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PROPERTIES OF MODIFIED BESSEL FUNCTIONS AND
COMPLETELY MONOTONIC DEGREES OF DIFFERENCES
BETWEEN EXPONENTIAL AND TRIGAMMA FUNCTIONS

FENG Q1

(Communicated by N. Elezovic)

Abstract. In the paper, the author establishes inequalities, monotonicity, convexity, and uni-
modality for functions concerning the modified Bessel functions of the first kind and compute
the completely monotonic degrees of differences between the exponential and trigamma func-
tions.

1. Introduction

For smoothness and consecution, we split this section into six subsections.

1.1. An inequality and complete monotonicity

In [7, Lemma 2], the inequality
V(1) <el =1 (1.1)

on (0,e0) was obtained and applied, where y/(¢) stands for the digamma function which
may be defined by the logarithmic derivative

w(t) = [InT()) = FFT(,’;

and I'(r) is the classical Euler gamma function which may be defined for Rz > 0 by

I'(z) :/ e dr.
0

The derivatives y'(z) and y”(z) are respectively called the tri- and tetra-gamma func-
tions.
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In [15, Theorem 3.1], [16, Theorem 1.1], and [17], among other things, the in-
equality (1.1) was generalized to a complete monotonicity respectively by different and
elementary approaches, which reads that the difference

h(t) ="' —y/(1) (1.2)
is completely monotonic, that is, (—1)¥"'2*=1(z) >0 for k € N, on (0,) and

lim (1) = 1. (1.3)

[{—o0

1.2. Integral representations

In [16, Theorem 1.2], among other things, it was established that

k oo
D T [y T
0

omlzn | (k1) 122
and
e i L /N B(Lik+1Lk+20te?dr (15
omln Kk RO '

for Rz > 0 and k € {0} UN, where the modified Bessel function of the first kind

~ | 2k+v
Iv(z)=k§0m<5) o

for v € R and z € C, the hypergeometric series

o (@)n---(ap)n X"
Fy(ar,...,apbi, ... .byx) =Y 0 opin T (1.7)
P l]( 14 q ) ng()(bl)n(bq)n n'

for b; ¢ {0,—1,-2,...}, and the shifted factorial (a)o =1 and
(@p=ala+1)---(a+n—1) (1.8)

for n > 0 and any real or complex number . This gives an answer to an open problem
posed in [21]. See also [20, Chapter 6].
By virtue of (1.4) or (1.5) for k = 0 and the well known formula
un

W) = (-1 [ e (1.9)
0

l—e

for n =1, see [, p. 260, 6.4.1], we can easily derive that

h(z) = 1+/0T11(f/\a/ﬁ) - }e_z"du (1.10)

Cl—eu

for Rz > 0. See the equation (4.3) in [16].
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1.3. Lower bounds for a modified Bessel function of the first kind

By the complete monotonicity obtained in [15, Theorem 3.1] and [16, Theo-
rem 1.1] for Ah(r), by the integral representation (1.10), and by Lemma 2.6 below, it
was deduced in [15, Theorem 7.1] that

3

(x/2)? 5(3)
1 > —— d [ > 1.11
B T S Y L] b

on (0,e0) if and only if o > 1 and B > 1. More strongly, it was discovered in [15,
Theorem 5.1] that, when 3 > 1, the function

u \/Bu
e R (1.12)

is decreasing on (0,0); when 0 < 8 < 1, it is unimodal (that is, it has a unique maxi-

mum) and % is convex on (0,00).

Fg(u)

1.4. Necessary and sufficient conditions

For o, > 0, let
ho p(t) = P/ — /(1) (1.13)

on (0,e0). In [15], among other things, the following necessary and sufficient condi-
tions for the function A, g(t) to be completely monotonic on (0,) were obtained.

THEOREM 1.1. ([15, Theorem 4.1]) The function hy g(t) is completely monotonic
on (0,00) ifand only if B > 1.

If B> 1 and af > 1, the function hy g(t) is completely monotonic on (0,0).

A necessary condition for the function hg g (t) to be completely monotonic on
(0,00) is o > 1.

If 0 < B < 1, the condition

> F(u) > 1 1.14
af max p(u) (1.14)

is necessary and sufficient for hy g(t) to be completely monotonic on (0,), where

lim Fg(u) =1 and lim Fg(u) =0 (1.15)

u—0+

Sorall B> 0.

1.5. Completely monotonic degree

The notion “completely monotonic degree” was created in [0, Definition 1], which
may be regarded as a slight but essential modification of [9, Definition 1.5]. This defi-
nition may be further modified as follows.



496 FENG QI

DEFINITION 1.1. Let f(x) be a completely monotonic function on (0,e°) and de-
note f(e0) =limy_e f(x). If for some r € R the function x"[f(x) — f(c0)] is completely
monotonic on (0,e0) but X" T¢[f(x) — f(eo)] is not for any positive number € > 0, then
we say that the number r is the completely monotonic degree of f(x) with respect to
x € (0,00); if for all r € R each and every x"[f(x) — f(e)] is completely monotonic
on (0,c0), then we say that the completely monotonic degree of f(x) with respect to
x € (0,00) is oo.

In [6, p. 9890], the notation deg’,[f(x)] was designed to denote the completely
monotonic degree r of f(x) with respect to x € (0,00). We can redevelop the above
Definition 1.1 as follows. If f: (0,0) — [0,0) is a C*-function, then

degl, [f(x)] = sup{r € R| x"[f(x) — f(e°)] is completely monotonic}. (1.16)

It is clear that the completely monotonic degree degy,,[f(x)] of any completely mono-
tonic function f(x) on (0,0) is at leat 0.

