ′(x)
f (x)− f (∞)

, x ∈ (0,∞).

This leads to a contradiction to the arbitrariness of r � 0. As a result, it holds that the
function f (x) is identically constant on (0,∞) .

1.6. Main results of this paper

Since the complete monotonicity of h(t) and the limit (1.3) have been verified
in [15, Theorem 3.1] and [16, Theorem 1.1], we naturally consider to compute the
completely monotonic degrees of the completely monotonic function

Hα ,β (t) = hα ,β (t)−α (1.18)

on (0,∞) .
Our main results in this paper are the following theorems in sequence.
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THEOREM 1.2. When 1 � k � 5 , the inequality

Ik
(
2
√

u
)

uk/2
�

(
u

1− e−u

)(k−1)

(1.19)

is valid on (0,∞) .
When β � 1 , the function

Gβ (u) =
βu

I2
(
2
√

βu
)(

u
1− e−u

)′
(1.20)

is decreasing on (0,∞); when 0 < β < 1 , it is unimodal and 1
Gβ (u) is convex on (0,∞) .

THEOREM 1.3. Let α,β > 0 .

1. If (α,β ) = (1,1) , then
degt

cm[H1,1(t)] = 4; (1.21)

2. if β > 1 , then
degt

cm

[
H1/β ,β (t)

]
= 2; (1.22)

3. if αβ > 1 and β � 1 , or if αβ > 1 , 0 < β < 1 , and

αβ 2 � max
u∈(0,∞)

{Gβ (u)},

then we have
degt

cm[Hα ,β (t)] = 1. (1.23)

2. Lemmas

We need the following lemmas.

LEMMA 2.1. ([4, Theorem 1 and Lemma 1]) Let

ck(n) =
(

n
k

)
(2n− k)!

n!
and Qn(x) =

n

∑
k=0

ck(n)xn−k. (2.1)

If m,n ∈ N , then the polynomial Q2n has no real root, the polynomial Q2n+1 has a
unique real root in (−∞,0) , and

Q2n(x)
Q2n(−x)

< e1/x < − Q2m+1(x)
Q2m+1(−x)

, x � 1
2(m+1)

. (2.2)

LEMMA 2.2. ([3] and [12, p. 227, 3.3.27]) Let P(x) = ∑n
k=0 akxk be a real poly-

nomial of degree n � 0 . Then the inequality

min{bk | 0 � k � n} � P(x) � max{bk | 0 � k � n} (2.3)

holds for 0 � x � 1 , where bk = ∑k
�=0 a�

(k
�)

(n
�)

for 0 � k � n.
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LEMMA 2.3. ([2]) Let ak and bk for k ∈ {0}∪N be real numbers and the power
series

A(x) =
∞

∑
k=0

akx
k and B(x) =

∞

∑
k=0

bkx
k (2.4)

be convergent on (−R,R) for some R > 0 . If bk > 0 and the ratio ak
bk

is (strictly)

increasing for k ∈ N , then the function A(x)
B(x) is also (strictly) increasing on (0,R) .

LEMMA 2.4. ([1, p. 377, 9.7.1]) When ν is fixed, |z| is large, and μ = 4ν2 ,

Iν(z) ∼ ez
√

2πz

{
1+

∞

∑
�=1

(−1)�

�!(8z)�
�

∏
j=1

[
μ − (2 j−1)2]}, |argz| < π

2
. (2.5)

LEMMA 2.5. ([1, p. 260, 6.4.11]) For |argz| < π ,

ψ(n)(z) = (−1)n−1
[
(n−1)!

zn +
n!

2zn+1 +
∞

∑
k=1

B2k
(2k+n−1)!
(2k)!z2k+n

]
, (2.6)

where Bn for n � 0 stand for Bernoulli numbers which may be generated by

x
ex −1

=
∞

∑
n=0

Bn

n!
xn = 1− x

2
+

∞

∑
j=1

B2 j
x2 j

(2 j)!
, |x| < 2π . (2.7)

LEMMA 2.6. ([19, p. 161, Theorem 12b]) A necessary and sufficient condition for
f (x) to be completely monotonic on (0,∞) is that

f (x) =
∫ ∞

0
e−xt dμ(t), (2.8)

where μ is a positive measure on [0,∞) such that the integral converges on (0,∞) .

3. Proof of Theorem 1.2

For proving Theorem 1.3, we need at first to verify Theorem 1.2 as follows.

Proof of the inequality (1.19). Taking ν = 5 and z = 2
√

u in (1.6) lead to

I5
(
2
√

u
)

u5/2
=

∞

∑
k=0

uk

k!(k+5)!
�

1

∑
k=0

uk

k!(k+5)!
=

6+u
720

. (3.1)

Hence, in order to prove the inequality (1.19) for k = 5, it is sufficient to show

u+6
720

�
(

u
1− e−u

)(4)

=
eu

[
(u−4)e3u +(11u−12)e2u+(11u+12)eu+u+4

]
(eu −1)5
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which can be rewritten as

F1(u) � (u+6)(eu−1)5−720eu[(u−4)e3u +(11u−12)e2u+(11u+12)eu+u+4
]

� 0.

