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A YOUNG–LIKE INEQUALITY WITH APPLICATIONS

TO THE COMMUTATOR ESTIMATES

JIANG XU

(Communicated by J. Pečarić)

Abstract. In the recent decade, Fourier analysis techniques based on the Littlewood-Paley de-
composition have proved to be very efficient in the study of PDEs, since J.-M. Bony introduced
the paradifferential calculus. Of those techniques, commutator estimates play the crucial role in
dealing with bilinear estimates. In this paper, we develop a Young-like inequality which is the
generalization of the classical Young’s convolution inequality. The new inequality enables us
to obtain various commutator estimates in the Lp -framework, which creates the basis to obtain
different nonlinear a priori estimates in the analysis of PDEs.

1. Introduction

One of the most basic inequalities in Fourier analysis is the convolution inequality,
which is also usually referred to as Young’s inequality (see e.g., [11]).

THEOREM 1.1. (W. H. Young, 1912) Let 1 � p,q,r � ∞ satisfy

1+
1
q

=
1
p

+
1
r
.

Then for all f in Lp(G) and all g in Lr(G) we have

‖ f ∗ g‖Lq(G) � ‖g‖Lr(G)‖ f‖Lp(G), (1.1)

where G is the fixed locally compact group with a left invariant Haar measure μ .

The inequality has its origin in the efforts of W. H. Young in 1912 to generalize
Parseval’s theorem for Fourier series to other Lp -classes, and they extend naturally
in the context of analysis on locally compact groups. The most useful case reads as
follows.

THEOREM 1.2. Let 1 � p � ∞ . For all f in Lp(G) and all g in L1(G) we have

‖ f ∗ g‖Lp(G) � ‖g‖L1(G)‖ f‖Lp(G). (1.2)
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In above theorems, the convolution f ∗ g is defined as

( f ∗ g)(x) =
∫

G
f (y)g(y−1x)dμ(y). (1.3)

For instance, if G = R
d with the usual additive structure, then y−1 =−y and the integral

in (1.3) is written as

( f ∗ g)(x) =
∫

Rd
f (y)g(x− y)dy.

In this paper, we present the following Young-like inequality.

THEOREM 1.3. Let 1 � p, p1, p2 � ∞ and 1/p = 1/p1 +1/p2 . Then,∥∥∥∫
Rd

f (y)F1(x−λ1y)F2(x−λ2y)dy
∥∥∥

Lp
� ‖ f‖L1‖F1‖Lp1‖F2‖Lp2 (1.4)

for all f ∈ L1(Rd),Fi ∈ Lpi(Rd) and λi ∈ R(i = 1,2) .

REMARK 1.1. In the case when λ1 = λ2 = λ , the integral inside Lp norm on the
left-hand side of (1.4) can be rewritten as

1
λ d f

( ·
λ

)
∗ (F1F2),

and hence it can be seen that (1.4) is an immediate consequence of the classical Young’s
inequality as well as the Hölder inequality for ‖F1F2‖Lp � ‖F1‖Lp1‖F2‖Lp2 , where we
also notice ‖λ−d f (·/λ )‖L1 = ‖ f‖L1 . However, in (1.4) parameters λ1,λ2 can be dif-
ferent and independent of each other, and thus such process fails to prove (1.4). An
important observation is that λ1 and λ2 only appear in front of the integral variable
y . It turns out that (1.4) follows from the elementary calculations on the basis of the
original proof of the classical Young’s inequality, see Section 3 for details.

REMARK 1.2. Let us mention that the inequality (1.4) has not been published
in the literature although it is very elementary. Additionally, we can also obtain the
corresponding Young-like inequality in more general measure spaces endowed with
a group structure, however, we only give (1.4) on Euclidean spaces for application
purposes, and the general case is left to the interesting reader.

