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ON THE BOUNDEDNESS OF FRACTIONAL TYPE

MARCINKIEWICZ INTEGRAL OPERATORS

QINGYING XUE, KÔZÔ YABUTA AND JINGQUAN YAN ∗

(Communicated by J. Pečarić)

Abstract. We show that a broad family of fractional type Marcinkiewicz integral operators with
the kernel belonging to L1(Sn−1) is bounded from the Triebel-Lizorkin space Fα

pq(R
n) to Lebesgue

space Lp(Rn) , which improves some known results significantly. This is done by exploiting a
local but more general fractional version of Littlewood-Paley g -function.

1. Introduction

Let Ω be a homogeneous function of degree zero on R
n with Ω ∈ L1(Sn−1) and

its integration on the unit sphere vanishes. Define the fractional type Marcinkiewicz
integral operator μΩ,α ,ρ ,q by

μΩ,α ,ρ ,q f (x) =
(∫ ∞

0

∣∣∣∣ 1
tρ+α

∫
|y|�t

f (x− y)
Ω(y)
|y|n−ρ dy

∣∣∣∣
q dt

t

) 1
q

.

There are many known results concerningwith the above operator. Among such achieve-
ments are the celebrated and earlier work of Marcinkiewicz [10] and Zygmund [16].
For generalizing Marcinkiewicz and Zygmund’s work, in 1958, Stein [12] defined and
studied the n -dimensional Marcinkiewicz integral μΩ,0,1,2 by the famous real variable
techniques introduced by Calderón and Zygmund. Stein showed that the Marcinkiewicz
integral μΩ,0,1,2 was of type weak (1,1) and type (p, p) (1 < p � 2) with Ω ∈ Lipα
(0 < α � 1) . In 1960, in connection with the well known Marcinkiewicz integral, the
Lp boundedness of the parametric Marcinkiewicz integral operator μΩ,0,ρ ,2 was con-
sidered by Hörmander in [9]. From then on, the Marcinkiewicz integral and fractional
type Marcinkiewicz integral of higher dimensions with more rough kernel were studied
by many authors, see for example [14], [5], [6], [7], [1], [2] and the references therein.
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In 2002, Chen, Fan and Ying [4] proved that μΩ,α ,1,q is bounded from the homoge-
neous Triebel-Lizorkin space Ḟα

pq(R
n) to Lebesgue space Lp(Rn) for suitable α and

Ω ∈ Lr(Sn−1) (r > 1) .
Now we define a more general type fractional Marcinkiewicz integral as follows:

SΓ,hν ,α ,q,ρ f (x) =
(∫ ∞

0

∣∣∣∣
∫
|y|�t

hν(tα |y|)
tρ f (x− y)

Γ(y)
|y|n−ρ dy

∣∣∣∣
q dt

t

) 1
q

. (1.1)

If −1 < ν < 0, β ∈R , α =−1−β/ν , ρ = 1, δ = 1+ν , hν(t)= tν and Γ(y) = Ω(y) ,
then the corresponding operator SΓ,hν ,α ,q,ρ reduces to the fractional type Marcinkiewicz
operator μΩ,β ,δ ,q . Recently, Al-Salman studied the operator μΩ,β ,δ ,2 and obtain the
following result.

THEOREM A. Let α > −1 , −1 < ν < 0 and ν(1+ α) > −1 . Suppose that hν
satisfies

|hν(t)| � c1t
ν for 0 < t < 1; (1.2)

|hν(t)−Aνtν | � c2t
βν for 0 < t < 1; (1.3)

hν(t)| = O(t−εν ) for t � 1. (1.4)

for some 0 < εν < 1 , βν > max(0,−ν) , c1, c2 > 0 and real Aν .
In addition, Ω∈L logL(Sn−1) satisfies the cancellation condition. Then for 2/(2+

ν(1+ α)) < p < 2/(−ν(1+ α)) , there exists a constant Cp > 0 such that

‖SΩ,hν ,α ,2,1 f‖Lp(Rn) � Cp‖ f‖Lp
−ν(1+α)(R

n), (1.5)

where Lp
−ν(1+α)(R

n) is the Sobolev space.