We claim that the completely monotonic degree deg},,[f(x)] equals e if and only
if f(x) is nonnegative and identically constant. It is clear that deg’,,[0] = o, as defined
in [6, p. 9891, (4)]. Conversely, if degy,[f(x)] = oo, then X"[f(x) — f(e0)] is always
completely monotonic on (0,e) for any number » > 0. This means that

() = £} = f(x) = fle=)] +2"f'(x)

=X (x) = fo0)] +xf" (x)}
0,

N

that is,

r[f(x) = f(eo)] +xf'(x) <O (1.17)
is valid on (0,e) for all r > 0. A result on [5, p. 98] asserts that for a completely
monotonic function £ on (0,e0) the strict inequality (—1)¥~!f* =1 (r) >0 for k€ N
holds unless f(x) is constant. This implies that, if f(x) is not identically constant, then
f(x) = f(e2) >0 and f'(x) <0 on (0,e). Consequently, the inequality (1.17) may be
rearranged as

xf'(x)
fx) = f(e)’
This leads to a contradiction to the arbitrariness of » > 0. As a result, it holds that the
function f(x) is identically constant on (0,ce).

r<— x € (0,00).

1.6. Main results of this paper

Since the complete monotonicity of 4(¢) and the limit (1.3) have been verified
in [15, Theorem 3.1] and [16, Theorem 1.1], we naturally consider to compute the
completely monotonic degrees of the completely monotonic function

Hyp(t) =hep(t) —a (1.18)

on (0,).
Our main results in this paper are the following theorems in sequence.
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THEOREM 1.2. When 1 < k <5, the inequality

K(2v) > (2 (1.19)
uk/2 1—eu
is valid on (0,0).
When B > 1, the function
(=)
Gg(u) = (1.20)
pl) L(2y/Bu) \1—e

is decreasing on (0,0); when 0 < B <1, it is unimodal and @ is convex on (0,0).

THEOREM 1.3. Let o, 3 > 0.

1. If (a,B) = (1,1), then
degl o [H1 1 ()] = 4; (1.21)

2. if B> 1, then
degl, [Hi/pp(t)] =2; (1.22)

JifoaB>1land B=1,0rifaf>1,0<B <1, and
2

o> m G ,

B7=> max {Gpu)}

then we have
degey [Ho p(t)] = 1. (1.23)

2. Lemmas
We need the following lemmas.

LEMMA 2.1. ([4, Theorem 1 and Lemma 1]) Let

cr(n) = (n) w and  Qy(x) = i cr(n)x" k. (2.1)

k k=0
If m,n € N, then the polynomial Qy, has no real root, the polynomial Q»,+1 has a

unique real root in (—e,0), and

Q2n(x) <el/x<_ Qomy1(x) x> 1

> — 2.2
00 (—) O ()" 7 2t 1) 22

LEMMA 2.2. ([3]and [12, p. 227, 3.3.27]) Let P(x) =X}_, ax* be a real poly-
nomial of degree n > 0. Then the inequality

min{b; |0 <k <n} <P(x) <max{b; |0 < k< n} (2.3)

k
holds for 0 < x < 1, where by, :lezoag@ for 0 < k< n.

(7)
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LEMMA 2.3. ([2]) Let ai and by for k € {0} UN be real numbers and the power
series

Zakxk and B(x Zbkxk (2.4)

be convergent on (—R,R) for some R > 0. If by > 0 and the ratio Z—’; is (strictly)

increasing for k € N, then the function % is also (strictly) increasing on (0,R).

LEMMA 2.4. ([1, p. 377,9.7.1] is large, and . = 4v?,

Iy(z) ~ \/—{ 2

LEMMA 2.5. ([1, p. 260, 6.4.11]) For |argz| < 7,

/,'

! T
H[ 2ji—17 ¢, |argz] < 5 (2.5)

e — et [0 S Gk
v = o (U s S Gk e
where By, for n > 0 stand for Bernoulli numbers which may be generated by
> B X & J
:%Wx" -5 g .,, x| <27 (2.7)

LEMMA 2.6. ([19, p. 161, Theorem 12b]) A necessary and sufficient condition for
f(x) to be completely monotonic on (0,0) is that

Flx) = /0 Tt du), 2.8)

where WL is a positive measure on [0,) such that the integral converges on (0,0).

3. Proof of Theorem 1.2

For proving Theorem 1.3, we need at first to verify Theorem 1.2 as follows.

Proof of the inequality (1.19). Taking v =5 and z = 2/u in (1.6) lead to

15(2\/5):i ut >i uk _6+tu
w2 EKI(k+5) T S kI(k+5) 720

(3.1)

Hence, in order to prove the inequality (1.19) for k =5, it is sufficient to show

ut6 ([ u @ e [(u—4)ed + (11u—12)e® + (11u+ 12)e" + u+4]
720 7 \1—e (ev —1)5
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which can be rewritten as

Fi(u) 2 (u+6)(e"—1)° = 720¢"[(u—4)e™ + (11u— 12)e™ + (11u+ 12)e" +u + 4]
0.

