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SOME INEQUALITIES FOR QUANTUM TSALLIS

ENTROPY RELATED TO THE STRONG SUBADDITIVITY

DÉNES PETZ AND DÁNIEL VIROSZTEK

(Communicated by F. Hansen)

Abstract. In this paper we investigate the inequality Sq(ρ123)+ Sq(ρ2) � Sq(ρ12)+ Sq(ρ23)(∗)
where ρ123 is a state on a finite dimensional Hilbert space H1⊗H2⊗H3, and Sq is the Tsallis
entropy. It is well-known that the strong subadditivity of the von Neumnann entropy can be
derived from the monotonicity of the Umegaki relative entropy. Now, we present an equivalent
form of (*), which is an inequality of relative quasi-entropies. We derive an inequality of the
form Sq(ρ123)+Sq(ρ2) � Sq(ρ12)+Sq(ρ23)+ fq(ρ123) , where f1(ρ123) = 0 . Such a result can
be considered as a generalization of the strong subadditivity of the von Neumnann entropy. One
can see that (*) does not hold in general (a picturesque example is included in this paper), but we
give a sufficient condition for this inequality, as well.

1. Introduction

If 0 � D ∈ B(H ) is a state on a Hilbert space (or 0 � D = ∑i λiPi ∈ Mn(C) with
TrD = 1), then the von Neumann entropy is

S(D) = −TrD log D = −∑
i

λi logλi � 0, (1)

see in [5, 13, 18]. If D123 is a state on a Hilbert space H1 ⊗H2 ⊗H3 , then it has
reduced states D12, D2, D23 on the spaces H1 ⊗H2, H2 and H2 ⊗H3, respectively,
and the strong subadditivity is

S(D123)+S(D2) � S(D12)+S(D23) .

This result was made by E. Lieb and M. B. Ruskai in 1973 [16, 18]. Now we want to
make some extensions and the idea is lnq x . For any real q, one can define the deformed
logarithm (or q -logarithm) function lnq : R+ → R by

lnq x =
∫ x

1
tq−2dt =

{
xq−1−1

q−1 if q �= 1 ,

ln x if q = 1 .

The corresponding entropy
Sq(D) = −TrD lnq D
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is called Tsallis entropy [1, 7]. It is reasonable to restrict ourselves to the 0 < q case,
because limx→0+ −x lnq x = 0 if and only if 0 < q. If we introduce the notation Lnq x =
−x lnq x we can write Sq(D) = Tr Lnq D .

In this paper we present some inequalities on the Tsallis entropy which generalize
or are related to the strong subadditivity of the von Neumann entropy. We consider the
case of the classical probability theory, as well.

2. The Tsallis entropy is subadditive, but not strongly subadditive

If D is a state on a Hilbert space H1 ⊗H2 , then it has reduced states D1 and D2

on the spaces H1 and H2 . The subadditivity of the Tsallis entropy is

Sq(D) � Sq(D1)+Sq(D2), (2)

and it has been proved for q > 1 by Audenaert in 2007 [3]. In the q > 1 case (2) can
be written as

TrDq
1 +TrDq

2 = ||D1||qq + ||D2||qq � 1+ ||D||qq = 1+TrDq. (3)

The following example shows that in a special case the subadditivity can be veri-
fied by simple computations that are suggested by [9].

EXAMPLE 1. If 0 � a,b,c,d and a+b+ c+d = 1, then we can take the density
D = Diag(a,b,c,d), and the reduced densities are

D1 = Diag(a+b,c+d), D2 = Diag(a+ c,b+d) .

The inequality (2) is rather simple in this example.
For 1 � q the above (2) is in this form:

(a+b)q +(c+d)q +(a+ c)q +(b+d)q � 1+aq +bq + cq +dq

The case q = 2 is rather trivial. For general q, we use the function f (x) = x− xq (x ∈
[0,1]) and the identities f (x) = x(1− xq−1) and 1− xq−1yq−1 = 1− xq−1 + xq−1(1−
yq−1) . So

f (a)+ f (b)+ f (c)+ f (d)

= a

(
1− (a+ c)q−1

(
a

a+ c

)q−1
)

+b

(
1− (b+d)q−1

(
b

b+d

)q−1
)

+c

(
1− (a+ c)q−1

(
c

a+ c

)q−1
)

+d

(
1− (b+d)q−1

(
d

b+d

)q−1
)

= (a+c)
(
1− (a+ c)q−1)+(b+d)