By direct calculations, we have

F ′
1(u) = (31+5u)e5u +25(427−116u)e4u+(18190−23730u)e3u

−10(2533+1586u)e2u−5(713+143u)eu−1,

F ′′
1 (u) = 5eu[(32+5u)e4u +40(199−58u)e3u+(6168−14238u)e2u

−8(1663+793u)eu−143u−856
]

� 5euF2(t),

F ′
2(u) = (133+20u)e4u +40(539−174u)e3u−6(317+4746u)e2u

−8(2456+793u)eu−143,

F ′′
2 (u) = 8eu[(69+10u)e3u +(7215−2610u)e2u−3(1345+2373u)eu

−793u−3249
]

� 8euF3(u),

and
F3(0) = F ′′

2 (0) = F ′
2(0) = F2(0) = F ′′

1 (0) = F ′
1(0) = F1(0) = 0.

As a result, when F3(u) � 0 on (0,∞) , it follows that F1(u) � 0 on (0,∞) .
It is easy to see that the function F3(u) can be rearranged as

F3(u) = 10u
(
eu−261

)
e2u +3

(
23e2u−2373u−1345

)
eu

+7215e2u−793u−3249
(3.2)

and that

1. the term eu−261 is positive when u > ln261 = 5.56 . . . ,

2. the term 23e2u−2373u−1345 has a unique minimum at u = 1
2 ln 2373

46 = 1.97 . . .

on (0,∞) and equals 23
(
e6−368

)
= 814.86 . . . at the point u = 3,

3. and 7215e2u−(3249+793u) has a unique minimum at u =− 1
2 ln 1110

61 on (−∞,∞)
and is positive on (0,∞) .

Consequently, when u � 6, the function F3(u) is positive.
Applying Lemma 2.1 to m = 2 and n = 3 derives

x6 +42x5 +840x4 +10080x3 +75600x2 +332640x+665280
x6−42x5 +840x4−10080x3 +75600x2−332640x+665280

< ex

<
x5 +30x4 +420x3 +3360x2 +15120x+30240
30240−15120x+3360x2−420x3 +30x4− x5 , 0 < x � 6
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and the function F3(u) can be written as

F3(u) = 69e3u +7215e2u−4035eu−3249+
(
10e3u−2610e2u−7119eu−793

)
u

> 69

(
665280+332640u+75600u2+10080u3 +840u4 +42u5 +u6

665280−332640u+75600u2−10080u3 +840u4−42u5 +u6

)3

+7215

(
665280+332640u+75600u2+10080u3+840u4 +42u5 +u6

665280−332640u+75600u2−10080u3+840u4−42u5 +u6

)2

−4035

(
30240+15120u+3360u2+420u3 +30u4 +u5

30240−15120u+3360u2−420u3 +30u4−u5

)
−3249

+u

[
10

(
665280+332640u+75600u2+10080u3+840u4 +42u5 +u6

665280−332640u+75600u2−10080u3+840u4−42u5 +u6

)3

−2610

(
30240+15120u+3360u2+420u3 +30u4 +u5

30240−15120u+3360u2−420u3 +30u4−u5

)2

−7119

(
30240+15120u+3360u2+420u3 +30u4 +u5

30240−15120u+3360u2−420u3 +30u4−u5

)
−793

]

� 6uF4(u)
F5(u)

on (0,6] , where

F4(u) = 621u28−94751u27+6068010u26−218010408u25+4603805304u24

−34479103680u23−1412513172000u22+69509082484800u21

−1835940264439680u20+36018288433370880u19

−572728070517926400u18+7670777548637952000u17

−88289462254568601600u16+882241752079928217600u15

−7678232793596974694400u14+58018545121380802560000u13

−376773142967398969344000u12+2061377592729654140928000u11

−9156137875572402634752000u10+30521365267364424843264000u9

−59514097618800165519360000u8−48948451585366441328640000u7

+852510196971380523663360000u6−3082810530742053482004480000u5

+5063190015183760203448320000u4−350858087962497987379200000u3

−10582859071799067200716800000u2

+8481790289232945532108800000u+4038947756777593110528000000

and

F5(u) =
(
u5−30u4 +420u3−3360u2 +15120u−30240

)2

× (
u6−42u5 +840u4−10080u3 +75600u2−332640u+665280

)3
.
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By Lemma 2.1, it follows that the function

F6(u) = u5Q5

(
−1

u

)
= u5−30u4 +420u3−3360u2 +15120u−30240

has a unique positive zero. Since F6(6) = −864 and F6(8) = 608, the function F6(u)
is negative on (0,6) . By Lemma 2.1 once again, the function

u6Q6

(
−1

u

)
= u6−42u5 +840u4−10080u3+75600u2−332640u+665280

has no any zero. In a word, the function F5(u) > 0 on (0,6) .
A direct computation shows that the sequence {bk | 0 � k � n} in Lemma 2.2

applied to F4(u) are

b0 = 4038947756777593110528000000,

b1 = 4341868838535912593817600000,

b2 = 4616792938622805973401600000,

b3 =
63226968447497701058150400000

13
,

b4 =
66072098066989847041120665600

13
,

b5 =
68558326435040659929169920000

13
,

b6 =
1625932364702092812073304064000

299
,

b7 =
18338550757492925804643090432000

3289
,

b8 =
18707897201998227336080916480000

3289
,

b9 =
18996421971796176266488102256640

3289
,

b10 =
364943527309321738804310099558400

62491
,

b11 =
33414027455107862233493347123200

5681
,

b12 =
570021720890042639974424894668800

96577
,

b13 =
43851581059726626552866155622400

7429
,

b14 =
43715751783929803366617869881344

7429
,

b15 =
43449666570024250746295234195200

7429
,

b16 =
29463945191749248714150342727680

5083
,
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b17 =
32549053609077425759197656000000

5681
,

b18 =
352985157442262967317198674456320

62491
,

b19 =
91354286436246580611619508370624

16445
,

b20 =
17926195304232242164107747202432

3289
,

b21 =
17548009393294868476730762864424

3289
,

b22 =
67747076984066766537183527176

13
,

b23 =
66030748681802854683680196472

13
,

b24 =
4816825337954730130116871131704

975
,

b25 =
62340864945822949546899440674

13
,

b26 =
292672542741083383435627679675

63
,

b27 =
125766913766925341535184862941

28
,

b28 = 4334548991696365872138512296.