The motivation of (1.4) mainly originates from many kinds of nonlinear estimates
by using Lp (1 � p � ∞) norm rather than L∞ norm only. For instance, we meet with
commutator estimates when dealing with the bilinear terms in the PDEs. As shown by
[1, 2, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 19, 20, 21] and references therein, also including
ourselves [16, 17, 18], the commutator estimates play the crucial role in the nonlin-
ear analysis of fluid-dynamical equations, such as the compressible or incompressible
Navier-Stokes equations, viscoelastic fluid equations, liquid-gas two phase flow model,
Euler equations and related models, etc.. There are a number of variations on the com-
mutator estimates. To the best of our knowledge, in the most case, from Taylor formula
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of first order, the convolution inequality in Theorem 1.2 and Bernstein’s inequality, the
operator [TA,Δ j]B can proceed as

‖[TA,Δ j]B‖Lp � ∑
| j− j′|�4

C2− j‖∇S j′−1A‖L∞‖Δ j′B‖Lp .

For the definition of paraproduct, see Section 2.
A natural question follows immediately. Whether the above L∞ -Lp bound can be

replaced with Lp1 -Lp2 (1/p = 1/p1 +1/p2, 1 � p1, p2 � ∞) one or not. As a matter
of fact, the Young-like inequality in Theorem 1.3 enable us to obtain the desired bound
so that almost all commutator estimates will be further extended. To illuminate this,
we generalize those commutator estimates in the recent book [3] (see, Lemma 2.100, P.
112). Precisely, our main results read as follows.

THEOREM 1.4. Let σ ∈ R , 1 � r � ∞ , 1 � p � p3 � ∞ and 1/p = 1/p1 +
1/p2 = 1/p3 +1/p4 . Let v be a vector field over R

d . Assume that

σ > −d min
{ 1

p3
,

1
p′

}
or σ > −1−d min

{ 1
p3

,
1
p′

}
if divv = 0 (1.5)

with 1/p+1/p′ = 1 . Define R j = [v ·∇,Δ j] f (or R j = div[v,Δ j] f if divv = 0) . There
exists a constant C , depending continuously on p, p1, p3,σ and d , such that∥∥∥(

2 jσ‖R j‖Lp

)
j

∥∥∥
�r

� C
(
‖∇v‖Lp1‖ f‖Bσ

p2,r
+‖∇v‖

B
d/p3
p3,∞

‖ f‖Bσ
p,r

)
(1.6)

if σ < 1+ d
p3

. Furthermore, assume that σ > 0 (or σ > −1 , if divv = 0 ), then

∥∥∥(
2 jσ‖R j‖Lp

)
j

∥∥∥
�r

� C
(
‖∇v‖Lp1‖ f‖Bσ

p2,r
+‖∇ f‖Lp4‖∇v‖Bσ−1

p3,r

)
. (1.7)

In the limit case that σ =− d
p3

or σ =− d
p′ (σ =−1− d

p3
or σ =−1− d

p′ , if divv = 0 ),
we have

sup
j�−1

(
2 jσ‖R j‖Lp

)
j
� C

(
‖∇v‖Lp1‖ f‖Bσ

p2,∞ +‖∇v‖
B

d/p3
p3,1

‖ f‖Bσ
p,∞

)
. (1.8)

REMARK 1.3. Theorem 1.4 is exactly consistent with Lemma 2.100 in [3], if one
takes the limiting case p1 = ∞ . Therefore, the current commutator estimates can be
regarded as a generalization of Lemma 2.100. The key to the proof is the Young-like
inequality in Theorem 1.3, which can be also applied to establish a number of various
commutator estimates. Below are two useful cases in the study of partial differential
equations:

(i) Assume that f = v , then∥∥∥(
2 jσ‖R j‖Lp

)
j

∥∥∥
�r

� C‖∇v‖Lp1‖ f‖Bσ
p2,r

, (1.9)

if σ > 0 (or σ > −1, if divv = 0);
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(ii) When p1 = ∞ , assume that σ > 1+d/p3 , or σ = 1+d/p3 and r = 1. We note
that Bσ−1

p,r ↪→ Lp4 , so the inequality (1.7) ensures that

∥∥∥(
2 jσ‖R j‖Lp

)
j

∥∥∥
�r

� C‖∇v‖Bσ−1
p3,r

‖ f‖Bσ
p,r

. (1.10)

2. Preliminary

For convenience of reader, we try to make the context self-contained. This section
is devoted to the Littlewood-Paley decomposition theory briefly. The interested reader
is also referred to [3] for more details.

