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ON THE BOUNDEDNESS OF FRACTIONAL TYPE
MARCINKIEWICZ INTEGRAL OPERATORS

QINGYING XUE, KOZO YABUTA AND JINGQUAN YAN*

(Communicated by J. Pecari¢)

Abstract. We show that a broad family of fractional type Marcinkiewicz integral operators with
the kernel belonging to L' ($"~!) is bounded from the Triebel-Lizorkin space F% (R") to Lebesgue
space LP(R"), which improves some known results significantly. This is done by exploiting a
local but more general fractional version of Littlewood-Paley g-function.

1. Introduction

Let Q be a homogeneous function of degree zero on R” with Q € L'(S"~1) and
its integration on the unit sphere vanishes. Define the fractional type Marcinkiewicz

integral operator Ug ¢ p 4 by
q d 1
t\ 4

o 1 Q
”Q,a,p,qf(x) - (/0 tpta /I)]th(x_y) ysy?o

There are many known results concerning with the above operator. Among such achieve-
ments are the celebrated and earlier work of Marcinkiewicz [10] and Zygmund [16].
For generalizing Marcinkiewicz and Zygmund’s work, in 1958, Stein [12] defined and
studied the n-dimensional Marcinkiewicz integral g 12 by the famous real variable
techniques introduced by Calderén and Zygmund. Stein showed that the Marcinkiewicz
integral g .12 was of type weak (1,1) and type (p,p) (1 < p <2) with Q € Lip,,
(0 < o < 1). In 1960, in connection with the well known Marcinkiewicz integral, the
L? boundedness of the parametric Marcinkiewicz integral operator lgp,2 Was con-
sidered by Hormander in [9]. From then on, the Marcinkiewicz integral and fractional
type Marcinkiewicz integral of higher dimensions with more rough kernel were studied
by many authors, see for example [14], [5], [6], [7], [1], [2] and the references therein.
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In 2002, Chen, Fan and Ying [4] proved that g o 14 is bounded from the homoge-
neous Triebel-Lizorkin space Fy;(R") to Lebesgue space L”(R") for suitable o and
Qerr (s (r>1).

Now we define a more general type fractional Marcinkiewicz integral as follows:

oo hv o 1—* qd %
Sr,hv,a,q,pf(w:(/o /|y |<th(x_y) ) 4 —t>. (L.1)

P yl"=P ]
If -1<v<0,BeR, a=—1-B/v,p=1,0=1+Vv, hy(r)=1" and T'(y) =Q(y),
then the corresponding operator St ,,.«,4,p reduces to the fractional type Marcinkiewicz
operator lg g s ,- Recently, Al-Salman studied the operator lig g 5, and obtain the
following result.

THEOREM A. Let oo > —1, =1 <v <0 and v(1+ o) > —1. Suppose that h,
satisfies

|y (1) <cit¥ forO<t<1; (1.2)
hy(t) — Ayt | < et for0 <1< 1; (1.3)
hy(t)|=0(t™®) fort>1. (1.4)

Sor some 0 < g, <1, By, >max(0,—V), c1,cz >0 and real A, .
In addition, Q € Llog L(S"~1) satisfies the cancellation condition. Thenfor 2/(2+
v(il+a)) <p<2/(-=v(l1+a)), there exists a constant C, > 0 such that

1Sany.a21fllr@n SCpllfllr @y (1.5)

v(l+0!)(

where L7 W R™) is the Sobolev space.

1+a)(

In this paper, our first main aim is to show that we can weaken the assumption
Q € LlogL($""!) in Theorem A to Q € L'($""!), and Theorem A even holds for
general g which is bigger than one and general p bigger than zero. This is done by
using a recent result in [15] concerning with a local but more general fractional version
of Littlewood-Paley g-function. Let / be an interval in (0,4<). Let {0; : 7 €I} be a
family of L!(R") functions, & € R, g € [1,e0). Define the localized Littlewood-Paley
g-function as follows:

8r0q(f)(x) = ( /1 107 * f(xwﬂ%) d

If I =(0,%0), we simply denote g;.o.4(f) = ga,q(f). If @ =0 and g =2, then go»
was studied by [8] Duoandikoetxea and Rubio de Francia, Here and hereafter, for 1 <
p < o we denote max(p,p’) by p, where p’ is the conjugate exponent of p, i.e.
p'=p/lp-1).