In this paper, our first main aim is to show that we can weaken the assumption
Ω ∈ L logL(Sn−1) in Theorem A to Ω ∈ L1(Sn−1) , and Theorem A even holds for
general q which is bigger than one and general ρ bigger than zero. This is done by
using a recent result in [15] concerning with a local but more general fractional version
of Littlewood-Paley g -function. Let I be an interval in (0,+∞) . Let {σt : t ∈ I} be a
family of L1(Rn) functions, α ∈ R , q ∈ [1,∞) . Define the localized Littlewood-Paley
g -function as follows:

gI,α ,q( f )(x) =
(∫

I
|σt ∗ f (x)|q dt

t1+qα

) 1
q

.

If I = (0,∞) , we simply denote gI,α ,q( f ) = gα ,q( f ) . If α = 0 and q = 2, then g0,2

was studied by [8] Duoandikoetxea and Rubio de Francia, Here and hereafter, for 1 <
p < ∞ we denote max(p, p′) by p̃ , where p′ is the conjugate exponent of p , i.e.
p′ = p/(p−1) .

The following theorem was obtained in [15].
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THEOREM 1. ([15]) Let 1 < p,q < ∞ . Assume ‖supt∈I |σt | ∗ f‖Lγ (Rn) �
Cp‖ f‖Lγ (Rn) for all f ∈ S(Rn) and all γ ∈ (1,∞) . If one of the following conditions
holds

(i) |σ̂t(ξ )| � C(|ξ |t)β+ for some β+ > 0 , all t ∈ I and α ∈ (0, 4β+/ p̃q̃) .
(ii) |σ̂t(ξ )| � C(|ξ |t)−β− for some β− > 0 , all t ∈ I and α ∈ (−4β−/ p̃q̃, 0) .
Then

‖gI,α ,q( f )‖Lp(Rn) � C‖ f‖Ḟα
pq(Rn), (1.6)

where Ḟα
pq(Rn) is the homogeneous Triebel-Lizorkin space.

From this we deduce the following consequence.

COROLLARY 2. Let 1 < p,q < ∞ , α ∈ (0,4/ p̃q̃) , I1 and I2 be disjoint intervals
with R+ = I1

⋃
I2 . Assume

σt(x) =
Γ(x)h(t,x)tα

|x|n with Γ∗(x′) = sup
r>0

|Γ(rx′)| ∈ L1(Sn−1),

and |h(t,x)| � h̃(t, |x|) (t ∈ R+ , x ∈ R
n ) for some h̃(t,r) . Assume the following three

conditions:

Nα f = sup
t∈I1

|σt ∗ f | is a bounded operator on Lγ (Rn) for all γ ∈ (1,∞), (1.7)

∫ ∞

0

(∫
I2
|h̃(t,r)|q dt

t

) 1
q dr

r
< ∞, (1.8)

and for any t ∈ I1 , ∫
Rn

Γ(x)h(t,x)
|x|n dx = 0,

∫ ∞

0
h̃(t,r)dr � Ct1−α . (1.9)

Then there exists a constant C > 0 such that

‖gα ,q( f )‖Lp(Rn) � C‖ f‖Fα
pq(Rn).

In the above inequality, Fα
pq(R

n) is the Triebel-Lizorkin space, namely the collec-

tion of all f ∈S ′(Rn) such that ‖ f‖Fα
pq(Rn) =

∥∥∥(
∞
∑
j=0

2 jαq|(ϕ j f̂ )∨|q)1/q
∥∥∥

Lp(Rn)
< ∞, for

α ∈ R,0 < p < ∞, and 0 < q < ∞ . With usual modification if q = ∞ .
Using Corollary 2, we obtain the following improvement and extension of Theo-

rem A.