This means, by virtue of Lemma 2.2, that F4(u) is positive on [0,1] .
The positivity of F4(u) on the interval [1,2] , [2,3] , [3,4] , [4,5] , or [5,6] can be

respectively transformed into the positivity of the function

F5(u) = F4(u+1), F6(u) = F5(u+1) = F4(u+2),
F7(u) = F6(u+1) = F5(u+2) = F4(u+3),

F8(u) = F7(u+1) = F6(u+2) = F5(u+3) = F4(u+4),

or
F9(u) = F8(u+1) = F7(u+2) = F6(u+3) = F5(u+4) = F4(u+5)

on the unit interval [0,1] , which can be respectively verified by Lemma 2.2 as done in
the proof of the positivity of the function F4(u) on [0,1] .

In conclusion, the function F3(u) , and so F1(u) , is positive on (0,∞) . This means
that the inequality (1.19) for k = 5 is valid on (0,∞) .

The inequality (1.19) for 1 � k � 4 may be verified by similar arguments as
above. �

Proof of monotonicity of the function (1.20). For simplicity, we consider

1
Gβ (u)

=
(eu−1)2

(eu−1−u)eu

I2
(
2
√

βu
)

βu
�

Qβ (u)
P(u)

,
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where

P(u) = (eu−1−u)eu =
∞

∑
k=2

2k − k−1
k!

uk =
∞

∑
k=2

pk−2u
k

and

Qβ (u) = (eu−1)2 I2
(
2
√

βu
)

βu
=

∞

∑
k=2

2k −2
k!

uk
∞

∑
k=0

β k

k!(k+2)!
uk =

∞

∑
k=2

qk−2(β )uk

with

pk =
2k+2− k−3

(k+2)!
and qk(β ) =

1
(k+2)!

k

∑
�=0

(
k+2

�

)
2k−�+2−2
(�+2)!

β �

for k � 0. Hence,
Qβ (u)
P(u)

= ∑∞
k=0 qk(β )uk

∑∞
k=0 pkuk .

When β � 1, let

ck(β ) =
qk(β )

pk
=

1
2k+2− k−3

k

∑
�=0

(
k+2

�

)
2k−�+2−2
(�+2)!

β �

for k ∈ {0}∪N . It is clear that

c0(β ) = 1, c1(β ) =
3+ β

4
, and c2(β ) =

14+8β + β 2

22

satisfy c0(β ) � c1(β ) < c2(β ) for β � 1. For k � 2,

ck+1(β )− ck(β ) =
k

∑
�=0

(bk+1,�−bk,�)
β �

(�+2)!
+

β k+1

(k+1)!(2k+3− k−4)
,

where

bk,� =
2k−�+2−2
2k+2− k−3

(
k+2

�

)
.

An easy computation yields

bk+1,0−bk,0 = − 2
(
1+2k+1k

)
(2k+2− k−3)(2k+3− k−4)

< 0,

bk+1,1−bk,1 =
2
{
1+2k

[
2k+3− (

k2 +2k+6
)]}

(2k+2− k−3)(2k+3− k−4)

�
2
{
1+2k

[
23

(
1+ k+ k(k−1)/2

)− (
k2 +2k+6

)]}
(2k+2− k−3)(2k+3− k−4)
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=
2
[
1+2k

(
3k2 +2k+2

)]
(2k+2− k−3)(2k+3− k−4)

> 0,

and

bk+1,0−bk,0

2!
+ β

bk+1,1−bk,1

3!
� bk+1,0−bk,0

2!
+

bk+1,1−bk,1

3!

=
2k

[
2k+3− (

k2 +8k+6
)]−2

3(2k+2− k−3)(2k+3− k−4)

>
2k

{
23[1+ k+ k(k−1)/2]− (

k2 +8k+6
)}−2

3(2k+2− k−3)(2k+3− k−4)

=
2k(3k−4)k+2k+1−2

3(2k+2− k−3)(2k+3− k−4)
> 0

for k � 2. Further, when k � � � 2, we have

bk+1,�−bk,�(k+2
�

) =
(k+3)

(
2k−�+3−2

)
(k− �+3)(2k+3− k−4)

− 2k−�+2−2
2k+2− k−3

=
2k−�+2−2
2k+3− k−4

[
(k+3)

(
2k−�+3−2

)
(k− �+3)(2k−�+2−2)

− 2k+3− k−4
2k+2− k−3

]

=
2k−�+2−2
2k+3− k−4

[
2(k+3)
k− �+3

(
1+

1
2k−�+2−2

)
− 2k+3− k−4

2k+2− k−3

]

� 2k−�+2−2
2k+3− k−4

[
2(k+3)
k+1

(
1+

1
2k −2

)
− 2k+3− k−4

2k+2− k−3

]

=
2k−�+2−2
2k+3− k−4

(
k+3
k+1

2k+1−2
2k −2

− 2k+3− k−4
2k+2− k−3

)

=

(
2k−�+2−2

){
2k

[
2k+4− (

k2 − k+22
)]

+2(k+5)
}

(k+1)(2k−2)(2k+2− k−3)(2k+3− k−4)
> 0,

where in the last line we used the inequality

2k+4 > 24
[
1+ k+

k(k−1)
2

]
=

(
k2− k+22

)
+

(
7k2 +9k−6

)
> k2 − k+22.

