
Mathematical
Inequalities

& Applications

Volume 18, Number 2 (2015), 529–540 doi:10.7153/mia-18-39
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Abstract. In this paper, we give a new approach to prove inequalities for the Schwab-Borchardt
mean, the lemniscatic mean and the arithmetic geometric mean. Additionally, we apply these
means to inequalities for trigonometric functions or the lemniscate functions by considering
several functional inequalities. One of these applications includes infinite product formulas for
the lemniscate function and the arithmetic geometric mean by considering several functional
equations.

1. Introduction

In mathematical literature, the Schwab-Borchardt mean, the lemniscatic mean and
the arithmetic geometric mean have attracted many researchers. For example, inequal-
ities for these means were obtained by differentiation or a sequential method. These
were applied to get trigonometric or lemniscatic inequalities [5, 6, 7, 8, 9]. The follow-
ing trigonometric inequality

2+ cosx
3

>
sinx
x

> cos1/3 x (1)

for 0 < x � π/2 were established by use of Schwab-Borchardt mean in [8]. The first
inequality in the above is a well known inequality which was obtained by N. Cusa and
C. Huygens. The second inequality in the above was obtained by D. D. Adamović and
D. S. Mitrinović [5].

In this paper, we obtain a general approach to get these inequalities for means.
We apply our approach to inequalities for trigonometric or the lemniscate functions by
considering several functional inequalities. For example, we obtain

4+ sl′ x
5

>
slx
x

> (sl′ x)1/5 (2)

for 0 < x � L/2 where slx is the lemniscatic sine and L = 2.622057 · · · is the lem-
niscate constant. These inequalities are lemniscatic analogs of (1). Furthermore, by
considering several functional equations, we get infinite product formulas for the lem-
niscate function and the arithmetic geometric mean as follows:
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slx
x

=

√
1+ sl′ x

2
×

√√√√1+
√

2
1+sl′ x

2
×

√√√√√1+
√

2

1+
√

2
1+sl′ x

2
×·· · (3)

for 0 < x � L/2. When x = L/2 in (3), we obtain

2
L

=

√
1
2
×
√

1+
√

2
2

×

√√√√1+
√

2
1+

√
2

2
×·· ·

which was obtained in [3, 4] by different way (for more details, see section 3).

2. Theorems for the Schwab-Borchardt mean

The Schwab-Borchardt mean SB [1, 2, 8, 9] is defined as follows:
Given positive constants a0,b0 , we set an,bn inductively by

an+1 =
an +bn

2
, bn+1 = (an+1bn)

1/2 , (4)

and define

SB(a0,b0) = lim
n→∞

an = lim
n→∞

bn,

which is given as

SB(a0,b0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
b2

0−a2
0

arccos(a0/b0)
0 � a0 < b0,√

a2
0−b2

0

arccosh(a0/b0)
b0 < a0.

It is known [9] that this mean satisfies

a0 < a1 < · · · < an < · · · < SB < · · · < bn < · · · < b1 < b0 (a0 < b0)

and

b0 < b1 < · · · < bn < · · · < SB < · · · < an < · · · < a1 < a0 (b0 < a0).

There exists an attempt to get bounds for SB . The following bounds were estab-
lished in [9]. For arbitrary a0,b0(�= a0), we have

an +2bn

3
> SB(a0,b0) > (anb

2
n)

1/3. (5)

We then give the following lemma to show (5). Thorough out this paper, p , q
denote real numbers.
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LEMMA 2.1. Let f be a real valued function which is continuous at 1. Suppose
one of the following conditions holds.

1. t p f (t) > f (2t2−1) for 0 < t < 1 and a0 < b0

2. t p f (t) > f (2t2−1) for 1 < t and b0 < a0 .

Then, with a real number q, the sequence

bq
n f

(
an

bn

)
(6)

is strictly increasing as n increase. If tq f (t) < f
(
2t2−1

)
holds for above condition,

with a real number q, then the sequence (6) is strictly decreasing as n increases.