(
1− (b+d)q−1)+a(a+c)q−1

(
1−

(
a

a+ c

)q−1
)
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+c(a+ c)q−1

(
1−

(
c

a+ c

)q−1
)

+b(b+d)q−1

(
1−

(
b

b+d

)q−1
)

+d(b+d)q−1

(
1−

(
d

b+d

)q−1
)

= f (a+ c)+ f (b+d)

+ (a+ c)q
(

f

(
a

a+ c

)
+ f

(
c

a+ c

))
+(b+d)q

(
f

(
b

b+d

)
+ f

(
d

b+d

))
. (4)

The concavity of f gives

(a+ c)q f

(
a

a+ c

)
+(b+d)q f

(
b

b+d

)

� (a+ c) f

(
a

a+ c

)
+(b+d) f

(
b

b+d

)
� f (a+b)

and

(a+ c)q f

(
c

a+ c

)
+(b+d)q f

(
d

b+d

)

� (a+ c) f

(
c

a+ c

)
+(b+d) f

(
d

b+d

)
� f (c+d).

So we get

(a+ c)q
(

f

(
a

a+ c

)
+ f

(
c

a+ c

))
+(b+d)q

(
f

(
b

b+d

)
+ f

(
d

b+d

))

� f (a+b)+ f (c+d),

hence from (4) we get

f (a)+ f (b)+ f (c)+ f (d) � f (a+ c)+ f (b+d)+ f (a+b)+ f (c+d).

This is our statement. �

The aim of this paper is to investigate the inequality

Sq(ρ123)+Sq(ρ2) � Sq(ρ12)+Sq(ρ23), (5)

where ρ123 is a state on a Hilbert space H1 ⊗H2 ⊗H3 (all components are finite
dimensional), and ρ2,ρ12,ρ23 are the appropriate reduced states. For q = 1, this is the
well-known strong subadditivity (or with the usual abbreviation: SSA) inequality (1),
which is a central result of the quantum information theory [16].

First, we have to note an easy consequence of Audenaert’s theorem. The subaddi-
tivity implies that

Sq(ρ123) � Sq(ρ12)+Sq(ρ3) and Sq(ρ123) � Sq(ρ1)+Sq(ρ23).



558 D. PETZ AND D. VIROSZTEK

It follows that
Sq(ρ123)+Sq(ρ2)−Sq(ρ12)−Sq(ρ23)

� min{Sq(ρ1)+Sq(ρ2)−Sq(ρ12),Sq(ρ2)+Sq(ρ3)−Sq(ρ23)}.
The Tsallis entropy is nonnegative and takes its maximum at the completely mixed
state, and the maximal value is − lnq

1
d , where d is the dimension of the underlying

Hilbert space. Therefore,

Sq(ρ123)+Sq(ρ2)−Sq(ρ12)−Sq(ρ23) � − lnq
1
d2

− lnq
1

min{d1,d2} ,

where di is the dimension of Hi. However, the strong subadditivity does not hold in
general.

PROPOSITION 1. The only strongly subadditive Tsallis entropy is the von Neu-
mann entropy, that is, the strong subadditivity of the Tsallis entropy holds if and only if
q = 1.

Proof. It is known that for product states the relation

Sq(ρX ⊗ρY ) = Sq(ρX)+Sq(ρY )+ (1−q)Sq(ρX)Sq(ρY ) (6)

holds, hence the Tsallis enrtopy can not be subadditive for q < 1. In fact, it is neither
subadditive, nor superadditive [9]. Therefore, the Tsallis enrtopy is not strongly subad-
ditive for q < 1. On the other hand, the next examples show that (5) does not hold for
1 < q .

Set q > 1 and consider the matrix

ρ123 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1
4 0 1

4 0 0 0

0 0 0 1
4 0 1

4 0 0

0 0 1
4 0 1

4 0 0 0

0 0 0 1
4 0 1

4 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

ρ123 is positive and Trρ123 = 1. We have

ρ12 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ , ρ23 =

⎡
⎢⎢⎢⎢⎢⎣

1
4 0 0 0

0 1
4 0 0

0 0 1
4 0

0 0 0 1
4

⎤
⎥⎥⎥⎥⎥⎦ , ρ2 =

[ 1
2 0

0 1
2

]
.
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One can compute that

Sq(ρ123)+Sq(ρ2) =
1

q−1

(
1−2

(
1
2

)q

+1−2

(
1
2

)q)
=

1
q−1

(
2−4

(
1
2

)q)

and

Sq(ρ12)+Sq(ρ23) = Sq(ρ23) =
1

q−1

(
1−4

(
1
4

)q)
.