THEOREM 3. Let 1 < p,q < ∞ , ρ > 0 , α > −1 , ν < 0 . Assume |hν(t)| � Ctν

(0 < t < 1) and |hν(t)| � Ct−εν (t � 1) for some εν > 0 . If ρ +ν > 0 , αεν +ρ > 0 ,
−ν(1+α)< 4

p̃q̃ , and Ω∈L1(Sn−1) satisfies the cancellation condition
∫
Sn−1 Ω(x′)dσ(x′)

= 0 , then we have
‖SΩ,hν ,α ,q,ρ‖Lp(Rn) � C‖ f‖

F
−ν(1+α)
pq (Rn)

. (1.10)
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REMARK 1. Note that if q = 2, ρ = 1, then −ν(1+ α) < 4/ p̃q̃ coincides with
2/(2+ ν(1+ α)) < p < 2/(−ν(1+ α)) , which appears in Theorem A.

Our second purpose of this paper is to study the truncated operators defined by

S(0)
Γ,hν ,α ,q,ρ f (x) =

(∫ 1

0

∣∣∣∣
∫
|y|�u

f (x− y)
Γ(y)
|y|n−ρ

hν(uα |y|)
uρ dy

∣∣∣∣
q du

u

) 1
q

(1.11)

and

S(∞)
Γ,hν ,α ,q,ρ f (x) =

(∫ ∞

1

∣∣∣∣
∫
|y|�u

f (x− y)
Γ(y)
|y|n−ρ

hν(uα |y|)
uρ dy

∣∣∣∣
q du

u

) 1
q

. (1.12)

We obtain the following result:

THEOREM 4. Suppose that Γ ∈ L1(Sn−1) satisfies Γ∗(x′) = supr>0 |Γ(rx′)| ∈
L1(Sn−1) , and that hν satisfies (1.2) and (1.4). Let α > −1 . Then for 1 � q � ∞
we have

(a) ‖S(∞)
Γ,hν ,α ,q,ρ f‖Lp(Rn) �C‖Γ∗‖L1(Sn−1)‖ f‖Lp(Rn), 1 � p � ∞ whenever ν > −ρ .

(b) ‖S(0)
Γ,hν ,α ,q,ρ f‖Lp(Rn) � C‖Γ∗‖L1(Sn−1)‖ f‖Lp(Rn), 1 � p � ∞ whenever ν > 0 .

(c) ‖SΓ,hν ,α ,q,ρ f‖Lp(Rn) � C‖Γ∗‖L1(Sn−1)‖ f‖Lp(Rn), 1 � p � ∞ whenever ν > 0 .

REMARK 2. The case ρ = 1, q = 2 and 1 < p < ∞ was treated in Theorem 1.3
in [1].

2. Proofs of Corollary 2 and Theorems 3 and 4

Proof of Corollary 2. It is easily seen by Minkowski’s inequality that for 1 �
p,q � ∞ ,

(∫
I2
|σt(x)|q dt

t1+qα

) 1
q ∈ L1(Rn) would imply ‖gI2,α ,q( f )‖Lp(Rn) �C‖ f‖Lp(Rn) .

By our choice of σt(x) , this suffices to demand
∫ ∞
0

(∫
I2
|h̃(t,r)|q dt

t

) 1
q dr

r < ∞ .
We apply Theorem 1 to estimate ‖gI1,α ,q( f )‖Ḟα

pq(Rn) . By (1.9),

|σ̂t(ξ )| = tα
∣∣∣∣
∫

Rn
(e−2π ix·ξ −1)

Γ(x)h(t,x)
|x|n dx

∣∣∣∣ � 2πtα
∫

Rn
|x ·ξ | |Γ(x)h(t,x)|

|x|n dx

� 2πtα‖Γ∗‖L1(Sn−1)

∫ ∞

0
h̃(t,r)dr|ξ | � Ct|ξ |.