Consequently, when β � 1 and k � 2,

ck+1(β )− ck(β ) >
bk+1,0−bk,0

2!
+

bk+1,1−bk,1

3!
β +

k

∑
�=2

bk+1,�−bk,�

(�+2)!
β � > 0.

Therefore, when β � 1, we have ck+1(β )− ck(β ) > 0. Equivalently speaking, when
β � 1, the sequence ck(β ) is increasingwith respect to k � 0. From this and Lemma 2.3,
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it follows that, when β � 1, the function
Qβ (u)
P(u) is increasing on (0,∞) . As a result,

when β � 1, the function Gβ (u) is decreasing on (0,∞) . The proof of monotonicity
of the function (1.20) is complete. �

Proof of unimodality and convexity of the function (1.20). By (1.6), it is straight-
forward to obtain

d
dz

[
Iν(z)

(z/2)ν

]
=

Iν+1(z)
(z/2)ν . (3.3)

Making use of (3.3) and differentiating lead to

d
du

[
1

Gβ (u)

]
=

eu−1
eu(1− eu +u)2

{
(eu −1)(eu−1−u)

d
du

[
I2

(
2
√

βu
)

βu

]

− [eu(u−2)+u+2]
I2
(
2
√

βu
)

βu

}

=
1

eu(eu−1−u)2

{
β (eu −1)2(eu −1−u)

I3
(
2
√

βu
)

(βu)3/2

− [eu(u−2)+u+2](eu−1)
I2

(
2
√

βu
)

βu

}

�
Rβ (u)
S(u)

,

where

S(u) = (eu −1−u)2eu = u4
∞

∑
k=0

3k+4− (k+6)2k+4 + k2 +9k+21
(k+4)!

uk

� u4
∞

∑
k=0

λku
k,

(eu−1)2(eu−1−u) =
∞

∑
k=4

3k − (k+6)2k−1 +2k+3
k!

uk,

[eu(u−2)+u+2](eu−1) =
∞

∑
k=4

(k−4)2k−1 +4
k!

uk,

and

Rβ (u) = β (eu−1)2(eu −1−u)
I3

(
2
√

βu
)

(βu)3/2
− [eu(u−2)+u+2](eu−1)

I2
(
2
√

βu
)

βu

=
∞

∑
k=4

3k − (k+6)2k−1 +2k+3
k!

uk
∞

∑
k=0

β k+1

k!(k+3)!
uk

−
∞

∑
k=4

(k−4)2k−1 +4
k!

uk
∞

∑
k=0

β k

k!(k+2)!
uk
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=
∞

∑
k=0

k

∑
�=0

(
k+4

�

)
3k−�+4− (k− �+10)2k−�+3+2(k− �)+11

(k+4)!(�+3)!
β �+1uk+4

−u4
∞

∑
k=0

uk

(k+4)!

k

∑
�=0

(
k+4

�

)
(k− �)2k−�+3 +4

(�+2)!

= u4
∞

∑
k=0

uk

(k+4)!

k

∑
�=0

(
k+4

�

)
β �

(�+3)!
{[

3k−�+4− (k− �+10)2k−�+3

+2(k− �)+11
]
β − (�+3)

[
(k− �)2k−�+3 +4

]}
� u4

∞

∑
k=0

ξk(β )uk.

When 0 < β < 1, let Ck(β ) = ξk(β )
λk

, that is,

Ck(β ) =
1
Uk

[
k+4
2× k!

β k+1 −2
(
2k+1k+1

)
+

k

∑
�=1

(k+4)!
�!(�+2)!(k− �+5)!

Vk(�)β �

]

�
k+1

∑
�=0

θk,�β �

for k � 0, where
Uk = 3k+4− (k+6)2k+4 + k2 +9k+21

and

Vk(�) = 3k−�+5�+2k−�+3(�2−17�−5k− k2)−2�2 +2k�+17�−4k−20

= (k−m)3m+5 +
[
m2 +(17−2k)m−22k

]
2m+3−2m2 +(2k−17)m+13k−20

� Wk(m)

with 0 � m = k− � < k . It is not difficult to obtain that

C0(β ) =
β −1

3
, C1(β ) =

β 2 +4β −4
20

, C2(β ) =
3β 3 +35β 2 +80β −68

520
,

C3(β ) =
β 4 +22β 3 +150β 2 +256β −168

1872
,

and

C4(β ) =
β 5 +35β 4 +448β 3 +2268β 2 +3220β −1548

24444
.

Therefore, the differences

C1(β )−C0(β ) =
3β 2 +8(1−β )

60
, C2(β )−C1(β ) =

3
[
β 3 +3β 2 +4(3−2β )

]
520

,

C3(β )−C2(β ) =
5β 4 +56β 3 +120β 2 +32(12−5β )

9360
,
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C4(β )−C3(β ) =
52β 5 +1141β 4 +8358β 3 +16086β 2 +24(1399−266β )

1271088

are all positive for 0 < β < 1.
For k � 4 and 0 < β < 1, we have

Ck+1(β )−Ck(β ) =
k+1

∑
�=0

(θk+1,�−θk,�)β � + θk+1,k+2β k+2.