By the inequality of geometric and arithmetic means, we have 2 · 21−q < 1 + 41−q ,
which immediately shows that Sq(ρ123)+Sq(ρ2) > Sq(ρ12)+Sq(ρ23) . �

This is not so surprising, if we consider a bit more general example.

EXAMPLE 2. If ρ12 is an entangled pure state, 1 < rank(ρ3) and ρ123 = ρ12⊗ρ3,
then

Sq(ρ123)+Sq(ρ2) > Sq(ρ12)+Sq(ρ23)

holds for every 1 < q. Indeed, if we use (6) we get

Sq(ρ123)+Sq(ρ2)= Sq(ρ12)+Sq(ρ3)+(1−q)Sq(ρ12)Sq(ρ3)+Sq(ρ2)= Sq(ρ2)+Sq(ρ3)

and

Sq(ρ12)+Sq(ρ23) = Sq(ρ23) = Sq(ρ2)+Sq(ρ3)+ (1−q)Sq(ρ2)Sq(ρ3),

because Sq(ρ12) = 0. ρ12 is entangled, hence Sq(ρ2) > 0, and this verifies the state-
ment.

However, for classical probability distributions, Tsallis entropy is strongly sub-
additive for 1 � q [9], and this result has a elegant and short proof. The only thing
necessary for the proof is that for any positive x,y and q, the identity

lnq x− lnq y = − lnq

(y
x

)
xq−1 (7)

holds. Now we restate the proof of Furuichi.

Proof. If ρ123 = Diag({p jkl}), then by (7),

Sq(ρ123)−Sq(ρ12) = − ∑
j,k,l

p jkl(lnq
(
p jkl

)− lnq
(
p jk

)
) = ∑

j,k,l

pq
jkl lnq

(
p jk

p jkl

)

= ∑
j,k,l

pq
jk

(
p jkl

p jk

)q

lnq

(
p jk

p jkl

)
.

Observe that xq lnq
(

1
x

)
= Lnq x, hence this expression can be written as

∑
j,k,l

pq
jkLnq

(
p jkl

p jk

)
= ∑

j,k,l

(
p jk

pk

)q

pq
kLnq

(
p jkl

p jk

)
� ∑

k,l

pq
k

(
∑
j

p jk

pk
Lnq

(
p jkl

p jk

))
.
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Lnq is concave, hence

∑
k,l

pq
k

(
∑
j

p jk

pk
Lnq

(
p jkl

p jk

))
� ∑

k,l

pq
kLnq

(
∑
j

p jk

pk

p jkl

p jk

)
= ∑

k,l

pq
kLnq

(
pkl

pk

)

= ∑
k,l

pq
k

(
pkl

pk

)q

lnq

(
pk

pkl

)
= ∑

k,l

pq
kl lnq

(
pk

pkl

)
= −∑

k,l

pkl(lnq (pkl)− lnq (pk))

= Sq(ρ23)−Sq(ρ2). �

3. Relative entropy and monotonicity

Let f be a (0,∞) → R function, let ρ ,σ ∈ Mn(C) be positive definite matrices
and A ∈ Mn(C) . We define the relative quasi-entropy by

SA
f (ρ ||σ) :=

〈
Aρ

1
2 , f (Δ(σ/ρ))

(
Aρ

1
2

)〉
, (8)

where 〈A, B〉= TrA∗B is the Hilbert-Schmidt inner product and Δ(σ/ρ) is the relative
modular operator introduced by Araki [2]:

Δ(σ/ρ) : Mn(C) → Mn(C) , X 	→ σXρ−1.

If A = I, we simply write S f (ρ ||σ) .
Whenever an expression SA

f (ρ ||σ) appears, we implicitly assume that ρ is invert-
ible. The following statement appeared in [21] and it makes the relative quasi-entropy
easy to compute in some cases.

LEMMA 1. Let the spectral decomposition of the positive definite matrices ρ and
σ be given by

ρ = ∑
j

λ j
∣∣ϕ j

〉〈
ϕ j

∣∣ and σ = ∑
k

μk |ψk〉〈ψk| .