Hence by Theorem 1, we have ‖gI1,α ,q( f )‖Lp(Rn) � C‖ f‖Ḟα
pq(Rn) . This completes the

proof. �

Now, we are in the position to prove Theorem 3.
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Proof of Theorem 3. Set h(t,x) = χ[0,1](
|x|
t )( |x|t )ρhν(tα |x|) , Γ(x) = Ω(x/|x|) , and

σt(x) = Ω(x/|x|)h(x,t)t−(1+α)ν/|x|n . Then g−(1+α)ν,q reduces to SΩ,hν ,α ,q,ρ . Define

h̃(t,r) = χ[0,1]

(
r
t

)(
r
t

)ρ |hν(tαr)| . Hence by Corollary 2 with I1 = (0,1) and I2 =
(1,∞) , it suffices to show the following three claims:

∫ t

0

( r
t

)ρ |hν(tαr)|dr � Ct1+ν(1+α) for any t ∈ (0,1); (2.1)

N−(1+α)ν f = sup
t∈(0,1)

t−(1+α)ν
∣∣∣∣Ω(·)h(t, ·)

| · |n ∗ f

∣∣∣∣ is a bounded operator on Lp(Rn); (2.2)

∫ ∞

0

(∫ ∞

max{1,r}
|hν(tαr)|q dt

t1+ρq

) 1
q dr
r1−ρ < ∞. (2.3)

We first show (2.1). As α > −1, we have tαr < t1+α � t0 = 1 for 0 < r < t < 1.
Thus ∫ t

0
(
r
t
)ρhν(tαr)dr � C

tρ−αν

∫ t

0
rρ+νdr � t1+(1+α)ν

ρ + ν +1

if ρ + ν > −1.
For (2.2), as tαr < 1,

N−(1+α)ν f (x) = sup
t∈(0,1)

t−(1+α)ν
∣∣∣∣Ω(·)h(t, ·)

| · |n ∗ f (x)
∣∣∣∣

� C sup
t∈(0,1)

t−ρ−ν
∫
|y|�t

|Ω(y′)|
|y|n−ρ−ν | f (x− y)|dy.

As Ω ∈ L1(Sn−1) and ρ + ν > 0, by using the Lp boundedness of the Hardy-
Littlewood maximal function, N−(1+α)ν f is indeed a bounded operator on Lp(Rn) .

We next show (2.3). We rewrite the left side of (2.3) as follows.

∫ ∞

0

(∫ ∞

max{1,r}
|hν(tαr)|q dt

t1+ρq

) 1
q

dr
r1−ρ

=
∫ 1

0

(∫ ∞

1
|hν(tαr)|q dt

t1+ρq

) 1
q

dr
r1−ρ +

∫ ∞

1

(∫ ∞

r
|hν(tαr)|q dt

t1+ρq

) 1
q

dr
r1−ρ

=: I + II.

For the term II , as r > 1 and α > −1, it follows tαr � 1 for t > r . We obtain

∫ ∞

r
|hν(tαr)|q dt

tqρ+1 � C
∫ ∞

r

1
tqαεν rqεν

dt
tqρ+1 =

C
qρ +qαεν

1

rq(1+α)εν+qρ (2.4)

because of αεν + ρ > 0. So, it can be seen that II < ∞ as (1+ α)εν > 0.



524 Q. XUE, K. YABUTA AND J. YAN

For the term I , if α > 0, we have r−1/α � 1 as 0 < r < 1, and hence∫ ∞

1
|hν(tαr)|q dt

tqρ+1

� C
∫ r−1/α

1
tqανrqν dt

tqρ+1 +C
∫ ∞

r−1/α

1
tqαεν rqεν

dt
tqρ+1

=
Crqν

qαν −qρ
(r−qν+qρ/α −1)+

C
rqεν (qαε +qρ)

rqεν+qρ/α

� C
qρ −qαν

rqν +
C

qρ +qαεν
rqρ/α ,

(2.5)

because of αεν + ρ > 0, α, ρ > 0 and ν < 0. Hence, we have I < ∞ .
If −1 < α � 0, it follows tαr � 1 and we have∫ ∞

1
|hν(tαr)|q dt

tqρ+1 � C
∫ ∞

1
tqανrqν dt

tqρ+1 � C
qρ −qαν

rqν (2.6)

provided ρ −αν > 0. Since ρ + ν > 0 and 0 > α > −1, we get ρ −αν > 0. So, we
have I < ∞ when ρ + ν > 0.