Since

Uk > 2k+4 +(k+4)2k+3 +
(

k+4
2

)
2k+2− (k+6)2k+4 + k2 +9k+21

=
(
k2 +3k−12

)
2k+1 + k2 +9k+21

> 0

for k � 4, we easily obtain that θk+1,k+2 > 0 and

Ck+1(β )−Ck(β ) >
k+1

∑
�=0

(θk+1,�−θk,�)β � (3.4)

for k � 4 and 0 < β < 1.
The inequality

θk+1,0 � θk,0 (3.5)

may be rewritten as

3k+4[(k−2)2k +1
]
+2k(192×2k− k3−9k2−37k−106

)
+ k+5 � 0,

which may be deduced from

192×2k− k3−9k2−37k−106 > 192
3

∑
�=0

(
k
�

)
− k3−9k2−37k−106

= (31k−9)k2 +123k+86

> 0.

Thus, the inequality (3.5) must be valid for k � 2.
The inequality

θk+1,� � θk,� (3.6)

for k � 4 and k � � � 1 can be rearranged as

Uk+1

(k+5)Uk
� Vk+1(�)

(k− �+6)Vk(�)
=

Wk+1(m+1)
(m+6)Wk(m)

,

where 0 � m = k− � < k . Furthermore, for k � 4 and 0 � m � k−2, the inequality

Wk+1(m+1)
(m+6)Wk(m)

� Wk+1(m+2)
(m+7)Wk(m+1)

(3.7)
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may be rearranged as

Mm(k) � A (m)k2 +B(m)k+C (m) � 0, (3.8)

where

A (m) =
(
4m3 +86m2 +442m+276

)
2m+3 +

(
m2 +25m+150

)
4m+5−2

(
4m2

+40m+87
)
3m+5 +9m+6 +

(
m2 +m−102

)
2m+43m+5 +4m2 +64m+249

>
(
4m3 +86m2 +442m+276

)
2m+3 +4m2 +64m+249

+
(
m2 +25m+150

)[
3m+5 +(m+5)3m+4]+9m+6

−2
(
4m2 +40m+87

)
3m+5 +

(
m2 +m−102

)
2m+43m+5

=
(
4m3 +86m2 +442m+276

)
2m+3 +9m+6 +4m2 +64m+249

+
(
678+110m+9m2+m3)3m+4 +

(
m2 +m−102

)
2m+43m+5

=
(
4m3 +86m2 +442m+276

)
2m+3 +

(
678+110m+9m2+m3)3m+4

+3m+5[3m+7 +2m+4(m2 +m−102
)]

+4m2 +64m+249

>
(
4m3 +86m2 +442m+276

)
2m+3 +

(
678+110m+9m2+m3)3m+4

+3m+5

[
3

∑
�=0

(
m+7

�

)
2m−�+7 +2m+4(m2 +m−102

)]
+4m2 +64m+249

=
(
4m3 +86m2 +442m+276

)
2m+3 +

(
678+110m+9m2+m3)3m+4

+
(
66+215m+30m2+m3)23+m3m+4 +4m2 +64m+249

> 0,

B(m) = 2
(
8m3 +92m2 +282m+207

)
3m+5− (2m+1)9m+6− (

6m4 +145m3

+839m2 +592m−1524
)
2m+3− (

m3 +31m2 +234m+108
)
4m+5

− (
m3 +5m2−96m−12

)
2m+33m+6− (

8m3 +148m2 +794m+1065
)
,

and

C (m) =
(
2m5 +57m4 +388m3 +585m2 +480m+2988

)
2m+3 +

(
m4 +36m3

+323m2 +12m−756
)
4m+4 +4m4 +84m3 +569m2 +1401m+1152

+
(
m4 +10m3−99m2 +24m+252

)
2m+33m+5 +m(m+1)9m+6

−2
(
4m4 +52m3 +207m2 +327m+288

)
3m+5.

It is clear that Mm(k) may be regarded as a quadratic polynomial of k and it has a

unique possible minimum point − B(m)
2A (m) , which, due to k � 4 and 0 � m � k− 2,

should satisfy − B(m)
2A (m) � m+2. But, the fact is that − B(m)

2A (m) < m+2, that is,

2(m+2)A (m)+B(m) =
[
3m+8 +

(
m3−3m2−112m−780

)
2m+3]3m+5

+
(
m3 +23m2 +166m+492

)
4m+5−2

(
4m2 +52m+141

)
3m+5
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+
(
2m4 +43m3 +389m2 +1728m+2628

)
2m+3−4m2−40m−69

>

[
38

3

∑
�=0

(
m
�

)
2m−� +

(
m3 −3m2−112m−780

)
2m+3

]
3m+5

+
(
m3 +23m2 +166m+492

)
3m+5−2

(
4m2 +52m+141

)
3m+5

+
(
2m4 +43m3 +389m2 +1728m+2628

)−4m2−40m−69

=
(
5136+29404m+6177m2+2315m3)2m−43m+5 +

(
m3 +15m2

+62m+210
)
3m+5 +2m4 +43m3 +385m2 +1688m+2559

> 0.