Then we have

SA
f (ρ ||σ) = ∑

j,k

λ j f

(
μk

λ j

)∣∣〈ψk|A
∣∣ϕ j

〉∣∣2 . (9)

Proof.
{|ψk〉

〈
ϕ j

∣∣}n
j,k=1 form an orthonormal basis of Mn(C) (with respect to

the Hilbert-Schmidt inner product.) It is easy to check that with the notation v jk :=
|ψk〉

〈
ϕ j

∣∣ we can write the relative modular operator as

Δ(σ/ρ) = ∑
j,k

μk

λ j

∣∣v jk
〉〈

v jk

∣∣ , (10)

where
∣∣v jk

〉〈
v jk

∣∣ : Mn(C) → Mn(C) is defined by
∣∣v jk

〉〈
v jk

∣∣(X) := v jkTrv∗jkX . There-

fore, f (Δ(σ/ρ)) = ∑ j,k f
(

μk
λ j

)∣∣v jk
〉〈

v jk

∣∣ . Direct computation shows that

〈
Aρ

1
2 ,

∣∣v jk
〉〈

v jk
∣∣(Aρ

1
2

)〉
=
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= Tr

(
∑
a

λ
1
2
a |ϕa〉 〈ϕa|A∗ |ψk〉

〈
ϕ j

∣∣Tr

(∣∣ϕ j
〉〈ψk|A∑

b

λ
1
2
b |ϕb〉 〈ϕb|

))

= ∑
a,b

λ
1
2
a λ

1
2
b Tr

(|ϕa〉〈ϕa|A∗ |ψk〉
〈
ϕ j

∣∣Tr
(〈ϕb

∣∣ϕ j
〉 〈ψk|A |ϕb〉

))

= ∑
a,b

λ
1
2
a λ

1
2
b δb j 〈ψk|A |ϕb〉Tr

(|ϕa〉〈ϕa|A∗ |ψk〉
〈
ϕ j

∣∣)

= ∑
a,b

λ
1
2
a λ

1
2
b δb jδa j 〈ψk|A |ϕb〉〈ϕa|A∗ |ψk〉 = λ j

∣∣〈ψk|A
∣∣ϕ j

〉∣∣2 ,

therefore

SA
f (ρ ||σ) =

〈
Aρ

1
2 , ∑

j,k

f

(
μk

λ j

)∣∣v jk
〉〈

v jk

∣∣(Aρ
1
2

)〉
= ∑

j,k

λ j f

(
μk

λ j

)∣∣〈ψk|A
∣∣ϕ j

〉∣∣2 .

�
A short and elegant proof of the monotonicity of the relative entropy is given by

Nielsen and Petz in [17]. The statement is that if A,B ∈ Mm(C)⊗Mn(C) are posi-
tive definite matrices and we set A1 = Tr2A, B1 = Tr2B, then for an operator convex
function f the following inequality holds:

S f (A||B) � S f (A1||B1) . (11)

There is a useful extension of this monotonicity in [21]. Now we restate Sharma’s
proof, which is essentially the same as the proof of Nielsen and Petz [17].

LEMMA 2. Suppose that A,B ∈ Mm(C)⊗Mn(C) are positive definite matrices
and let us use the notations A1 = Tr2A, B1 = Tr2B. If f is an operator convex function
then for any T ∈ Mm(C) the following inequality holds:

ST⊗I2
f (A||B) � ST

f (A1||B1) , (12)

where I2 is the identity in Mn(C).

Proof. Let us consider the linear map

U : Mm(C) → Mm(C)⊗Mn(C); X 	→ U (X) :=
(

XA
− 1

2
1 ⊗ I2

)
A

1
2 .

We can check that U is an isometry. For X ,Y ∈ Mm(C),

〈U (X), U (Y )〉 = Tr

(
A

1
2

(
A
− 1

2
1 X∗ ⊗ I2

)(
YA

− 1
2

1 ⊗ I2

)
A

1
2

)

= Tr

(
A

(
A
− 1

2
1 X∗YA

− 1
2

1 ⊗ I2

))
= TrA1

(
A
− 1

2
1 X∗YA

− 1
2

1

)
= TrX∗Y = 〈X , Y 〉 .
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The short computation

〈Y, U (X)〉 = TrY ∗
(

XA
− 1

2
1 ⊗ I2

)
A

1
2 = Tr

(
YA

1
2

)∗
(X ⊗ I2)

(
A
− 1

2
1 ⊗ I2

)

= Tr

(
A
− 1

2
1 ⊗ I2

)(
YA

1
2

)∗
(X ⊗ I2) = Tr

(
YA

1
2

(
A
− 1

2
1 ⊗ I2

))∗
(X ⊗ I2)

= Tr

(
Tr2

(
YA

1
2

(
A
− 1

2
1 ⊗ I2

)))∗
X =

〈
Tr2

(
YA

1
2

(
A
− 1

2
1 ⊗ I2

))
, X

〉

shows that the adjoint of U (which will be denoted by U ∗ ) is the map

Y 	→ Tr2

(
YA

1
2

(
A
− 1

2
1 ⊗ I2

))
.