Proof. We note that for all n we have 0 < an+1/bn+1 < 1 or 1 < an+1/bn+1 .
First, we assume that tq f (t) > f

(
2t2−1

)
holds. Since bn+1/bn = an+1/bn+1 and

an/bn = 2(an+1/bn+1)2 −1, we have

bq
n+1 f

(
an+1

bn+1

)
−bq

n f

(
an

bn

)

= bq
n

{(
bn+1

bn

)q

f

(
an+1

bn+1

)
− f

(
an

bn

)}

= bq
n

{(
an+1

bn+1

)q

f

(
an+1

bn+1

)
− f

(
2a2

n+1

b2
n+1

−1

)}
> 0.

If tq f (t) < f
(
2t2−1

)
holds, we get the second assertion in the same way as above.

This completes the proof. �

We then give the following theorem which refines the inequalities (5).

THEOREM 2.2. Let {an} , {bn} be sequences determined by (4). We then have

an +2bn

3
>

{
(an +2bn)3 +anb2

n

28

}1/3

>

SB(a0,b0) >

{
anb2

n(an +2bn)
3

}1/4

> (anb
2
n)

1/3.

Proof. We can show the first and the fourth inequalities by direct computations.
We can show the second inequality by setting f (t) = (t + 2)3 + t and q = 3 and the
third inequality by setting f (t) = t(t +2) and q = 4 in Lemma 2.1. �

As we saw, if a0 < b0 , the Schwab-Borchardt mean SB is represented by
arccos(a0/b0) . We then get the following theorem for trigonometric inequalities.
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THEOREM 2.3. Let q be a real number and f be a real valued function which is
continuous at 1 . If tq f (t) > f

(
2t2−1

)
holds for 0 < t < 1 , then we have

f (1)
(

sinx
x

)q

> f (cosx) (0 < x � π/2). (7)

The inequality in (7) is reversed if tq f (t) < f
(
2t2−1

)
holds for 0 < t < 1 .

Proof. We put a0/b0 = cosx and if tq f (t) > f (2t2−1) , we have

lim
n→∞

{(
bn

b0

)q

f

(
an

bn

)}
= f (1)

⎛
⎜⎜⎝

√
1− a2

0
b2
0

arccos(a0/b0)

⎞
⎟⎟⎠

q

> f

(
a0

b0

)

from Lemma 2.1. This shows (7). If tq f (t) < f
(
2t2−1

)
holds, we get the second

assertion in the same way as above. �
We can get the inequality (1) in the same way as the proof of Theorem 2.2.
We here note that if the function

f (t) =

√
1+ t

2
×

√√√√1+
√

1+t
2

2
×

√√√√√1+

√
1+

√
1+t
2

2

2
×·· ·

converges, it satisfies t f (t) = f (2t2 − 1) and this suggests f (1)(sinx/x) = f (cosx) .
Indeed, the following well known theorem which was established by Euler holds.

THEOREM 2.4. If 0 < x � π/2 , we have

sinx
x

=

√
1+ cosx

2
×

√√√√1+
√

1+cosx
2

2
×

√√√√√1+

√
1+

√
1+cosx

2
2

2
×·· ·

= cos
x
2
× cos

x
4
× cos

x
8
×·· · .

Proof. We put cn = an/bn in the Schwab-Borchardt mean. First, we note that
an+1/bn+1 = bn+1/bn holds. We then have

bn

b0
=

c1 × c2×·· ·× cn
b0
bn
× a1

b1
× a2

b2
×·· ·× an

bn

=
c1× c2×·· ·× cn

b0
bn
× b1

b0
× b2

b1
×·· ·× bn

bn−1

= c1× c2×·· ·× cn.
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We note that c2
n+1 = (1+ cn)/2 holds. By setting n → ∞ and c0 = cosx , we get

√
1− c2

0

arccosc0
= lim

n→∞

bn

b0

= c1× c2×·· ·× cn×·· ·

=

√
1+ c0

2
×

√√√√1+
√

1+c0
2

2
×

√√√√√1+

√
1+

√
1+c0

2
2

2
×·· ·

which is equivalent to

sinx
x

=

√
1+ cosx

2
×

√√√√1+
√

1+cosx
2

2
×

√√√√√1+

√
1+

√
1+cosx

2
2

2
×·· ·

= cos
x
2
× cos

x
4
× cos

x
8
×·· · ,

where we used half-angle formula for cosx . This completes the proof. �

3. Theorems for the lemniscatic mean

We establish similar statements for the lemniscate functions as of [1]. The arclem-
niscate sine is defined by

arcsly =
∫ y

0
(1− s4)−1/2ds (y2 � 1). (8)

Similarly, the hyperbolic arclemniscate sine is defined by

arcslhy =
∫ y

0
(1+ s4)−1/2ds.