WV

By direct calculations, we have

Fl(u) = (31 4 5u)e™ 4 25(427 — 116u)e* + (18190 — 23730u)e™
— 10(2533 + 1586u)e* — 5(713 + 143u)e" — 1,
F'(u) = 5¢"[(32 + 5u)e™ +40(199 — 58u)e™ + (6168 — 14238u)e™
— 8(1663 +793u)e" — 143u — 856]
£5¢'F (1),
Fy(u) = (133 4+ 20u)e™ +40(539 — 174u)e™ — 6(317 + 4746u)e*
— 8(2456 +793u)e" — 143,
FJ (1) = 8¢" (69 + 10u)e™ + (7215 — 2610u)e™ — 3(1345 + 2373u)e"
— 793u — 3249
2 8¢"F3(u),
and
F5(0) = ;(0) = F;(0) = [2(0) = F'(0) = F{(0) = F1(0) = 0.
As aresult, when F3(u) > 0 on (0,00), it follows that Fj(u) > 0 on (0,e0).
It is easy to see that the function F3(u) can be rearranged as
F3(u) = 10u(e" —261)e™ 4 3(23¢™ — 2373u — 1345)e"

(3.2)
+7215¢%* —793u — 3249

and that
1. the term e" — 261 is positive when u > In261 =5.56...,

2. the term 23e%* —2373u — 1345 has a unique minimum at u = % In % =1.97...
on (0,c0) and equals 23(e® —368) = 814.86... at the point u =3,

3. and 7215¢% — (3249+793u) has a unique minimumat u = — 3 In % on (

and is positive on (0,e0).

—oo,oo)

Consequently, when u > 6, the function F3(u) is positive.
Applying Lemma 2.1 to m = 2 and n = 3 derives

X0 4+ 42x° + 840x* 4 10080x> + 75600x2 + 332640x + 665280

Y6 —42x5 + 840% — 100803 + 75600x2 — 332640x + 665280
X+ 30x* 4 420x° 4+ 3360x% 4+ 15120x + 30240
30240 — 15120x + 3360x2 — 420x3 + 30x* — x5’

e

0<x<6
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and the function F3(u) can be written as

Fi(u) = 69> +7215¢* — 4035¢" — 3249 + (10e™ —2610e*" — 7119¢" — 793 )u

6 665280 + 3326401 + 756001 + 10080u> + 840u* + 4245 + 16\ ?
665280 — 332640u + 7560012 — 10080u3 + 840u* — 4215 + u®

665280 4 332640u + 7560012 + 10080u> + 840u* + 4215 + ub\ 2
665280 — 332640u + 7560012 — 1008043 + 840u* — 4215 + ud

30240 + 15120u + 3360u? + 42003 + 30u* + u° 3049
30240 — 15120u + 3360u2 — 420u3 + 30u* — u’

665280 + 332640u + 756001+ 10080u> + 840u* + 421> + u® ) 3

+7215<

—4035

il

—2610

(665280 3326401 + 756002 — 1008013 + 840u* — 4215 + ub
(30240 + 15120u + 3360u2 + 4201 + 30u* + u° ) 2
)

30240 — 15120u + 3360u2 — 42043 + 30u* — u’

30240 + 15120u + 3360u? 4+ 420u® + 30u* + u° ) B 793}

—7119
30240 — 15120u + 3360u2 — 42043 + 30u* — u’

6uF4 u

Fs(u)
n (0,6], where

Fy(u) = 621u*® —94751*" 4 6068010u°° — 2180104081 + 46038053041%*
—34479103680u* — 1412513172000u% + 695090824848001"!
— 1835940264439680u°° + 36018288433370880u"°
— 572728070517926400u'8 + 7670777548637952000u'
— 88289462254568601600u'® -+ 882241752079928217600u"
— 7678232793596974694400u'* + 58018545121380802560000u'
— 376773142967398969344000u'2 4- 2061377592729654140928000u'!
—9156137875572402634752000u'% + 30521365267364424843264000u°
—59514097618800165519360000u° — 48948451585366441328640000u
+852510196971380523663360000u° — 3082810530742053482004480000u
+5063190015183760203448320000u* — 350858087962497987379200000u

— 10582859071799067200716800000:>
+8481790289232945532108800000u + 4038947756777593110528000000

and

Fs(u) = (u® — 30u® + 420 — 3360u> + 151201 — 30240)’
x (u® — 420 4 840u* — 100801’ + 75600 — 332640 + 665280)".
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By Lemma 2.1, it follows that the function
F _ 5 _ l 5 4 3 2 -~
o(u) = u’Qs =u —30u” +420u” — 3360u” + 15120u — 30240
u

has a unique positive zero. Since Fs(6) = —864 and F4(8) = 608, the function Fg(u)
is negative on (0,6). By Lemma 2.1 once again, the function

1
u6Q6<}——> = u® — 4247 + 840u* — 100801 + 75600u* — 332640u + 665280
u

has no any zero. In a word, the function Fs5(x) > 0 on (0,6).
A direct computation shows that the sequence {b; | 0 < k < n} in Lemma 2.2
applied to Fy(u) are

by =4038947756777593110528000000,
b1 = 4341868838535912593817600000,
by =4616792938622805973401600000,
b 63226968447497701058150400000
3= >
13
b 66072098066989847041120665600
4 = ’
13
b 68558326435040659929169920000
5= )
13
1625932364702092812073304064000

299 ’
18338550757492925804643090432000

3289 ’
18707897201998227336080916480000

by 3289 ’
. _ 18996421971796176266488102256640
= 3289 ’
364943527309321738804310099558400

62491
33414027455107862233493347123200

5681
570021720890042639974424894668800

bi2 = 96577
_ 43851581059726626552866155622400

7429 ’
43715751783929803366617869881344

4= 7429 ’
43449666570024250746295234195200

5= 7429 ’
29463945191749248714150342727680

- 5083 ’

bs =

by =

bip=

b=

13

16 =
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32549053609077425759197656000000
b17 == )
5681
~352985157442262967317198674456320
- 62491 ’
91354286436246580611619508370624

16445 ’
_17926195304232242164107747202432

3289 ’
_ 17548009393294868476730762864424
2 3289 ’
67747076984066766537183527176
22 — 13 5
66030748681802854683680196472
23 — )
13
4816825337954730130116871131704
24 — 5
975
62340864945822949546899440674
13 ’
292672542741083383435627679675
63 ’
125766913766925341535184862941
28 ’
bag = 4334548991696365872138512296.