The following theorem was obtained in [15].
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THEOREM 1. ([15]) Let 1 < p,q < oo. Assume | sup,c;|0y| * fllor(R") <
Cpllfllr(mn) for all f € S(R") and all y € (1,%). If one of the following conditions
holds

(i) |6:,(&)| < C(|E|0)B+ for some By >0, all t € I and o € (0, 4B/ pq).

(i) |6:(E)| < C(|E|t) B~ for some B_ >0, all t € I and o € (—4B_/jg, 0).

Then

181,00 (F)llr ey < Cllfll g ny (1.6)

where F%(R") is the homogeneous Triebel-Lizorkin space.

From this we deduce the following consequence.

COROLLARY 2. Let 1 < p,qg<-oo, o€ (0,4/pG), I and I, be disjoint intervals
with R, =T UL. Assume

L(x)h(t,x)t*
EILIGE with T*(x') = sup |T(rx')| € L' ("7 1),
|x|n r>0

o (x) =

and |h(t,x)| < h(t,|x|) (t € Ry, x €R") for some h(t,r). Assume the following three
conditions:

No.f = sup|o; * f| is a bounded operator on LY (R") for all y € (1,), (1.7)
tel)
dr\id
o - q
/ ( Ih(t,r)lq—> T e, (1:8)
0 b t r
and forany t € I,
T(x)h(t o
/ Lg’x)dx: 0, / ht,r)dr < i (1.9)
n X 0

Then there exists a constant C > 0 such that

18et.g(N)lLr @) < CIIS |l pg -

In the above inequality, F,; (R") is the Triebel-Lizorkin space, namely the collec-

tion of all f €.%/(R") such that | f|| g (gr) = H( 3 27%|(g; f) \q)l/q’ < oo, for
Jj=0

Lr(R?)

a€R,0< p<eo, and 0 < g < eo. With usual modification if g = oo.
Using Corollary 2, we obtain the following improvement and extension of Theo-
rem A.

THEOREM 3. Let 1 < p,g<oo, p >0, aa>—1, v<0. Assume |h,(t)| < Ct¥
(0<tr<1)and |hy()| <Ct™® (t 2 1) for some €, >0.If p+v >0, e, +p >0,
—v(l+a) < %, and Q € L' (S"~1) satisfies the cancellation condition [¢—1 Q(x')do (x')
=0, then we have

1S@.ny,0q.0 | Lo (rr) < C||fHFI;1v(1+a>(Rn)~ (1.10)
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REMARK 1. Note thatif g =2, p =1, then —v(1 + a) < 4/pG coincides with
2/24+v(l+a)) <p<2/(—v(l+a)), which appears in Theorem A.

Our second purpose of this paper is to study the truncated operators defined by

(0) N TO) hy(®y]) | |9du
Sty aqpf(x)—</0 /M@f(x—y) £ Tdy 7) (1.11)

y[*=P
qd %
—”) . (1.12)
u

and

$Faant = ([

We obtain the following result:

/|y|<uf(x_y) r(y) hv(ua|y|)dy

ly[*=P  uP

THEOREM 4. Suppose that T € L'(S"™!) satisfies T*(x') = sup,-, |[T(rx')| €
L' (S"Y), and that hy satisfies (1.2) and (1.4). Let oo > —1. Then for 1 < q < o
we have

(a) Hsmv,a,q,pfnm(ﬂv) <[y 1f lp ey 1< p < oo whenever v > —p.
0 *

) 1154, g Nr @) < CUT Nl gy ANl 1< p < oo whenever v > 0.

©) IStay,aqpfller@ny < CIT syl fllrwey, 1< p < oo whenever v > 0.

REMARK 2. Thecase p =1, g=2 and 1 < p < e was treated in Theorem 1.3
in[1].

2. Proofs of Corollary 2 and Theorems 3 and 4

Proof of Corollary 2. It is easily seen by Minkowski’s inequality that for 1 <
1
p.a <o, (f,10:(0)|" x¥5) 7 € L'(R") would imply [|gp.0.q(f)llir(rry < CIlf o) -

N 1,
By our choice of o;(x), this suffices to demand [5° (f,, [a(r,r)|74) T4 < co.

We apply Theorem 1 to estimate Hglhmq(f)HF’%(Rn). By (1.9),

[ (PN RSy gRTICTEIP

< 2m°‘||r*||Ll<SH)/O h(t,r)dr|E] < Ctl&|.