The lemniscatic constant is given as

L
2

=
∫ 1

0
(1− s4)−1/2ds = 1.311028 · · ·.

Then, the lemniscatic sine slx (0 < x � L/2) is defined as of the inverse function of
arcsly . The following lemma for slx is valid.

LEMMA 3.1.
sl′ x =

√
1− sl4 x.

We can show this lemma by setting y = slx and by differentiating both sides in (8).
We then obtain a lemma for the lemniscatic mean [2, 6, 7] which is defined as follows:
Given real a0,b0 satisfying a0 > 0, b0 � 0, we set an,bn inductively by
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an+1 =
an +bn

2
,bn+1 = (anan+1)1/2, (9)

and define
LM(a0,b0) = lim

n→∞
an = lim

n→∞
bn,

which is given as

[LM(a0,b0)]−1/2 =

⎧⎪⎨
⎪⎩

(a2
0−b2

0)
−1/4arcsl

(
1− b2

0
a2
0

)1/4
0 � b0 < a0

(b2
0−a2

0)
−1/4arcslh

(
b2
0

a2
0
−1

)1/4
a0 < b0.

The following bounds were established in [6]. For arbitrary a0,b0(�= a0), we have

3an +2bn

5
> LM(a0,b0) > (a3

nb
2
n)

1/5. (10)

We then show the following lemma.

LEMMA 3.2. Let f be a real valued function on (0,∞) which is continuous at 1.
If t2p f (t−1) > f (2t2 −1) holds for t �= 1 with a real number p, then the sequence

ap
n f

(
bn

an

)
(11)

is strictly increasing as n increases. If t2p f (t−1) < f (2t2 −1) holds for t �= 1 , with a
real number p, then the sequence (11) is strictly decreasing as n increases.

Proof. We note that for all n we have an+1/bn+1 �= 1 because a0/b0 �= 1. First,
we assume that t2p f (t−1) > f (2t2 − 1) holds. Since bn+1/an+1 = (an/an+1)1/2 and
an+1/an = (1+bn/an)/2, we have

ap
n+1 f

(
bn+1

an+1

)
−ap

n f

(
bn

an

)

= ap
n

{(
an+1

an

)p

f

(
bn+1

an+1

)
− f

(
bn

an

)}

= ap
n

{
a2p

n+1

b2p
n+1

f

(
bn+1

an+1

)
− f

(
2a2

n+1

b2
n+1

−1

)}
> 0.

If t2p f (t−1) < f (2t2−1) holds, we get the second assertion in the same way as above.
This completes the proof. �

By setting p = 1, f (t) = t2/5 or p = 1, f (t) = 2t +3, we have (10). Furthermore,
we get the following theorem which refines the left side of (10).
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THEOREM 3.3. Let {an} , {bn} be the sequence determined by (9). We then have

3an +2bn

5
>

{
(3an +2bn)5 +a3

nb
2
n

3126

}1/5

> LM(a0,b0).

Proof. We can show the first inequality by a simple computation. We can show
the second inequality by setting f (t) = (2t +3)5 + t2 and p = 5 in Lemma 3.2. �

We should note that inequalities for the lemniscatic mean and functions are estab-
lished in [6, 7]. We here obtain the following general result to get lemniscatic inequali-
ties.

THEOREM 3.4. Let p be a real number and f be a real valued function on (0,∞)
which is continuous at 1 . If t2p f (t−1) > f (2t2 −1) holds for t �= 1 , then we have

f (1)
(

slx
x

)2p

> f (sl′ x) (0 < x � L/2) . (12)

The inequality in (12) is reversed if t2p f (t−1) < f (2t2−1) holds for t �= 1 .

Proof. If t2p f (t−1) > f (2t2 −1) , we have

lim
n→∞

{(
an

a0

)p

f

(
bn

an

)}
= f (1)

(
1− b2

0

a2
0

)p/2

arcsl−2p
(

1− b2
0

a2
0

)1/4

> f

(
b0

a0

)

from Lemma 3.2. By setting 1− b2
0/a2

0 = sl4 x , we get the assertion because sl′ x =√
1− sl4 x . If t2p f (t−1) < f (2t2 − 1) holds, we get the second assertion in the same

way as above. �
Direct computations give the following corollary which is a lemniscatic analog of

the inequality (1).

