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SOME INEQUALITIES FOR QUANTUM TSALLIS
ENTROPY RELATED TO THE STRONG SUBADDITIVITY

DENES PETZ AND DANIEL VIROSZTEK

Abstract. In this paper we investigate the inequality S,(p123) +Sq(p2) < Sy(p12) +Sq(p23) (%)
where pio3 is a state on a finite dimensional Hilbert space /7] ® .7 © 73, and S, is the Tsallis
entropy. It is well-known that the strong subadditivity of the von Neumnann entropy can be
derived from the monotonicity of the Umegaki relative entropy. Now, we present an equivalent
form of (*), which is an inequality of relative quasi-entropies. We derive an inequality of the
form S, (p123) +S4(p2) < Sq(p12) +S4(p23) + f4(p123), where fi(pi23) = 0. Such a result can
be considered as a generalization of the strong subadditivity of the von Neumnann entropy. One
can see that (*) does not hold in general (a picturesque example is included in this paper), but we
give a sufficient condition for this inequality, as well.
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