18

19 =

20

bys =

by =

by =

This means, by virtue of Lemma 2.2, that F4(«) is positive on [0,1].
The positivity of Fy(u) on the interval [1,2], [2,3], [3,4], [4,5], or [5,6] can be
respectively transformed into the positivity of the function

Fs(u) =F(u+1), Fs(u)=Fu+1)=F(u+t?2),
Fi(u) =Fs(u+1)=Fs(u+2)=Fy(u+3),
Fu)=Fu+1)=Fu+2)=Fu+3)=Fu-+4),

or
Fo(u)=Fu+1)=F(u+2)=F(u+3)=Fs(u+4)=Fy(u+5)
on the unit interval [0, 1], which can be respectively verified by Lemma 2.2 as done in
the proof of the positivity of the function F4(«) on [0,1].
In conclusion, the function F3(u), and so F(u), is positive on (0,e). This means
that the inequality (1.19) for k =5 is valid on (0,e0).

The inequality (1.19) for 1 < k < 4 may be verified by similar arguments as
above. [

Proof of monotonicity of the function (1.20). For simplicity, we consider

1 (e"—1)? 12(2\/IE)AQ/3(“)

Gg(u) (e*—1—u)e*  Bu  Pu)’
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where oo
Pl) = ("~ 1 - u)e =2 = St
and
wpk@VBY) 228 B
05(u) = (¢ — 1)? - :kgz - ukkzk(kJrz qu 2(B
with
_2k+2_k_3 B 1 ko (k+2\ 2k=t+2 2 ‘
pk—w and clk(ﬁ)—(k_,_z)[;a( 14 )Wﬁ

for k> 0. Hence,
Op(u) T oqu(B)u

P(u) Yo ik

When 8 > 1, let

a(B) 1 ko (k+2\2kt+2 2
(B) = k262 k—32< ¢ ) (£ +2)! B
for k € {0} UN. Itis clear that

2
aB)=1. a)=22L ad e = HEBEE

satisfy ¢o(B) < c1(B) <ca(B) for B> 1. For k > 2,

k ﬁf ﬁk-&-l
ck+1(B) —cx(B) :E)(bk+l,é_bk,é) @+ + hrDIE —k—4)’

where ‘
b 222 (k42
T3\ 0 )
An easy computation yields

2(1+2k+1k)
biy1,0—bro=— (K2 —3)(2F3 —k—4)

<0,
2{1 42523 — (K2 +2k+6)] }
bi1,1 = bry = (K2 —k—3)(2F3 —k—4)
2{1+2k[23(1+k+k( —1)/2)— (K +2k+6)] }
(2k+2 k— 3)(2k+3 k— 4)
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2[4 24(3k% + 2k +2)]
o (2K2 —k—3)(2k3 —k—4)
>0,

and

biy1,0—bio ﬂkarl,l_bk,l < bri10—bro by — by
2! 3! - 2! 3!
22— (kP + 8k +6)] —
CO3(2K2 —k—3)(2k3 —k—4)
BN+ k+k(k—1)/2] — (K> +8k+6)} —2
3(2K2 —k —3)(2k3 —k—4)

K@k —4)k+2K -2
CO3(2K2 —k—3)(2k3 —k—4)
>0

for k > 2. Further, when k > ¢ > 2, we have
bk+1,é—bk/ k+3 (Zk +3 _ ) 2k4+2_2
(szz) (k €+3)(2k+3 ) 2k+2_k_3
k=+2_o (k+3)(2’<—€+3—2) e
:2k+3—k—4_(k—12+3)(2kf+2—2)_2k+2—k—3]
222 [2(k+3) (1 1 )_2k+3—k—4]
k3 —f—4|k—(+3 2k=t+2_p ) k2 _f_3
k=42 _p '2(k+3)<1 1 )_2k+3—k—4]
T2k k-4 k+1 2k—2) 2k2_f-—3
k=42 _9 <k+32k+1—2 2k+3—k—4)

TR _j—4\k+1 2k—2 2k2_f—3
() 2R — (K —k+22)] +2(k+5)}
(kD2 -2)(2 2k —3) (23 —k—4)

>0,

where in the last line we used the inequality
k(k—1
AR [1 +k+ %} = (K —k+22)+ (7k* + 9% — 6) > k* —k+22.
Consequently, when § > 1 and k > 2,

biy1,0—bip bkll b1 biy1e bu
i (B) —cx(B) > =5 . ﬁ+2 ~@ro B>

Therefore, when 8 > 1, we have ¢ (B) — cx(B) > 0. Equivalently speaking, when
B > 1, the sequence ¢ () is increasing with respect to k > 0. From this and Lemma 2.3,
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it follows that, when 8 > 1, the function Qpﬁ(g;) is increasing on (0,e0). As a result,

when 8 > 1, the function Gg(u) is decreasing on (0,c0). The proof of monotonicity
of the function (1.20) is complete. [