Let (ϕ ,χ) be a couple of smooth functions valued in [0,1] such that ϕ is sup-
ported in the shell C (0, 3

4 , 8
3 ) = {ξ ∈ R

d | 34 � |ξ | � 8
3} , χ is supported in the ball

B(0, 4
3 ) = {ξ ∈ R

d ||ξ | � 4
3} and

χ(ξ )+
∞

∑
j=0

ϕ(2− jξ ) = 1, j ∈ Z, ξ ∈ R
d .

Let S ′ be the dual space of the Schwartz class S . For f ∈ S ′ , the nonhomoge-
neous dyadic blocks are defined as follows

Δ−1 f := χ(D) f = h̃∗ f with h̃ = F−1χ ,

Δ j f := ϕ(2− jD) f = 2 jd
∫

h(2 jy) f (x− y)dy with h = F−1ϕ , if j � 0.

Here ∗, F−1 represent the convolution operator and the inverse Fourier transform,
respectively. Furthermore, we define by S j f the low frequency cut-off

S j f := ∑
i� j−1

Δi f .

It is clear that the above spectral truncation operators are almost orthogonal in L2 .

PROPOSITION 2.1. For any f ,g ∈ S ′ , the following properties hold:

ΔiΔ j f ≡ 0 if |i− j| � 2,

Δ j(S j−1 fΔig) ≡ 0 if |i− j|� 5.

Additionally, for any f ∈ S ′ , yields

f = ∑
j�−1

Δ j f ,

which leads to the definition of inhomogeneous Besov spaces.
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DEFINITION 2.1. For s ∈ R and 1 � p,r � ∞, the inhomogeneous Besov spaces
Bs

p,r is defined by
Bs

p,r = { f ∈ S′ : ‖ f‖Bs
p,r

< ∞},
where

‖ f‖Bs
p,r

=

⎧⎨
⎩

(
∑∞

j=−1(2
js‖Δ j f‖Lp)r

)1/r
, r < ∞,

sup j�−1 2 js‖Δ j f‖Lp , r = ∞.

To show the proof of commutator estimates, we recall the Bony’s decomposition.

DEFINITION 2.2. Let f ,g be two temperate distributions. The product f · g has
the Bony’s decomposition formally:

f ·g = Tf g+Tg f +R( f ,g),

where Tf g is paraproduct of g by f ,

Tf g = ∑
j′� j−2

Δ j′ fΔ jg = ∑
j

S j−1 fΔ jg

and the remainder R( f ,g) is denoted by

R( f ,g) = ∑
j

Δ j f Δ̃ jg with Δ̃ j := Δ j−1 + Δ j + Δ j+1.

The bilinear paraproduct and remainder operators enjoy continuity properties in
most useful functional spaces. Here, we present the continuity property for the remain-
der only. The reader is referred to [3] for more results on the subject.

PROPOSITION 2.2. There is a constant C such that the following inequalities
hold. Let (s1,s2) ∈ R

2 and 1 � p1, p2,r1,r2 � ∞ . Assume that

1
p

=
1
p1

+
1
p2

� 1,
1
r

=
1
r1

+
1
r2

� 1.

If s1 + s2 > 0 , then we have, for any ( f ,g) in Bs1
p1,r1 ×Bs2

p2,r2 ,

‖R( f ,g)‖
B

s1+s2
p,r

� C|s1+s2|+1

s1 + s2
‖ f‖B

s1
p1,r1

‖g‖B
s2
p2,r2

.

If r = 1 and s1 + s2 = 0 , then we have, for any ( f ,g) in Bs1
p1,r1 ×Bs2

p2,r2 ,

‖R( f ,g)‖B0
p,∞

� C|s1+s2|+1‖ f‖B
s1
p1,r1

‖g‖B
s2
p2,r2

.

On the other hand, in the study of non-stationary partial differential equations,
Chemin-Lerner’s spaces (a class of mixed space-time Besov spaces) are useful, which
was first introduced by J.-Y. Chemin and N. Lerner in [4]. We present the definition as
follows.
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DEFINITION 2.3. For T > 0, s ∈ R , 1 � r,ρ � ∞ , set (with the usual convention
if r = ∞)

‖ f‖L̃ρ
T (Bs

p,r)
:=

(
∑

j�−1

(2 js‖Δ j f‖Lρ
T (Lp))

r
) 1

r
.