This contradiction shows that, when k � 4 and k � m+2 � 2, the quantity Mm(k) can
be regarded as a quadratic polynomial of k and it has no any minimum. Combining
this with the fact that A (m) > 0 concludes that the quadratic polynomial Mm(k) of k
is increasing with respect to k . A direct computation reveals that

M0(k) = 3360
(
54−137k+74k2), M1(k) = 1568

(
6480−7306k+1909k2),

M2(k) = 336
(
750942−549881k+95837k2)

are positive for k � 4 and that for m � 3 and k � m+2

Mm(k) � Mm(m+2) = 2
{
9+

(
m4 +20m3 +155m2 +508m+780

)
22m+7

+
(
2m4 +61m3 +703m2 +3692m+7140

)
2m+2 +3m+5[3m+7

− (
492+172m+29m2+m3)2m+2−2

(
111+32m+2m2)]}

> 2

{
9+

(
m4 +20m3 +155m2 +508m+780

)
22m+7 +

(
2m4 +61m3

+703m2 +3692m+7140
)
2m+2 +3m+5

[
37

3

∑
�=0

(
m
�

)
2m−�

− (
492+172m+29m2+m3)2m+2−2

(
111+32m+2m2)]}

= 2

{
3m+5

16

[
665m32m +

(
331×2m−64

)
m2 +4

(
893×2m−256

)
m

+48
(
73×2m−74

)]
+

(
m4 +20m3 +155m2 +508m+780

)
22m+7

+
(
2m4 +61m3 +703m2 +3692m+7140

)
2m+2 +9

}
> 0.

Accordingly, the inequality (3.8), and so the inequality (3.7), holds for all 0 � m � k−2
and k � 4. This means that the sequence Wk+1(m+1)

(m+6)Wk(m) is decreasing with respect to m ,

and so that the sequence Vk+1(�)
(k−�+6)Vk(�)

is increasing with respect to � . Therefore, in
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order to show the inequality (3.6) for k � 4 and k � � � 1, it is sufficient to prove the
inequality

Uk+1

Uk
� Vk+1(1)

Vk(1)
(3.9)

for k � 4, which is equivalent to(
k2−3k−12

)
2k+13k+4 +

(
k2 +10k+20

)
3k+4 + k2 +6k+4

+
[(

k2 +13k+20
)
2k+5− (

k4 +16k3 +118k2 +435k+540
)]

2k+1 � 0

for k � 4. Since(
k2 +13k+20

)
2k+5− (

k4 +16k3 +118k2 +435k+540
)

> 25(k2 +13k+20
) 2

∑
�=0

(
k
�

)
− (

k4 +16k3 +118k2 +435k+540
)

= 15k4 +208k3 +442k2 +301k+100� 0

and k2 − 3k− 12 is positive for k � 6, the inequality (3.9) is valid for k � 6. By
a straightforward computation, it is easy to see that the inequality (3.9) is also valid
for k = 4,5. Therefore, the inequality (3.9) is valid for all k � 4. In conclusion, the
inequality (3.6) holds for k � 4 and k � � � 1.

Substituting (3.5) and (3.6) into (3.4) reveals that Ck+1(β )−Ck(β ) > 0 is valid for

k � 4 and 0 < β < 1. Hence, the sequence Ck(β ) = ξk(β )
λk

is increasing with respect to
k � 0 for 0 < β < 1. By Lemma 2.3, it follows that the derivative

d
du

[
1

Gβ (u)

]
= ∑∞

k=0 ξk(β )uk

∑∞
k=0 λkuk

is increasing and that the function 1
Gβ (u) is convex on (0,∞) . The proof of the convexity

of the function (1.20) is complete.
It is easy to obtain

lim
u→0+

d
du

[
1

Gβ (u)

]
= lim

u→0+

∑∞
k=0 ξk(β )uk

∑∞
k=0 λkuk

=
ξ0(β )

λ0
=

β −1
3

< 0

and, by Lemma 2.4,

d
du

[
1

Gβ (u)

]
=

β (eu−1)2I3
(
2
√

βu
)

eu(eu −1−u)(βu)3/2
− (eu−1)[eu(u−2)+u+2]I2

(
2
√

βu
)

βueu(eu−1−u)2

∼ β
I3

(
2
√

βu
)

(βu)3/2
− 1

βeu I2
(
2
√

βu
) → ∞

as u→ ∞ for 0 < β < 1. Consequently, from its monotonicity on (0,∞) , the derivative
d
du

[
1

Gβ (u)

]
has a unique zero, and so the function 1

Gβ (u) has a unique minimum, and

so the positive function Gβ (u) has a unique maximum, on (0,∞) . The proof of the
unimodality of the function (1.20) is complete. �
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4. Proof of Theorem 1.3

With the help of Theorem 1.2, we now start off to prove Theorem 1.3.
If the function tqH1,1(t) is completely monotonic on (0,∞) , then its first derivative

is non-positive, that is,

−tq−2{qt
[
ψ ′(t)− e1/t +1

]
+ t2ψ ′′(t)+ e1/t} � 0,

which can be formulated as

q � t2ψ ′′(t)+ e1/t

t
[
e1/t −ψ ′(t)−1

] � p(t).

By virtue of (2.6) for n = 1,2 and the expansion

e1/t = 1+
∞

∑
m=1

1
m!