Proof of unimodality and convexity of the function (1.20). By (1.6), it is straight-
forward to obtain

d Iy(z) 1 _ Iv+1(2)
dz [<z/2>v] NEER )
Making use of (3.3) and differentiating lead to
d[ 1 ] el . , d [h(2v/Bu)
i e (e T
- [e”(u—2)+u+2}1_2(2ﬁuﬂ“) }
_ ! u u L(2y/Bu)
_m{ﬁ(e —1)%(e _I_M)W
. eu "— " eu_ 12(2 [314)
et 2) b+ 2 1 2B
Iy Rﬁ(u)
S(u)
where
o akt4 k+d | 12
S(u) = (& — 1 — u)2e" — 3 — (k+6)2"" +k +9k+21uk
() = ( ) ;ZB !
éu”'i?tkuk,
k=0
" " S (k4 6)2 2k 43
(e"—1)%(e —l—u)—kgz‘ o u,
u u i (k—4)2k71+4
["(u—2)+u+2|(e _I)Z;ZZ;Tuk’
and
Rp() = B~ 12~ 1 -0 0V P =) ey 2P
o kte)2 23 & B!
A k! “ St 3"

o (k—4)p2ktya & BE .

-y u

u
& k! S k(k+2)
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:ii k+4 3k—€+4—(k—£+10)2k—‘+3+2(k—£)+1lﬁz+1uk+4
¢ (k+4)!1(0+3)!

k=0/¢=0
_u4i ut k<k+4)(k—£)2"”3+4
S krans\ e (0+2)!
o k k 14
4 u k+4\ B k44 k—(+3
= 3 (k—0410)2
u,;;)(k+4)!;6< ¢ (£+3)!{[ (k=t+10)
+2(k— )+ 11]B — (L +3) [(k—£)2 3 +4])
éu425k(ﬁ)”k~
k=0
When 0 < 8 < 1,let Ci(B) = ék(k L, that is,
_1 k+4 kit ookt : (k+4)! ¢
GB) =g [P 22D+ 2 i P

k+1

£y 610 B
(=0
for k > 0, where
Up =3 — (k+6)2 1 k2 + 9k + 21

and
V() = 350 4 K083 (02 — 170 — Sk — K?) — 202 + 2k€ + 17¢ — 4k — 20

= (k—m)3"™ + [m?® + (17 — 2k)m — 22k]2""> — 2m* + (2k — 17)m + 13k — 20

£ Wi(m)

with 0 <m =k — ¢ < k. Itis not difficult to obtain that

— 2 3 ) 3
@(ﬁ)z%, a1 (B) = %’ Cz(ﬁ):3ﬂ +35[3524(;80ﬁ 68
B*+22B + 15082 4256 — 168
)= 1872
and
gy~ B2 +35B" +4485° 42268 3220 — 1548
W)= 24444 :

Therefore, the differences

2 - 3 2
Cl(ﬁ)_CO(ﬁ)ZW’ G(B)—Ci(B) = 3[B "’3[35;04(3 2[3)],

5B4+56B3 +120B8%+32(12-58)
9360 ’

G(B)—G(B) =
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5 4 3 2 B
C4(ﬁ)_c3(ﬁ):52ﬂ + 1141 B* + 83583% + 1608632 +24(1399 — 266)3)

1271088
are all positive for 0 < § < 1.
For k>4 and 0 < B < 1, we have
k+1 ,
Cir1(B) = Ci(B) = 3, (Bt — Oce) B + Ot 2 B2
=0

Since
k+4
Up > 284 4 (k+4)2K3 4 ( ;L )2k+2 — (k4 6)25* £ k> 4 9k + 21

= (K +3k—12)2°"! + k2 4 9k + 21
>0

for k > 4, we easily obtain that 6, ;42 >0 and

K+l ‘
Ces1(B) = Ci(B) > Y (Bks1,e — Oke) B (3.4)
=0
fork>4and 0<f < 1.
The inequality
Or+1.0 = Ok (3.5)

may be rewritten as
34 [(k—2)2F +1] +25(192 x 2F — &* — 9k* — 37k — 106) + k+5 > 0,

which may be deduced from

3
192 x 2K — k3 — 9k* — 37k — 106 > 192 K — K —9K* —37k— 106
/
(=0

= (31k— 9)k* + 123k + 86
> 0.

Thus, the inequality (3.5) must be valid for £ > 2.

The inequality
Oky1,0 = Ok (3.6)
for k>4 and k > ¢ > 1 can be rearranged as
Uit Vin®  _ Wi (m+1)

(k+5)Ux = (k—L+6)Vi(£)  (m+6)Wi(m)’

where 0 < m =k — ¢ < k. Furthermore, for k > 4 and 0 < m < k — 2, the inequality

Wenilm+1) Wi (m+2)

(m+6)Wi(m) =~ (m~+T)Wi(m+1) (3.7
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may be rearranged as
M,y (k) 2 of (m)k* + B(m)k+ € (m) > 0, (3.8)
where
o (m) = (4m> + 86m* +442m +276)2" "3 + (m? +25m + 150)4™ 5 — 2 (4m?
+40m +87)3™ 3 + 9™ 4 (m? + m — 102)2" 43" 4 4m® + 64m + 249
> (4m’ + 86m? +442m +276)2" "3 + dm? + 64m + 249
+ (m* 4 25m+150) [3"° 4 (m+ 5)3" 4] 4+ 9" +0
—2(4m® +40m+87)3"™F + (m? +m— 102)2" 437+
= (4m® +86m* +442m +276)2"3 + 96 1 4m? 4 64m + 249
+ (678 + 110m + 9m* +m*) 3™ + (m* + m — 102)2" 437+
= (4m® +86m* +442m +276)2" 3 + (678 + 110m + 9m® + m*) 3"
+ 3" [3MHT 4 2 (1 - m— 102) ] + 4m® + 64m + 249
> (4m? + 86m® +442m +276)2" 3 4 (678 + 110m + 9m* + m*) 3"