Then we define the space L̃ρ
T (Bs

p,r) as the completion of S over (0,T )×R
N by the

above norm.

Finally, we state the classical Bernstein’s inequality to end this section.

PROPOSITION 2.3. Let k ∈ N and 0 < R1 < R2 . There exists a constant C , de-
pending only on R1 , R2 and d , such that for all 1 � a � b � ∞ and f ∈ La , we have

Supp F f ⊂ B(0,R1λ ) ⇒ sup
|α |=k

‖∂ α f‖Lb � Ck+1λ k+N( 1
a− 1

b )‖ f‖La ;

Supp F f ⊂ C (0,R1λ ,R2λ ) ⇒C−k−1λ k‖ f‖La � sup
|α |=k

‖∂ α f‖La � Ck+1λ k‖ f‖La ,

where F f represents the Fourier transform on f .

3. Proof of Young-like inequality

This section is devoted to the

Proof of Theorem 1.3. By Hölder inequality for 1/p′+1/p = 1,∣∣∣∫
Rd

f (y)F1(x−λ1y)F2(x−λ2y)dy
∣∣∣

�
∫

Rd
| f (y)|

1
p′ +

1
p |F1(x−λ1y)||F2(x−λ2y)|dy

� ‖ f‖
1
p′
L1

(∫
Rd

| f (y)||F1(x−λ1y)|p|F2(x−λ2y)|pdy
) 1

p
. (3.1)

Then, taking further the Lp -norm on both sides,∥∥∥∫
Rd

f (y)F1(x−λ1y)F2(x−λ2y)dy
∥∥∥

Lp

� ‖ f‖
1
p′
L1

(∫
Rd

∫
Rd

| f (y)||F1(x−λ1y)|p|F2(x−λ2y)|pdydx
) 1

p

= ‖ f‖
1
p′
L1

(∫
Rd

| f (y)|dy
∫

Rd
|F1(x−λ1y)|p|F2(x−λ2y)|pdx

) 1
p

� ‖ f‖
1
p′
L1

(∫
Rd

| f (y)|dy‖F1(·−λ1y)‖p
Lp1‖F2(·−λ2y)‖p

Lp2

) 1
p

= ‖ f‖
1
p′
L1

(∫
Rd

| f (y)|dy‖F1‖p
Lp1‖F2‖p

Lp2

) 1
p

= ‖ f‖
1
p′
L1‖ f‖

1
p

L1‖F1‖Lp1‖F2‖Lp2

= ‖ f‖L1‖F1‖Lp1‖F2‖Lp2 , (3.2)
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where Fubini’s theorem was used in the third line, Hölder inequality for 1 = 1
p1/p + 1

p2/p

was used in the fourth line, and the substitutions x−λ1y → x and x−λ2y → x were
used in the fifth line. Thus (1.4) is proved. �

From the above proof, it is also straightforward to establish the following more
general Young-like inequality.

COROLLARY 3.1. Let 1 � p � ∞ and 1/p = ∑n
i=1 1/pi . Then,

∥∥∥∫
Rd

f (y)
n

∏
i=1

Fi(x−λiy)dy
∥∥∥

Lp
� ‖ f‖L1

n

∏
i=1

‖Fi‖Lpi (3.3)

for all f ∈ L1(Rd) , Fi ∈ Lpi(Rd) and λi ∈ R (i = 1,2, · · ·,n) .