1
tm

, t �= 0,

we have

p(t) ∼ ∑3
k=0

1
k!tk

+O
(

1
t3

)− t2
[

1
t2

+ 1
t3

+ 1
2t4

− 1
6t6

+O
(

1
t6

)]
t
{[

∑4
k=0

1
k!tk

+O
(

1
t4

)]− [
1
t + 1

2t2
+ 1

6t3
− 1

30t5
+O

(
1
t5

)]−1
}

∼
1

3!t3
+O

(
1
t3

)
t
[

1
4!t4

+O
(

1
t4

)] → 4

as t → ∞ . This implies that

degt
cm[H1,1(t)] � 4. (4.1)

By the integral representation (1.10), the formula (3.3), the definition of H1,1(t) ,
and integration by part, we have

t4H1,1(t) = t4
∫ ∞

0

[
I1

(
2
√

u
)

√
u

− u
1− e−u

]
e−tu du

= −t3
∫ ∞

0

[
I1

(
2
√

u
)

√
u

− u
1− e−u

]
de−tu

du
du

= t3
∫ ∞

0

d
du

[
I1

(
2
√

u
)

√
u

− u
1− e−u

]
e−tu du

= t2
∫ ∞

0

d2

du2

[
I1

(
2
√

u
)

√
u

− u
1− e−u

]
e−tu du

= t
∫ ∞

0

d3

du3

[
I1

(
2
√

u
)

√
u

− u
1− e−u

]
e−tu du
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=
1
24

+
∫ ∞

0

d4

du4

[
I1

(
2
√

u
)

√
u

− u
1− e−u

]
e−tu du

=
1
24

+
∫ ∞

0

[
I5

(
2
√

u
)

u5/2
−

(
u

1− e−u

)(4)]
e−tu du. (4.2)

As a result, by Lemma 2.6 and by the inequality (1.19) for k = 5, we conclude that
the function t4H1,1(t) is completely monotonic on (0,∞) . So, by the definition of
completely monotonic degrees, we have

degt
cm[H1,1(t)] � 4. (4.3)

Combining (4.1) and (4.3) yields (1.21).
As deducing the integral represntation (1.10), we can derive that

Hα ,β (z) =
∫ ∞

0

[
αβ

I1
(
2
√

βu
)

√
βu

− u
1− e−u

]
e−zu du (4.4)

for ℜz > 0. Employing (3.3) and integrating in part as in (4.2) yield

tHα ,β (t) = −
∫ ∞

0

[
αβ

I1
(
2
√

βu
)

√
βu

− u
1− e−u

]
de−tu

du
du

= αβ −1+
∫ ∞

0

[
αβ 2 I2

(
2
√

βu
)

βu
−

(
u

1− e−u

)′]
e−tu du.

Consequently,

1. when αβ = 1, the function tHα ,β (t) becomes

tHα ,β (t) =
∫ ∞

0

[
β

I2
(
2
√

βu
)

βu
−

(
u

1− e−u

)′]
e−tu du

and, by integration by part and the recursion (3.3),

t2Hα ,β (t) = −
∫ ∞

0

[
β

I2
(
2
√

βu
)

βu
−

(
u

1− e−u

)′]de−tu

du
du

=
β −1

2
+

∫ ∞

0

[
β

I3
(
2
√

βu
)

(βu)3/2
−

(
u

1− e−u

)′′]
e−tu du;

(a) if β > 1, by virtue of the fact that the function I3(2u)
u3 is strictly increasing

on (0,∞) and by the inequality (1.19) for k = 3, it is not difficult to see that
the completely monotonic degree of the function H1/β ,β (t) for β > 1 is 2;

(b) if 0 < β < 1, by the necessary condition (1.14), the function Hα ,β (t) is not
completely monotonic;

(c) if β = 1, the discussing question goes back to the proof of (1.21);
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2. when αβ > 1 and

αβ 2 � βu

I2
(
2
√

βu
)(

u
1− e−u

)′
= Gβ (u), (4.5)

the completely monotonic degree of Hα ,β (t) is 1; By virtue of the monotonic-
ity and unimodality of the function (1.20) obtained in Theorem 1.2, the quan-
tity (1.23) follows.

The proof of Theorem 1.3 is complete. �

5. Remarks

Finally we list some remarks on something to do with our lemmas and theorems.

REMARK 5.1. We note that Lemma 2.3 has been generalized in [10, Lemma 2.2].

REMARK 5.2. The function F3(u) defined by (3.2) can also be decomposed as

F3(u) = f1(u)+ f2(u)+ f3(u),

where

f1(u) = [10u(eu−261)+3966]e2u, f2(u) =
(
69e2u−7119u−4035

)
eu,

f3(u) = 3249e2u−793u−3249,

and these three functions are all increasing respectively on the intervals [5,∞) , [3,∞) ,
and [0,∞) . Then it follows that F3(u) is increasing and positive on [5,∞) .

REMARK 5.3. In the draft of this manuscript, we ever used Theorem 2 in [13,
p. 22] to prove the positivity of the function F3(u) defined in (3.2) on (0,6) . But, the
inequality (14) stated in [13, p. 22, Theorem 2], and then the inequality (18) in [13,
p. 22], is wrong. So we have to give up using [13, p. 22, Theorem 2] to prove the
inequality (1.19).

By the way, we can reformulate [13, Theorem 1] as follows. For x ∈ [0,b] and
n � 0, we have

0 � ex −Sn(x)−αn(b)xn+1 � (n+1)!αn(b)− eb

(n+1)!(n+1)b
(b− x)xn+1, (5.1)

where

Sn(x) =
n

∑
k=0

xk

k!
and αn(b) =

eb −Sn(b)
bn+1 . (5.2)

The equalities in (5.1) are valid if and only if x = 0,b . This theorem was proved
once again in [8] and was collected in the monograph [11, p. 290] and its older and
subsequently revised version.
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REMARK 5.4. By Descartes’ Sign Rule, it follows that

1. the polynomial P1(m) = m4 +36m3 +323m2+12m−756 has one possible posi-
tive zero; since P1(0) = −756 and P1(2) = 864, this zero belongs to the interval
(0,2) , so P1(m) > 0 for m � 2;

2. the polynomial P2(m) = m4 +10m3−99m2 +24m+252 has two possible posi-
tive zeros; since P2(0) = 252, P2(3) = −216, and P2(6) = 288, these two zeros
locate in the interval (0,6) , so P2(m) > 0 for m � 6.