3
4374 [2 ('" Z 7) 2T 4 2m (m? 4 m — 102) | +4m® + 64m + 249
(=0
= (4m’ +86m* +442m +276)2" 3 + (678 + 110m + 9m*+ m’) 3" 4
+ (66 +215m + 30m? + m?) 2334 1 dm® + 64m + 249
>0,
B(m) =2(8m’ +92m* +282m +207)3"> — (2m+1)9"° — (6m* + 145m’
+839m? +592m — 1524)2" 3 — (m® + 31m* 4 234m + 108)4™
— (m* +5m* — 96m — 12)2" 336 — (83 + 148m* + 794m + 1065),

and
% (m) = (2m’ +5Tm" + 388m” + 585m* + 480m + 2988)2" " + (m* + 36m’
+323m* + 12m — 756)4™* +4m* + 84m> + 569m* + 1401m + 1152
+ (m* + 10m* — 99m? +24m + 252)2"™ 33" 4 m(m+1)9"
—2(4m* + 52m® + 207m* + 327m + 288)3" .

It is clear that M,,(k) may be regarded as a quadratic polynomial of k and it has a

unique possible minimum point 2@,(( )) which, due to k >4 and 0 <m < k-2,

should satisfy — ( L > > m+2. But, the fact is that — (( )) < m+2, thatis,

o m) =
2(m+2)ef (m) + B(m) = [3" + (m® — 3m* — 112m — 780)2" 3] 3" +3
+ (m +23m® + 166m +492)4™ > — 2 (4m* + 52m + 141)3" 3
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+ (2m® +43m? + 389m* + 1728m +2628)2" > — dm* — 40m — 69

>

3
3# gzo ('Z) 2"t (m® —3m? — 112m —780)2"+3 |3+

+ (m® +23m* + 166m +492)3"+ — 2 (4m* + 52m + 141)3"
+ (2m®* +43m? + 389m* + 1728m + 2628) — 4m* — 40m — 69
= (5136 +29404m + 6177m> +2315m?) 2" 43" + (m* + 15m*

+62m +210)3" 4 2m* + 43m* + 385m* + 1688m + 2559
> 0.

This contradiction shows that, when k > 4 and k > m+ 2 > 2, the quantity M,,(k) can
be regarded as a quadratic polynomial of k and it has no any minimum. Combining
this with the fact that <7 (m) > 0 concludes that the quadratic polynomial M,,(k) of k
is increasing with respect to k. A direct computation reveals that

My (k) =3360(54 — 137k +74k>), M, (k) = 1568 (6480 — 7306k + 1909k%),

M (k) = 336(750942 — 549881k + 95837k%)
are positive for k > 4 and that for m >3 and k > m+2

My (k) = My(m+2) =2{9 + (m* +20m> + 155m* + 508m + 780)2*"*"
+ (2m* + 61m® +703m? +3692m + 7140)2" 2 4- 373 [37+7
— (492 + 172m +29m* + m*) 2" —2(111 4 32m +2m*) | }

> 2{9 + (m* +20m® + 155m* + 508m + 780)2°"*7 + (2m* + 61m’

}

m+5
- 2{316 (6652 + (331 x 2" — 64)m” +4(893 x 2" — 256)m

+48(73 x 2" —74)] + (m* +20m> + 155m* + 508m + 780)22"+7

3
+703m® + 3692m + 7140)2" 2 4+ 37+ [37 > (’Z) omt
=0

— (492 + 172m +29m* + ) 2"+ — 2(111 + 32m +2m?)

+ (2m* 4+ 61m® +703m* + 3692m + 7140)2"+2 + 9}
> 0.

Accordingly, the inequality (3.8), and so the inequality (3.7), holds forall 0 <m < k—2

and k > 4. This means that the sequence %
Vir1(£)

and so that the sequence lre)vy 1S increasing with respect to ¢. Therefore, in

is decreasing with respect to m,
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order to show the inequality (3.6) for k >4 and k > ¢ > 1, it is sufficient to prove the
inequality
U, Vir1 (1
Uy Vi(1)
for k > 4, which is equivalent to

(K — 3k — 12)25 1354 4 (k2 + 10k +20)3*H + &2 + 6k + 4
+ [(R2+ 13k 420)2575 — (K + 16k + 1182+ 435k + 540)] 24! > 0
for k > 4. Since

(K* + 13k +20)2%" — (k* + 16k + 118k + 435k + 540)

2
> 27 (kK +13k+20) Y (’;) — (k*+ 16k + 118k* + 435k + 540)
(=0

= 15k* +208k° + 442k% + 301k + 100 > 0

and k%> — 3k — 12 is positive for k > 6, the inequality (3.9) is valid for k > 6. By
a straightforward computation, it is easy to see that the inequality (3.9) is also valid
for k =4,5. Therefore, the inequality (3.9) is valid for all £ > 4. In conclusion, the
inequality (3.6) holds for k >4 and k >/ > 1.