4. Proof of commutator estimates

Proof of Theorem 1.4. In order to show that the gradient part of v is involved in the
estimate, we need to split v into low and high frequencies: v = Δ−1v+ ṽ. Obviously,
there exists a constant C > 0 such that

‖Δ−1∇v‖La � C‖∇v‖La , ‖∇ṽ‖La � C‖∇v‖La , a ∈ [1,∞]. (4.1)

Further, as ṽ is spectrally supported away from the origin, that is, there exists a radius
0 < R < 3

4 such that Supp F ṽ
⋂

B(0,R) = /0 , Proposition 2.3 ensures that

‖Δ j∇ṽ‖La ≈ 2 j‖Δ jṽ‖La , a ∈ [1,∞], j � −1. (4.2)

From Definition 2.1, we can decompose

R j :=
8

∑
i=1

R i
j

with
R1

j = [Tṽk ,Δ j]∂k f , R2
j = T∂kΔ j f ṽ

k

R3
j = −Δ jT∂k f ṽ

k, R4
j = ∂kR(ṽk,Δ j f ),

R5
j = −R(divṽ,Δ j f ), R6

j = −∂kΔ jR(ṽk, f ),

R7
j = Δ jR(divṽ, f ), R8

j = [Δ−1vk,Δ j]∂k f ,

where the summation convention over repeated indices has been used.
In what follows, the constant C > 0 depends continuously on σ , p and d , and we

denote by (c j) j�−1 a sequence such that ‖(c j)‖�r � 1.



548 JIANG XU

Note that Proposition 2.1, with the aid of the Taylor’s formula of first order, we get

R1
j = Tṽk∂kΔ j f −Δ j(Tṽk∂k f )

= ∑
j′∈Z

{
S j′−1ṽ

kΔ j(∂kΔ j′ f )−Δ j(S j′−1ṽ
kΔ j′∂k f )

}

= ∑
| j− j′|�4

2 jn
∫

Rd
ϕ0(2 j(x− y))

{
S j′−1ṽ

k(x)−S j′−1ṽ
k(y)

}
∂kΔ j′ f (y)dy

= ∑
| j− j′|�4

2 jn
∫

Rd
ϕ0(2 j(x− y))

∫ 1

0
((x− y) ·∇)S j′−1ṽ

k(x+ τ(y− x))dτ∂kΔ j′ f (y)dy

= ∑
| j− j′|�4

2− j
∫

Rd
ϕ0(z)

∫ 1

0
(z ·∇)S j′−1ṽ

k(x− τ2− jz)dτ∂kΔ j′ f (x−2− jz)dz, (4.3)

where ϕ0 := h without loss of generality.
Then, by Young-like inequality given in Theorem 1.3 and Bernstein’s inequality,

we arrive at

‖R1
j ‖Lp

� ∑
| j− j′|�4

2− j
∫ 1

0

∥∥∥∫
Rd

|zϕ0(z)||∇S j′−1ṽ
k(x− τ2− jz)||∂kΔ j′ f (x−2− jz)|dz

∥∥∥
Lp

dτ

� C ∑
| j− j′|�4

2− j‖∇S j′−1ṽ
k‖Lp1‖∂kΔ j′ f‖Lp2

� C‖∇v‖Lp1 ∑
| j− j′|�4

2 j′− j‖Δ j′ f‖Lp2 . (4.4)

For R2
j , we have

R2
j = ∑

j′� j−3

S j′−1∂kΔ j fΔ j′ ṽ
k. (4.5)

Then using Hölder inequality gives

‖R2
j ‖Lp � ∑

j′� j−3

‖Δ j′ ṽ
k‖Lp1‖S j′−1∂kΔ j f‖Lp2

� C ∑
j′� j−3

2 j− j′‖Δ j′∇v‖Lp1‖S j′−1Δ j f‖Lp2

� C‖∇v‖Lp1‖Δ j f‖Lp2 . (4.6)

For R3
j , we proceed as follows:

R3
j = − ∑

| j− j′|�4

Δ j

(
S j′−1∂k fΔ j′ ṽ

k
)

(4.7)

= − ∑
| j− j′|�4

∑
j′′� j′−2

Δ j

(
Δ j′′∂k fΔ j′ ṽ

k
)
. (4.8)
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From (4.1), we get

‖R3
j ‖Lp � C ∑

| j− j′|�4

‖S j′−1∂k f‖Lp4‖Δ j′ ṽ
k‖Lp3

� C‖∇ f‖Lp4 ∑
| j− j′|�4

2− j′‖Δ j′∇v‖Lp3 . (4.9)

with 1/p = 1/p3 +1/p4 . Besides, starting from (4.8), we can alternatively get

2 jσ‖R3
j ‖Lp

� C ∑
| j− j′|�4

∑
j′′� j′−2

2qσ‖Δ j′′∂k f‖Lp4 ‖Δ j′ ṽ
k‖Lp3

� C ∑
| j− j′|�4

∑
j′′� j′−2

2
( j− j′′)(σ−1− d

p3
)
2 j′′σ‖Δ j′′ f‖Lp2

j′ d
p3 ‖Δ j′∇v‖Lp3 . (4.10)