16:(5) =%

Hence by Theorem 1, we have ||g1, a.q(f)llr(mr) < CHf||F’%(Rn). This completes the
proof. [

Now, we are in the position to prove Theorem 3.
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Proof of Theorem 3. Set h(t,x) = xjo 1(‘7 B )(l);—l)”hv(ta\x\), I'(x) = Q(x/|x]), and
01 (x) = Q(x/|x|)h(x,1)t~(F®)V /|x|". Then 8—(1+a)v,q reduces t0 Sq, a4, - Define
- p
h(t,r) = )([071]<§> (f) |hy(t%r)|. Hence by Corollary 2 with I; = (0,1) and I, =

(1,00), it suffices to show the following three claims:

1

/ (;)pmv(z“r)\drgc:l+v(1+°‘> for any € (0,1); 2.1)
0

Q(-)h(t,-

N_tiyawf = s;z)pl)t_(“”“)" % S| is a bounded operator on L”(R"); (2.2)

1€(0,
= di Ny dr
o q q =7 o
.A (/;umJHth ﬁ‘tH¢4> " = @3)

We first show (2.1). As o > —1, we have 1% <t'7* <V =1for0<r<t<1.
Thus

t oy C 1 1 (I+a)v
/(—)phv(tar)dr< /r’”vdrgi
0t P~ Jo

ifp+v>—1.
For (2.2),as t%r < 1,

N (eapf () = sup 1| SORED )

1€(0,1)

<cap o | OO ¢ 1y

1€(0,1) y|<t M" p=—v

As Qe L'(s" 1) and p+ v > 0, by using the L” boundedness of the Hardy-
Littlewood maximal function, N_ (1, o), f is indeed a bounded operator on L? (R™).
We next show (2.3). We rewrite the left side of (2.3) as follows.

IV b dat |1 dr
a.\1g -
/ (/max{l r} Ih @) l1+pq)qr1_p

dt .1 dr P dr |1 dr
—/ / Ay (t* |t1+P‘1)qr1—*P+/1 (/r |hV(tar)‘qt1+pq)qufp

=:1+1I.

For the term 17, as r > 1 and o > —1, it follows t%r > 1 for ¢ > r. We obtain

= t 1 dt C 1
o q < _
/r ‘hv (t r)| rap+1 C/r 140 pqev rqp+1 qp +qoey ra(l+a)ev+gp 24)

because of ae, +p > 0. So, it can be seen that I7 < e as (1+ a)e, > 0.
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For the term 7, if o« > 0, we have rl/e >1as 0<r<1,andhence
*° dt

o9
/ |hV(t r)‘ tqp+l

<C tqav v __ dt +C - #i
1ap+1 1o t9%€v pqev (qp+1

7( —avtap/a _q) ___ ¢
qov —gqp riev(qoe +qp)
< ¢ v ¢ Fap/o
qp —qowv qp +qoey
because of aey, +p >0, o, p >0 and v < 0. Hence, we have I < co.
If —1 <o <0, itfollows t% <1 and we have

* dt * dt C
o q__"" qoy oqv qv
/1 |y (t%7)] prrRS gc/1 I T S ap—qov (2.6)

(2.5)
Faevtap/o

provided p —av > 0. Since p+v >0and 0> o > —1, we get p — v > 0. So, we
have I < e when p+v > 0.

In conclusion, (2.3) holds if p+v >0 and o€, +p > 0 and the theorem is
proved. [

REMARK 3. Under p =1 and p = g = 2, Corollary 1.5 [1] coincides with the
above corollary. Theorem 1.6 in [1] deals with the case of general p but demanding
additionally &, < 1 and Q € L(logL)(S" ).

REMARK 4. If we set hy(x) = [x|" for v <0, then the operator Sq j, a4, be-

comes
Hg,ﬁ,p,qf(x) = (/0 B flx—y)

ly|<r |y[*=P

with p=p+v, B =—(1+a)v. By Theorem 3, we get the boundedness of the
fractional Marcinkiewicz integral operator for 0 < ot < 4/pG and p > 0:

110,85, lr ey < CIIf |l g - (2.8)

This was proved recently by the authors in [15] and improves Corollary 1.7 and Corol-
lary 1.8 in [1].