Substituting (3.5) and (3.6) into (3.4) reveals that Cy.1 () — Ci(B) > 0 is valid for
k>4 and 0 < B < 1. Hence, the sequence C(f3) = %Aﬁ) is increasing with respect to
k>0 for 0 < B < 1. By Lemma 2.3, it follows that the derivative

d { 1 ]:z?oékw)u"
du | Gg(u) Yoo Mk

Gﬁl( 7 is convex on (0,0) . The proof of the convexity

is increasing and that the function

of the function (1.20) is complete.
It is easy to obtain

L R T B So&(B)ut  &(B) Bt
ugo*d“[Gﬁ( )} w0 Yok A3
and, by Lemma 2.4,
g[ i ]:meu—l)%(z Bu) (e = Dle"(u—2)+u+2l5(2/Bu)
du [Gg(u)| e*(e*—1—u)(Bu)’/? ﬁue”(” 1—u)?
L(2y/Bu) 1
~PB (Bu)3/? _ﬁeub(z

as u — oo for 0 < B < 1. Consequently, from its monotonicity on (0,c), the derivative

d 1 . . 1 . o« .
a0 [W] has a unique zero, and so the function G has a unique minimum, and

so the positive function Gg(u) has a unique maximum, on (0,%). The proof of the
unimodality of the function (1.20) is complete. []

<0

Bu) — oo
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4. Proof of Theorem 1.3
With the help of Theorem 1.2, we now start off to prove Theorem 1.3.
If the function #7H | (¢) is completely monotonic on (0, o), then its first derivative
is non-positive, that is,

— T2 gt [y (1) — /' 1] + 2y (1) + /') <0,

which can be formulated as

20! 1/t
=y (t)+e
q< 1/[ / éI)(l‘)'
tle!/t — (1) — 1]
By virtue of (2.6) for n = 1,2 and the expansion
S |
V=1 — 0
e +m§1m'tm7 # )
we have
301 1 2711 1 1 1 1
o) ~o ——h=0mE 7O 7)Platatar—a+0(w)]
4 1 1 1, 1 1 1 1
HZomr TO0@)] -+ Tar — s TO(3)] -1}

57 +O0(%)

[ +0(3)]

as t — oo. This implies that
degl [H11(1)] < 4. 4.1)

By the integral representation (1.10), the formula (3.3), the definition of Hj (z),
and integration by part, we have

t4H171(t) :t4/0°° [Il (Zﬁ) __u ]e_t”du

Vu l—e
oo I 2 —tu
:—t3/ I \/ﬁ)— - de du
0 Ju l—e | du
o I (2
:t3/ i 1( \/ﬁ) - e "du
o du| u l—e
/wi Il (2\/ﬁ) _ u —tudu
o Jo du?| Vu 1 —et
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/ an 2\/—)— L ledu
24 du* l—et

Is(2y/u) u @
24 /[ /2 _<1—e“> ]e’du. (4.2)

As a result, by Lemma 2.6 and by the inequality (1.19) for k =5, we conclude that
the function ¢*Hj 1(¢) is completely monotonic on (0,). So, by the definition of
completely monotonic degrees, we have

degém[Hu(t)} > 4. (43)

Combining (4.1) and (4.3) yields (1.21).
As deducing the integral represntation (1.10), we can derive that

e Il (2 ) u ] B
Hyp(z) = / v e duy 44
ouﬁ( ) 0 [ \/W [ _ev (4.4)
for Rz > 0. Employing (3.3) and integrating in part as in (4.2) yield

He (1) — _/Ow [‘Xﬁ I (f/\é_l?) - _ueu] dZ:M "

—ocB—H—/ [aﬁz \/_) ( " >/]e_t"du.

Consequently,

1. when o3 = 1, the function tH,, g(t) becomes

Ho 1) — /O°° [ﬁ b (Zﬁuﬂu) B (1 _ue_u>/} e duy

and, by integration by part and the recursion (3.3),

[P ()
B E—F/m[ﬁk(z\/m) —< - )N}e—mdu;
0

2 Bupr  \T-e

(a) if B > 1, by virtue of the fact that the function 3(2") is strictly increasing
on (0,e0) and by the inequality (1.19) for k = 3, it is not difficult to see that
the completely monotonic degree of the function H, g g(t) for B > 1 is 2;

(b) if 0 < B <1, by the necessary condition (1.14), the function Hy, g(t) is not
completely monotonic;

(c) if B =1, the discussing question goes back to the proof of (1.21);
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2. when aff > 1 and

2 Bu u /_ )
e 5L(2v/Bu) (1—e—u> =Gp(u), 4.5)

the completely monotonic degree of H,, g(t) is 1; By virtue of the monotonic-
ity and unimodality of the function (1.20) obtained in Theorem 1.2, the quan-
tity (1.23) follows.

The proof of Theorem 1.3 is complete. [l

5. Remarks

Finally we list some remarks on something to do with our lemmas and theorems.
REMARK 5.1. We note that Lemma 2.3 has been generalized in [10, Lemma 2.2].

REMARK 5.2. The function F3(u) defined by (3.2) can also be decomposed as

F3(u) = fi(u) + fau) + f3(u),
where

fi(u) = [10u(e" —261) +3966]e™,  f>(u) = (69¢* —7119u — 4035)e",
f3(u) = 3249¢* — 793u — 3249,

and these three functions are all increasing respectively on the intervals [5,e0), [3,0),
and [0,00). Then it follows that F3(u) is increasing and positive on [5,0).

REMARK 5.3. In the draft of this manuscript, we ever used Theorem 2 in [13,
p. 22] to prove the positivity of the function F3(u) defined in (3.2) on (0,6). But, the
inequality (14) stated in [13, p. 22, Theorem 2], and then the inequality (18) in [13,
p. 22], is wrong. So we have to give up using [13, p. 22, Theorem 2] to prove the
inequality (1.19).