Therefore, if σ < 1+d/p3, then

2 jσ‖R3
j ‖Lp � C‖∇v‖

B
d/p3
p3,∞

∑
j′′� j+2

2
( j− j′′)(σ−1− d

p3
)
2 j′′σ‖Δ j′′ f‖Lp

� Ccj‖∇v‖
B

d/p3
p3,∞

‖ f‖Bσ
p,r

, (4.11)

where we have used the Minkowski’s inequality.
For R4

j , it is clear that

R4
j = ∑

| j− j′|�2

∂k(Δ j′ ṽ
kΔ jΔ̃ j′ f )

= ∑
| j− j′|�2

∑
| j′− j′′|�1

∂k(Δ j′ ṽ
kΔ jΔ j′′ f )

= ∑
| j− j′|�2

∑
| j′− j′′|�1

(
Δ j′∂kṽ

kΔ jΔ j′′ f + Δ j′ ṽ
k∂kΔ jΔ j′′ f

)
(4.12)

which leads to

‖R4
j ‖Lp � C ∑

| j− j′|�2
∑

| j′− j′′|�1

(
‖Δ j′∂kṽ

k‖Lp1‖Δ jΔ j′′ f‖Lp2

+2 j′′− j′‖Δ j′∇ṽk‖Lp1‖Δ jΔ j′′ f‖Lp2

)
� C‖∇v‖Lp1 ∑

| j− j′′|�3

‖Δ j′′ f‖Lp2 . (4.13)

Note that R5
j = 0 if divv = 0, otherwise, a similar bound as R4

j holds for R5
j .

For R6
j , we first consider the case where 1/p+1/p3 � 1. Let p̃3 satisfy 1/ p̃3 =
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1/p+1/p3 . Then, note that the embedding B
σ+ d

p̃3
p̃3,r

↪→ Bσ
p,r , it yields

2 jσ‖R6
j ‖Lp � C2 j(σ+1)‖Δ jR(ṽk, f )‖Lp

� Ccj‖R(ṽ, f )‖Bσ+1
p,r

� Ccj‖R(ṽ, f )‖
B

σ+1+ d
p3

p̃3,r

� Ccj‖ṽ‖
B

d
p3

+1
p3,∞

‖ f‖Bσ
p,r

� Ccj‖∇v‖
B

d/p3
p3,∞

‖ f‖Bσ
p,r

, (4.14)

where the standard continuity results for the remainder has been used and σ > −1−
d/p3 is required. For the case of 1/p+1/p3 > 1, the argument can be applied with p′
(1/p′+1/p = 1) instead of p3 , and we still get

2 jσ‖R6
j ‖Lp � Ccj‖∇v‖

B
d/p3
p3,∞

‖ f‖Bσ
p,r

(4.15)

provided that σ > −1−d/p′ , where the embedding Bd/p3
p3,∞ ↪→ Bd/p′

p′,∞(p′ > p3) has been
used.

Note that in the cases σ = −1− d
p3

or σ = −1− d
p′ , Proposition 2.2 gives

∥∥∥(
2 jσ‖R6

j ‖Lp

)
j

∥∥∥
�1

� C‖∇v‖
B

d/p3
p3,1

‖ f‖Bσ
p,∞ . (4.16)

Besides, if σ > −1, together with the imbedding Lp1 ↪→ B0
p1,∞ , we can alternatively

arrive at

2 jσ‖R6
j ‖Lp � Ccj‖ṽ‖B1

p1,∞
‖ f‖Bσ

p2,r
� Ccj‖∇v‖Lp1‖ f‖Bσ

p2,r
. (4.17)