AN
! 20) 4, ?) : @.7)

Proof of Theorem 4. In the case 1 < g < oo, by Minkowski’s inequality we have

1
I'(y 1 du \
S(r(?zlv’a’%pf(X) </Rn If(x—y)|y|g)p (/0 X{y<u}|hv(ua|y|)qul+qp> dy (29

and

1
o r ° du \ 1
$ant 0 < [ =L aren bbb ) a0
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We have similar estimates in the case g = oo.
(1) We treat first 5°) o Let 1 <g<eo. If [y| <1, [y <u<1and o> 1
(p # av), then we have 1 > u'T®* > u%|y|. Thus we have by the assumption |4y (¢)| <

CtV (0<r<1)

1 du 1 du
o q qov (., |qv
/O by ey DI <C/Mu b K o

qv
- %(1 —yjrevary g ——
qav —qp lap —qav|
for |y| < 1.1If |y| > 1, then we see that the first term in (2.11) is equal to 0. Set

J’/M \4 (I+a)v—p
Gy = | R+ DI P), yl < 1
0, ly| > 1.

@2.11)
(Iy[a" + [y|at T =ap)

(2.12)

In the case p = av, the left side of (2.11) is bounded by Clogl/|y|. So, we set
G(x) =T*"(y/ly)logl/[y| (ly]<1) =0 (|y|>1). Thus, in any case, if v >0, o >
—1 and T*(y) = sup,.o [T(ry)| € L'(§"7"), we see that G € L'(R"), ||G||1(pn) <

C|IT*{| 1 (gn-1y and Sl(-,)1v aqpf () <C|f|*G(x). Therefore we have

HSr,hv,a,q,pf||Lﬁ(Rn) <Ay I f ey, 1< p<oo (2.13)

In the case g = oo, we obtain similarly

hy (u®|y _
sup ‘ V( p‘ D| gc(‘y‘v+|y|(l+a)v p),
{ly[<u<1} u
and so we have the same estimate (2.13) in this case, too. This shows (b).

(2) Next we treat 57 . Let 1 < q < oo

(@) If [y <1 and a >0 (p # av), it follows [y|~'/® > 1 and we have

° du
/1%{\y\<u}|hv(ua\)’\)|qm

Iy~ /e du ° 1 du
SC/ ul® |yl — +C/ _—
1 ultap ly| Ve ud®ev ‘y‘qé‘v ultap

— %O |mavtap/e 1) 4 ¢
qav —qp yl7v (qocey +qp)

(2.14)
‘ y‘qswqp/a

|4V |y|qp/0¢.

c 1
< o e )
lap —qouv| lgp —qav|  gp +qoey

When p = av, we can bound the left side of (2.14) by Clog1/|y|.
() If [y <1,u>1and —1 < <0, it follows u*|y| < 1 and we have

. du
/%{\y\<u}|hv( “yDI? 1+qp<C/1 s

<& e,
ap —qov

(2.15)
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provided p — v > 0.
(iii) If |y] > 1 and & > —1, we obtain by |hy(t)| < Ct & (1 > 1)

du
Iy () 9

/%{\y\<u}lhv( “yhi Hq,, )

* 1 du C 1 (2.16)
C/\y\ WI%e [y |0 WP gp +qaey [y|at@etap”
Now we set in the case o >0 (p # av)
O/ (1yv plo
G0 =4 i v :(Lyl b (2.17)
syl ey > 1,

in the case o >0 (p = av) we modify the above as in the case (1), and in the case
—l<a<0Oandp—oav>0

O/

o vl <1

G =3¢ e (2.18)
(/D ‘ ‘ (I+o)ey— p | | > 1
‘V"7 y ‘

Hence, if ¢ > —1 and v > —p (inthe case —1 < ¢ <0, v > —p implies v >
—p/(—a)ie. p—ov>0),and T*(y) =sup,., |[(ry)| € L'(S"1), then we see that

G e L' (R"). |G| 11an) < CIT (s 1) and ST, f(x) < CIf] % G(x). Thus

1S53, qrap @ CIT g Iflp@n, 1<p<e.  (219)

In the case g = o=, we obtain similarly that

I GGl [P/®), if > 0and [y <1,

hy (u®
pwg ¥ if0>0>—1, ]y <1landp—av >0,

{u>1} C|y|7P*€v(1+°‘)" if >a>—1land|y| >1

Therefore, we have the same estimate (2.19) in this case, too.
Thus, we finished the proof for (a). The assertion (c) follows from (a) and (b). [
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