COROLLARY 3.5. If 0 < x � L/2 , we have

4+ sl′ x
5

>
slx
x

> (sl′ x)1/5.

The second inequality is shown in [7] by different representation.
We note that if the function

f (t) =
1+ t

2
×

1+
√

2
1+t

2
×

1+
√

2

1+
√

2
1+t

2
×·· ·

converges, it satisfies t2 f (t−1) = f (2t2 − 1) and this implies f (1)(slx/x)2 = f (sl′ x) .
Indeed, we obtain the following theorem which is a lemniscatic analog of Theorem 2.4.
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THEOREM 3.6. If 0 < x � L/2 , we have

slx
x

=

√
1+ sl′ x

2
×

√√√√1+
√

2
1+sl′ x

2
×

√√√√√1+
√

2

1+
√

2
1+sl′ x

2
×·· · .

Proof. We put an/bn = cn in the lemniscatic mean. First, we note that an+1/bn+1 =
bn+1/an . We then have

an+1

a0
=

c1× c2×·· ·× cn+1
a0

an+1
× a1

b1
× a2

b2
×·· ·× an+1

bn+1

=
c1× c2×·· ·× cn+1

a0
an+1

× b1
a0
× b2

a1
×·· ·× bn+1

an

= c2
1×·· ·× c2

n+1.

We note that c2
n+1 = (1+1/cn)/2 holds. By setting n→∞ and 1/c0 = sl′ x =

√
1− sl4 x ,

we have

(1−1/c2
0)

1/2

arcsl2(1−1/c2
0)1/4

= lim
n→∞

an+1

a0

= c2
1 ×·· ·× c2

n×·· ·

=
1+1/c0

2
×

1+
√

2
1+1/c0

2
×

1+
√

2
1+

√
2

1+1/c0

2
×·· · ,

which is equivalent to

sl2 x
x2 =

1+ sl′ x
2

×
1+

√
2

1+sl′x

2
×

1+
√

2

1+
√

2
1+sl′ x

2
×·· · .

This completes the proof. �

In [3, 4], Levin established

2
L

=

√
1
2
×
√

1+
√

2
2

×

√√√√1+
√

2
1+

√
2

2
×·· · . (13)

By setting x = L/2 in Thorem 3.6, we get the product (13) as sl (L/2) = 1 and sl′ (L/2)
=0.
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4. Theorems for the arithmetic-geometric mean

Similar statements hold for the arithmetic geometric mean M(a0,b0) which is
defined as follows [1, 2]: Given positive a0,b0 satisfying a0 > b0 , we set an,bn induc-
tively by

an+1 =
an +bn

2
, bn+1 = (anbn)

1/2 , (14)

and define
M(a0,b0) = lim

n→∞
an = lim

n→∞
bn,

which is given as

[M(a0,b0)]−1 =
2
π

∫ π/2

0
(a2

0 cos2 θ +b2
0 sin2 θ )−1/2dθ .

This mean satisfies

b0 < b1 < · · · < bn < · · · < M(a0,b0) < · · · < an < · · · < a1 < a0.

We get the following lemma for the arithmetic geometric mean.

LEMMA 4.1. Let f be a real valued function on (0,∞) which is continuous at 1.
If tq

{
(1+ t2)/2t2

}p
f
(
(t + t−1)/2

)
> f

(
t2
)

holds for 1 < t with some real p,q, then
the sequence

ap
nbq

n f

(
an

bn

)
(15)

is strictly increasing as n increases. If tq
{
(1+ t2)/2t2

}p
f
(
(t + t−1)/2

)
< f

(
t2
)

holds
for 1 < t , with some real p,q, then the sequence (15) is strictly decreasing as n in-
crease.