For R7
j , it follows from the same argument as R6

j that

2 jσ‖R7
j ‖Lp �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ccj‖∇v‖
B

d/p3
p3,∞

‖ f‖Bσ
p,r

, σ > −d/p3,

Ccj‖∇v‖
B

d/p3
p3,∞

‖ f‖Bσ
p,r

, σ > −d/p′,

Ccj‖∇v‖Lp1‖ f‖Bσ
p2,r

, σ > 0,

(4.18)

and ∥∥∥(
2 jσ‖R7

j ‖Lp

)
j

∥∥∥
�1

� C‖∇v‖
B

d/p3
p3,1

‖ f‖Bσ
p,∞ , (4.19)

provided that σ = − d
p3

or σ = − d
p′ .
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For the last term R8
j , it holds that

R8
j = ∑

| j− j′|�1

[Δ−1v
k,Δ j]∂kΔ j′ f

= ∑
| j− j′|�1

{
Δ−1v

k∂kΔ jΔ j′ f −Δ j(Δ−1v
k∂kΔ j′ f )

}

= ∑
| j− j′|�1

2 jd
∫

Rd
ϕ0(2 j(x− y))

{
Δ−1v

k(x)−Δ−1v
k(y)

}
∂kΔ j′ f (y)dy

= ∑
| j− j′|�1

2 jd
∫

Rd
ϕ0(2 j(x− y))

∫ 1

0
((x− y) ·∇)Δ−1v

k(x+ τ(y− x))dτ∂kΔ j′ f (y)dy

= ∑
| j− j′|�1

2− j
∫

Rd
ϕ0(z)

∫ 1

0
(z ·∇)Δ−1v

k(x− τ2− jz)dτ∂kΔ j′ f (x−2− jz)dz. (4.20)

Hence, by applying the Young-like inequality in Theorem 1.3 again, we obtain

‖R8
j ‖Lp � C ∑

| j− j′|�1

2 j′− j‖∇Δ−1v
k‖Lp1‖Δ j′ f‖Lp2

� C‖∇v‖Lp1 ∑
| j− j′|�1

2 j′− j‖Δ j′ f‖Lp2 . (4.21)

Therefore, combining with (4.4), (4.6), (4.9) or (4.11), (4.13)–(4.19) and (4.21), we
conclude (1.6), (1.7) and (1.8), and hence complete the proof of Theorem 1.4. �

Finally, we give the corresponding commutator estimates on the framework of
Chemin-Lerner spaces, whereas the additional time exponent θ behaves according to
Hölder inequality.

PROPOSITION 4.1. Let σ ∈ R , 1 � r � ∞ , 1 � p � p3 � ∞ and 1/p = 1/p1 +
1/p2 = 1/p3 +1/p4 . Let v be a vector field over R

d . Assume that

σ > −d min
{ 1

p3
,

1
p′

}
or σ > −1−d min

{ 1
p3

,
1
p′

}
if divv = 0

with 1/p+1/p′ = 1 . Define R j = [v ·∇,Δ j] f (or R j = div[v,Δ j] f if divv = 0) . There
exists a constant C , depending continuously on p, p1, p3,σ and d , such that∥∥∥(

2 jσ‖R j‖Lθ
T (Lp)

)
j

∥∥∥
�r

� C
(
‖∇v‖

L
θ1
T (Lp1 )

‖ f‖
L̃

θ2
T (Bσ

p2,r)
+‖∇v‖

L̃
θ3
T (B

d/p3
p3,∞)

‖ f‖
L̃

θ4
T (Bσ

p,r)

)
(4.22)

if σ < 1+ d
p3

. Furthermore, assume that σ > 0 (or σ > −1 , if divv = 0 ), then∥∥∥(
2 jσ‖R j‖Lθ

T (Lp)

)
j

∥∥∥
�r

� C
(
‖∇v‖

L
θ1
T (Lp1 )

‖ f‖
L̃

θ2
T (Bσ

p2,r)
+‖∇ f‖

L̃
θ4
T (Lp4 )

‖∇v‖
L̃

θ3
T (Bσ−1

p3,r )

)
. (4.23)
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In the limit case that σ =− d
p3

or σ =− d
p′ (σ =−1− d

p3
or σ =−1− d

p′ , if divv = 0 ),
we have

sup
j�−1

(
2 jσ‖R j‖Lθ

T (Lp)

)
j

� C
(
‖∇v‖

L
θ1
T (Lp1 )

‖ f‖
L̃

θ2
T (Bσ

p2,∞)
+‖∇v‖

L̃
θ3
T (B

d/p3
p3,1 )

‖ f‖
L̃

θ4
T (Bσ

p,∞)

)
, (4.24)

where
1
θ

=
1
θ1

+
1
θ2

=
1
θ3

+
1
θ4

.
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Stokes, J. Differential Equations, 121, 2 (1995), 314–328.