Furthermore, we have

m(m+1)9m+6−2
(
4m4 +52m3 +207m2 +327m+288

)
3m+5

=
[
m(m+1)3m+7−2

(
4m4 +52m3 +207m2 +327m+288

)]
3m+5

>

[
m(m+1)

3

∑
�=0

(
m+7

�

)
2�−2

(
4m4 +52m3 +207m2 +327m+288

)]
3m+5

=
(
4m5 +58m4 +278m3 +407m2−825m−1728

)
3m+4

and, by Descartes’ Sign Rule, the polynomial

P3(m) = 4m5 +58m4 +278m3 +407m2−825m−1728

has one possible positive zero. Since P3(0) = −1728 and P3(1) = 1530, it follows that
P3(m) is positive for m � 2. Consequently, we obtain that C (m) defined in (3.8) is
positive for m � 6. Considering that

C (0) = 181440, C (1) = 10160640, C (2) = 252316512,

C (3) = 4549288320, C (4) = 68981774400, C (5) = 939390217920,

we conclude that C (m) are positive for all nonnegative integers m � 0.
By similar argument to above, we can determine that B(m) < 0 for all nonnega-

tive integers m � 0.

REMARK 5.5. In order to prove

u+6
720

�
(

u
1− e−u

)(4)

, (5.3)

we write
u

1− e−u = u
∞

∑
k=0

e−ku

from which we obtain (
u

1− e−u

)(4)

=
∞

∑
k=1

k3(ku−4)e−ku.
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So for u � a � 4(
u

1− e−u

)(4)

�
∞

∑
k=1

k3(ku−4)e−ka = uK4(a)−4K3(a),

where

K�(a) =
∞

∑
k=1

k�e−ka.

These functions can be calculated for small values of � and K4(7) = 0.0009 · · ·< 1
720 .

Therefore, the inequality (5.3) holds for u � 7. As a result, it is sufficient to prove the
inequality (5.3) on the interval [0,7] .

REMARK 5.6. By a result in [18] (or see [9, p. 35, (3)]), we have

u
1− e−u = 1+

u
2

+
n

∑
k=1

B2k

(2k)!
u2k +(−1)nu2(n+1)Vn(u), (5.4)

where

Vn(u) =
∞

∑
k=1

2
(u2 +4π2k2)(2πk)2n (5.5)

and it was proved in [9, Lemma 2.3] that[
u2�Vn(u)

](k) � 0 (5.6)

for u > 0 and 0 � k � � . By (5.4) for n = 1, it follows that

u4V1(u) = 1+
u
2

+
u2

12
− u

1− e−u , (5.7)

hence, by (1.9) for n = 1,∫ ∞

0
u4V1(u)e−ux du =

1
x

+
1

2x2 +
1

6x3 −ψ ′(x). (5.8)

Since the inequality (5.6) holds for 0 � k � 2, we obtain by [9, Theorem 1.3] that

x2
[
1
x

+
1

2x2 +
1

6x3 −ψ ′(x)
]

is completely monotonic on (0,∞) . If we add the completely monotonic function

x2
(

e1/x−1− 1
x
− 1

2x2 −
1

6x3

)

to the above, we find that the function

x2[e1/x −1−ψ ′(x)
]

is completely monotonic on (0,∞) , that is,

degt
cm[H1,1(t)] � 2. (5.9)
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REMARK 5.7. Now, if we use (5.4) for n = 3, we obtain similarly that∫ ∞

0
u8V3(u)e−ux du =

1
x

+
1

2x2 +
1

6x3 −
1

30x5 +
1

42x7 −ψ ′(x). (5.10)

Since the inequality (5.6) holds for 0 � k � 4, we acquire by [9, Theorem 1.3] that

x4
[
1
x

+
1

2x2 +
1

6x3 −
1

30x5 +
1

42x7 −ψ ′(x)
]

is completely monotonic on (0,∞) . If we add the completely monotonic function

x4
(

e1/x−1− 1
x
− 1

2x2 −
1

6x3 −
1

4!x4 −
1

5!x5 −
1

6!x6 −
1

7!x7

)

to the above, we gain that the function

x4[e1/x−1−ψ ′(x)
]− 1

24
− 1

24x
− 1

6!x2 +
17

6!x3

is completely monotonic on (0,∞) . By further adding three completely monotonic
terms we finally earn that the function

x4[e1/x−1−ψ ′(x)
]− 1

24
+

17
6!x3

is completely monotonic on (0,∞) .
If one can manage to remove the last term 17

6!x3 , then the first result (1.21) in
Theorem 1.3 follows.

REMARK 5.8. Motivated by properties of the functions Fβ (u) and Gβ (u) defined
in (1.12) and (1.20) respectively, we conjecture that

1. when 3 � k � 5 and β � 1, the function

Hk,β (u) =
(βu)k/2

Ik
(
2
√

βu
)(

u
1− e−u

)(k−1)

(5.11)

is decreasing on (0,∞) ;

2. when 3 � k � 5 and 0 < β < 1, the function Hk,β (u) is unimodal on (0,∞) ;

3. when 3 � k � 5 and 0 < β < 1, the function 1
Hk,β (u) is convex on (0,∞) .

REMARK 5.9. We conjecture that for all k � 6 the inequality (1.19) does not hold
on (0,∞) .

REMARK 5.10. This paper is a modified version of the preprint [14].
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