In conclusion, (2.3) holds if ρ + ν > 0 and αεν + ρ > 0 and the theorem is
proved. �

REMARK 3. Under ρ = 1 and p = q = 2, Corollary 1.5 [1] coincides with the
above corollary. Theorem 1.6 in [1] deals with the case of general p but demanding
additionally εν < 1 and Ω ∈ L(logL)(Sn−1) .

REMARK 4. If we set hν(x) = |x|ν for ν < 0, then the operator SΩ,hν ,α ,q,ρ be-
comes

μΩ,β ,ρ̃ ,q f (x) =
(∫ ∞

0

∣∣∣∣ 1

t ρ̃+β

∫
|y|�t

f (x− y)
Ω(y)
|y|n−ρ̃ dy

∣∣∣∣
q dt

t

) 1
q

, (2.7)

with ρ̃ = ρ + ν , β = −(1 + α)ν . By Theorem 3, we get the boundedness of the
fractional Marcinkiewicz integral operator for 0 < α < 4/ p̃q̃ and ρ̃ > 0:

‖μΩ,β ,ρ̃,q f‖Lp(Rn) � C‖ f‖Fα
pq(Rn). (2.8)

This was proved recently by the authors in [15] and improves Corollary 1.7 and Corol-
lary 1.8 in [1].

Proof of Theorem 4. In the case 1 � q < ∞ , by Minkowski’s inequality we have

S(0)
Γ,hν ,α ,q,ρ f (x) �

∫
Rn

| f (x− y)| |Γ(y)|
|y|n−ρ

(∫ 1

0
χ{|y|�u}|hν(uα |y|)|q du

u1+qρ

) 1
q

dy (2.9)

and

S(∞)
Γ,hν ,α ,q,ρ f (x) �

∫
Rn

| f (x− y)| |Γ(y)|
|y|n−ρ

(∫ ∞

1
χ{|y|�u}|hν(uα |y|)|q du

u1+qρ

) 1
q

dy. (2.10)
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We have similar estimates in the case q = ∞ .

(1) We treat first S(0)
Γ,hν ,α ,q,ρ . Let 1 � q < ∞ . If |y| � 1, |y| � u < 1 and α > −1

(ρ �= αν) , then we have 1 > u1+α � uα |y| . Thus we have by the assumption |hν(t)|�
Ctν (0 < t < 1)∫ 1

0
χ{|y|�u}|hν(uα |y|)|q du

u1+qρ � C
∫ 1

|y|
uqαν |y|qν du

u1+qρ

=
C|y|qν

qαν −qρ
(1−|y|qαν−qρ) � C

|qρ −qαν|(|y|
qν + |y|q(1+α)ν−qρ)

(2.11)

for |y| � 1. If |y| > 1, then we see that the first term in (2.11) is equal to 0. Set

G(x) =

{
Γ∗(y/|y|)
|y|n−ρ (|y|ν + |y|(1+α)ν−ρ), |y| � 1

0, |y| > 1.
(2.12)

In the case ρ = αν , the left side of (2.11) is bounded by C log1/|y| . So, we set
G(x) = Γ∗(y/|y|) log1/|y| (|y| � 1) = 0 (|y| > 1) . Thus, in any case, if ν > 0, α >
−1 and Γ∗(y′) = supr>0 |Γ(ry′)| ∈ L1(Sn−1) , we see that G ∈ L1(Rn) , ‖G‖L1(Rn) �
C‖Γ∗‖L1(Sn−1) and S(0)

Γ,hν ,α ,q,ρ f (x) � C| f | ∗G(x) . Therefore we have

‖S(0)
Γ,hν ,α ,q,ρ f‖Lp(Rn) � C‖Γ∗‖L1(Sn−1)‖ f‖Lp(Rn), 1 � p � ∞. (2.13)

In the case q = ∞ , we obtain similarly

sup
{|y|�u<1}

|hν(uα |y|)|
uρ � C(|y|ν + |y|(1+α)ν−ρ),

and so we have the same estimate (2.13) in this case, too. This shows (b).
(2) Next we treat S(∞)

Γ,hν ,α ,q,ρ . Let 1 � q < ∞ .