[5] Q. L. CHEN, C. X. MIAO AND Z. F. ZHANG, Global well-posedness for the compressible Navier-
Stokes equations with the highly oscillating initial velocity, Comm. Pure Appl. Math., 63, 9 (2010),
1173–1224.

[6] Q. L. CHEN, C. X. MIAO AND Z. F. ZHANG, Well-posedness in critical spaces for the compressible
Navier-Stokes equations with density dependent viscosities, Rev. Mat. Iberoamericana, 26, 3 (2010),
915–946.

[7] R. DANCHIN, Global existence in critical spaces for compressible Navier-Stokes equations, Inven-
tiones Mathematicae, 141, 3 (2000), 579–614.

[8] R. DANCHIN, Global existence in critical spaces for flows of compressible viscous and heat-
conductive gases, Arch. Ration. Mech. Anal., 160, 1 (2001), 1–39.

[9] R. DANCHIN, On the well-posedness of the incompressible density-dependent Euler equations in the
Lp framework, J. Differential Equations, 248, 8 (2010), 2130–2170.

[10] R. DANCHIN AND F. FANELLI, The well-posedness issue for the density-dependent Euler equations
in endpoint Besov spaces, J. Math. Pures Appl., 96, 3 (2011), 253–278.

[11] L. GRAFAKOS, Classical Fourier Analysis (2nd), New York: Springer, 2008.
[12] C. C. HAO AND H. L. LI, Well-posedness for a multidimensional viscous liquid-gas two phase flow

model, SIAM J. Math. Anal., 44, 3 (2012), 1304–1332.
[13] M. PAICU AND P. ZHANG, Global solutions to the 3-D incompressible anisotropic Navier-Stokes

system in the critical spaces, Commun. Math. Phys., 307, 3 (2011), 713–759.
[14] M. PAICU AND P. ZHANG, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes

system, J. Funct. Anal., 262, 8 (2012), 3556–3584.
[15] J. Z. QIAN AND Z. F. ZHANG, Global well-posedness for compressible viscoelastic fluids near equi-

librium, Arch. Ration. Mech. Anal., 198, 3 (2010), 835–868.



A YOUNG-LIKE INEQUALITY 553

[16] J. XU, Relaxation-time limit in the isothermal hydrodynamic model for semiconductors, SIAM J.
Math. Anal., 40, 5 (2008), 1979–1991.

[17] J. XU, Global classical solutions to the compressible Euler-Maxwell equations, SIAM J. Math. Anal.,
43, 6 (2011), 2688–2718.

[18] J. XU AND Z. J. WANG, Relaxation limit in Besov spaces for compressible Euler equations, J. Math.
Pures Appl., 99, 1 (2013), 43–61.

[19] T. ZHANG, Global wellposed problem for the 3-D incompressible anisotropic Navier-Stokes equations
in an anisotropic space, Commun. Math. Phys., 287, 1 (2009), 211–224.

[20] T. ZHANG AND D. Y. FANG, Global existence of strong solution for equations related to the in-
compressible viscoelastic fluids in the critical Lp framework, SIAM J. Math. Anal., 44, 4 (2012),
2266–2288.

[21] T. ZHANG AND D. Y. FANG, Global wellposed problem for the 3-D incompressible anisotropic
Navier-Stokes equations, J. Math. Pures Appl., 90, 5 (2008), 413–449.

(Received March 2, 2014) Jiang Xu
Department of Mathematics

Nanjing University of Aeronautics and Astronautics
Nanjing 211106, P.R. China

e-mail: jiangxu 79@nuaa.edu.cn

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