Proof. We note that an/bn > 1. First, we assume that tq
(
(1 + t2)/2t2

)p
f
(
(t +

t−1)/2
)

> f
(
t2
)

holds. Since an+1/an = (1 + bn/an)/2, bn+1/bn = (an/bn)1/2 and
an+1/bn+1 =

{
(an/bn)1/2 +(bn/an)1/2

}
/2, we have

ap
n+1b

q
n+1 f

(
an+1

bn+1

)
−ap

nb
q
n f

(
an

bn

)

= ap
nbq

n

{(
an+1

an

)p(bn+1

bn

)q

f

(
an+1

bn+1

)
− f

(
an

bn

)}

= ap
nbq

n

⎧⎪⎨
⎪⎩
(

an

bn

)q/2
(

1+ bn
an

2

)p

f

((
an
bn

)1/2
+
(

bn
an

)1/2

2

)
− f

(
an

bn

)⎫⎪⎬
⎪⎭> 0.

If tq
{
(1+ t2)/2t2

}p
f
(
(t + t−1)/2

)
< f

(
t2
)

holds, we get the second assertion in the
same way as above. This completes the proof. �

We then get the following theorem.
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THEOREM 4.2. Let {an} , {bn} be sequences determined by (14). We then have

an +bn

2
>

an +(anbn)1/2 +bn

3
>

M(a0,b0) >

{
anbn(an +bn)

2

}1/3

> (anbn)1/2.

Proof. The first and fourth inequalities are shown by direct computations. By
setting p = 0, q = 1 and set f (t) = t + t1/2 +1 in Lemma 4.1, we have

t f
(
(t + t−1)/2

)− f (t2) =
(t2 +1)1/2

2

{
(2t)1/2− (t2 +1)1/2

}
< 0

as 2t− (t2 +1) < 0. This shows the second inequality.

Similarly, we put p = 0, q = 1 and set f (t) =
{
t(t +1)/2

}1/3
in Lemma 4.1. We

then have

t f
(
(t + t−1)/2

)− f (t2) =
{t(t2 +1)}1/3

2

{
(t +1)2/3− (4t)1/3

}
> 0

as (t +1)2−4t > 0. This shows the third inequality and Theorem 4.2. �

We note that if the function

f (t) =
t1/2 + t−1/2

2
×
(

t1/2+t−1/2

2

)1/2
+
(

t1/2+t−1/2

2

)−1/2

2
×·· ·

converges, it satisfies t
(
(1+ t2)/2t2

)
f
(
(t + t−1)/2

)
= f

(
t2
)

and this suggests us that
f (a0/b0) = a1b1 f (a1/b1)/(a0b0) = · · · = f (1)[M(a0,b0)]2/(a0b0) . In fact, we get the
following theorem.

THEOREM 4.3. If t > 0 , we have

[M(t1/2,t−1/2)]2

=
t1/2 + t−1/2

2
×
(

t1/2+t−1/2

2

)1/2
+
(

t1/2+t−1/2

2

)−1/2

2
×·· · .
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Proof. We put cn = an/bn in the arithmetic geometric mean. Since an/bn =
a2

n/b2
n+1 , we have

b2
n+1

a0b0
=

b2
n+1

a0b0
× a0

b0
× a1

b1
×·· ·× an

bn

c0 × c1×·· ·× cn

=

b2
n+1

a0b0

(
a0
b1
× a1

b2
×·· ·× an

bn+1

)2

c0× c1×·· ·× cn

= c1× c2×·· ·× cn

=
c1/2
0 + c−1/2

0

2
×

(
c
1/2
0 +c

−1/2
0

2

)1/2

+
(

c
1/2
0 +c

−1/2
0

2

)−1/2

2
×·· · .

We note that cn+1 = (c1/2
n + c−1/2

n )/2 holds. By setting n → ∞ and c0 = t , we obtain

lim
n→∞

b2
n+1

a0b0
=

[M(a0,b0)]2

a0b0

=

{
2
π

∫ π/2

0

(
a0

b0
cos2 θ +

b0

a0
sin2 θ

)−1/2

dθ

}−2

= [M(t1/2,t−1/2)]2

=
t1/2 + t−1/2

2
×
(

t1/2+t−1/2

2

)1/2
+
(

t1/2+t−1/2

2

)−1/2

2
×·· ·

for 1 < t . By setting t → 1/t , we can show this equation on 0 < t < 1 as this equation
is invariant with respect to the substitution. It is easy to see that this equation holds for
t = 1. This completes the proof. �
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