(i) If |y| � 1 and α > 0 (ρ �= αν) , it follows |y|−1/α � 1 and we have∫ ∞

1
χ{|y|�u}|hν(uα |y|)|q du

u1+qρ

� C
∫ |y|−1/α

1
uqαν |y|qν du

u1+qρ +C
∫ ∞

|y|−1/α

1
uqαεν |y|qεν

du
u1+qρ

=
C|y|qν

qαν −qρ
(|y|−qν+qρ/α −1)+

C
|y|qεν (qαεν +qρ)

|y|qεν+qρ/α

� C
|qρ −qαν| |y|

qν +C
( 1
|qρ −qαν| +

1
qρ +qαεν

)
|y|qρ/α .

(2.14)

When ρ = αν , we can bound the left side of (2.14) by C log1/|y| .
(ii) If |y| � 1, u > 1 and −1 < α � 0, it follows uα |y| � 1 and we have∫ ∞

1
χ{|y|�u}|hν(uα |y|)|q du

u1+qρ � C
∫ ∞

1
uqαν |y|qν du

u1+qρ

� C
qρ −qαν

|y|qν ,
(2.15)
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provided ρ −αν > 0.
(iii) If |y| > 1 and α > −1, we obtain by |hν(t)| � C∞t−εν (t � 1)

∫ ∞

1
χ{|y|�u}|hν(uα |y|)|q du

u1+qρ =
∫ ∞

|y|
|hν(uα |y|)|q du

u1+qρ

� C
∫ ∞

|y|
1

uqαεν |y|qεν

du
u1+qρ =

C
qρ +qαεν

1

|y|q(1+α)εν+qρ .

(2.16)

Now we set in the case α > 0 (ρ �= αν)

G(x) =

⎧⎨
⎩

Γ∗(y/|y|)
|y|n−ρ (|y|ν + |y|ρ/α), |y| � 1

Γ∗(y/|y|)
|y|n−ρ |y|−(1+α)εν−ρ , |y| > 1,

(2.17)

in the case α > 0 (ρ = αν) we modify the above as in the case (1), and in the case
−1 < α � 0 and ρ −αν > 0

G(x) =

⎧⎨
⎩

Γ∗(y/|y|)
|y|n−ρ |y|ν , |y| � 1

Γ∗(y/|y|)
|y|n−ρ |y|−(1+α)εν−ρ , |y| > 1.

(2.18)

Hence, if α > −1 and ν > −ρ (in the case −1 < α < 0, ν > −ρ implies ν >
−ρ/(−α) i.e. ρ −αν > 0), and Γ∗(y′) = supr>0 |Γ(ry′)| ∈ L1(Sn−1) , then we see that

G ∈ L1(Rn) , ‖G‖L1(Rn) � C‖Γ∗‖L1(Sn−1) and S(∞)
Γ,hν ,α ,q,ρ f (x) � C| f | ∗G(x) . Thus

‖S(∞)
Γ,hν ,α ,q,ρ f‖Lp(Rn) � C‖Γ∗‖L1(Sn−1)‖ f‖Lp(Rn), 1 � p � ∞. (2.19)

In the case q = ∞ , we obtain similarly that

sup
{u>1}

χ|y|�u|hν(uα |y|)|
uρ �

⎧⎪⎨
⎪⎩

C(|y|ν + |y|ρ/α), if α > 0 and |y| < 1,

C|y|ν if 0 > α > −1, |y| < 1 and ρ −αν > 0,

C|y|−ρ−εν(1+α)ν if > α > −1 and |y| � 1.

Therefore, we have the same estimate (2.19) in this case, too.
Thus, we finished the proof for (a). The assertion (c) follows from (a) and (b). �
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