By the way, we can reformulate [13, Theorem 1] as follows. For x € [0,b] and
n >0, we have

(n+1)'op(b) —e*

S of _ +1 5 W S| ]
0=e"—Su(x) —ap(b)x" > CEICES (b—x)x""", (5.1)
where . . ®)
1ox e’ —S,(b
S,,(x) = 2 E and (Xn(b) = W (52)

The equalities in (5.1) are valid if and only if x = 0,b. This theorem was proved
once again in [8] and was collected in the monograph [11, p. 290] and its older and
subsequently revised version.
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REMARK 5.4. By Descartes’” Sign Rule, it follows that

1. the polynomial P (m) = m*+36m*+323m>+ 12m — 756 has one possible posi-
tive zero; since P;(0) = —756 and P;(2) = 864, this zero belongs to the interval
(0,2), s0 Pi(m) >0 form=>2;

2. the polynomial P (m) = m* 4+ 10m® — 99m? + 24m -+ 252 has two possible posi-
tive zeros; since P5(0) =252, P5(3) = —216, and P»(6) = 288, these two zeros
locate in the interval (0,6), so P(m) >0 for m > 6.

Furthermore, we have

m(m+1)9"0 —2(4m®* + 52m® +207m* + 327m + 288)3"
= [m(m+1)3"7 = 2(4m* + 52m> +207m* + 327m + 288)] 3"

3
7 :
> |mm+1)Y, <m+ )2‘—2(4m4+52m3+207m2+327m+288) 3mes

(=0 ¢
= (4m’ + 58m* + 278m’ + 407m* — 825m — 1728)3"

and, by Descartes’ Sign Rule, the polynomial
P3(m) = 4m® + 58m* +278m> 4+ 407m* — 825m — 1728

has one possible positive zero. Since P3(0) = —1728 and P3(1) = 1530, it follows that
P3(m) is positive for m > 2. Consequently, we obtain that % (m) defined in (3.8) is
positive for m > 6. Considering that

% (0) = 181440, % (1) = 10160640, % (2) =252316512,
€ (3) =4549288320, € (4) = 68981774400, € (5)=939390217920,
we conclude that ¥ (m) are positive for all nonnegative integers m > 0.
By similar argument to above, we can determine that %(m) < 0 for all nonnega-

tive integers m > 0.

REMARK 5.5. In order to prove

u+6 u )
> .
we write N
u —ku
— :uEe
l—e ¥ =

from which we obtain
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Soforu>a>4
( u >(4)
<
1—e ¥

I (ku—4)e ™ = uKy(a) — 4K3(a),

M s

k=1

where .
Ki(a)=Y, ke k.
k=1

These functions can be calculated for small values of ¢ and K4(7) =0.0009--- < % .
Therefore, the inequality (5.3) holds for u > 7. As a result, it is sufficient to prove the

inequality (5.3) on the interval [0,7].

REMARK 5.6. By aresultin [18] (or see [9, p. 35, (3)]), we have

o dy 2 Bo ottty ) (5.4)
1—et 2 A (2K)! e ’
where . 5
Va(u) = 5.5
() ,Zl (2 + 42K2) (27k) " (>3
and it was proved in [9, Lemma 2.3] that
12V, ()] % >0 (5.6)
for u >0 and 0 <k < /. By (5.4) for n =1, it follows that
2
4 T L
uVl(u)—l—f—z—I—lz Tt (5.7)
hence, by (1.9) for n =1,
/m u*vi(u)e ™ du = ! + LI v (x) (5.8)
0 x  2x2 0 6x3 ’ ’

Since the inequality (5.6) holds for 0 < k < 2, we obtain by [9, Theorem 1.3] that

1 1 1
2012 =
* [x T e Y (x)}

is completely monotonic on (0,0). If we add the completely monotonic function

to the above, we find that the function

X [el/x —1—vy/'(x)]
is completely monotonic on (0,), that is,

degtcm[HLl(l)} > 2. (59)
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REMARK 5.7. Now, if we use (5.4) for n = 3, we obtain similarly that
i 1 1 1 1 1
8 —ux /
V- du=-+—4+———c+—=— . 5.10
/0 uVa(u)e “=3 + 2x2 + 6x3  30x° + 42x7 V() ( )
Since the inequality (5.6) holds for 0 < k < 4, we acquire by [9, Theorem 1.3] that
1 1 1 1 1
gt b,
* [x T2 T8 300 T Y (x)]

is completely monotonic on (0,0). If we add the completely monotonic function

to the above, we gain that the function

1 1 1 17
4r 1
* [e/x_l_"//(x)]_ﬂ_%_W“L@

is completely monotonic on (0,c0). By further adding three completely monotonic
terms we finally earn that the function

1 17

Ar /x4 3/ e
xte 1—y/(x)] 24+6!x3

is completely monotonic on (0,).
If one can manage to remove the last term %, then the first result (1.21) in
Theorem 1.3 follows.

REMARK 5.8. Motivated by properties of the functions Fg(«) and Gg(u) defined
in (1.12) and (1.20) respectively, we conjecture that

1. when 3 <k <5 and 8 > 1, the function

- (ﬁu)k/z u (k—1)
Hk,ﬁ(u)—lk(z\/m)<l_e_u> (5.11)

is decreasing on (0,0);
2. when 3 <k <5 and 0<f3 <1, the function Hy g(u) is unimodal on (0,e0);

3. when 3 <k <5 and 0 < f <1, the function m is convex on (0,00).

REMARK 5.9. We conjecture that for all k£ > 6 the inequality (1.19) does not hold
on (0,).

REMARK 5.10. This paper is a modified version of the preprint [14].
Acknowledgements. The author would like to express heartfelt thanks to Professor

Christian Berg at Copenhagen University in Denmark for his valuable comments on
and helpful suggestions to the draft of this paper.
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