One can see that U admits the beautiful relation

U ∗Δ(B/A)U = Δ(B1/A1) . (13)

If X ∈ Mm(C), then

U ∗Δ(B/A)U (X) = Tr2

(
B

(
XA

− 1
2

1 ⊗ I2

)
A

1
2 A−1A

1
2

(
A
− 1

2
1 ⊗ I2

))
= Tr2

(
B
(
XA−1

1 ⊗ I2
))

= B1XA−1
1 = Δ(B1/A1)(X).

By definition of the relative entropy and by (13), the right-hand-side of (12) can
be written as

ST
f (A1||B1) =

〈
TA

1
2
1 , f (Δ(B1/A1))

(
TA

1
2
1

)〉
=

〈
TA

1
2
1 , f (U ∗Δ(B/A)U )

(
TA

1
2
1

)〉
.

The operator convexity of f implies that

f (U ∗Δ(B/A)U ) � U ∗ f (Δ(B/A))U

(see Chapter 5 of [5]), and U

(
TA

1
2
1

)
= (T ⊗ I2)A

1
2 is immediate. Therefore,

〈
TA

1
2
1 , f (U ∗Δ(B/A)U )

(
TA

1
2
1

)〉
�

〈
U

(
TA

1
2
1

)
, f (Δ(B/A))

(
U

(
TA

1
2
1

))〉

=
〈
(T ⊗ I2)A

1
2 , f (Δ(B/A))

(
(T ⊗ I2)A

1
2

)〉
= ST⊗I2

f (A||B) ,

and the proof is complete. �

4. From the relative entropy to the strong subadditivity

As we have seen in Section 2, the strong subadditivity of the Tsallis entropy holds
if and only if q = 1. Therefore, our goal is to find some formulas as

Sq(ρ123)+Sq(ρ2) � Sq(ρ12)+Sq(ρ23)+ fq(ρ123), (14)
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where f1(ρ123) = 0. Such a result can be considered as a generalization of the SSA
inequality.

Now we collect here some elementary facts that will be used in this section.

1. For any positive x,y and q, the identity

lnq x− lnq y = − lnq

(y
x

)
− (q−1) lnq

(y
x

)
lnq x (15)

holds.

2. If f and g are R → R functions, ρ ,σ ∈ Msa
n (C) and the spectral decomposi-

tions are ρ = ∑ j λ j
∣∣ϕ j

〉〈
ϕ j

∣∣ and σ = ∑k μk |ψk〉 〈ψk| , and domain of f and g
contains the spectrum of ρ and σ , respectively, then

Tr f (ρ)g(σ) = ∑
j,k

f (λ j)g(μk)
∣∣〈ϕ j |ψk〉

∣∣2 . (16)

3. If A ∈ Mm(C)⊗Mn(C) and B ∈ Mm(C), then

Tr2 (A ·B⊗ I2) = (Tr2A) ·B. (17)

The strong subadditivity of the von Neumnann entropy can be derived from the
monotonicity of the Umegaki relative entropy [6, 17]. Therefore, it seems to be useful
to reformulate the SSA of the Tsallis entropy as an inequality of relative quasi-entropies.

THEOREM 1. The strong subadditivity inequality of the Tsallis entropy (5) is equiv-
alent to

SU
− lnq

(ρ123 ||ρ12⊗ I3) � SV
− lnq

(ρ23 ||ρ2⊗ I3) , (18)

where

U = ρ
1
2 (q−1)
123 , V = ρ

1
2 (q−1)
23 . (19)

Proof. By (17),

Tr3 (ρ123 lnq(ρ12⊗ I3)) = ρ12 lnq(ρ12) and Tr3 (ρ23 lnq(ρ2⊗ I3)) = ρ2 lnq(ρ2),

hence the inequality

−Sq(ρ123)+Sq(ρ12) � −Sq(ρ12)+Sq(ρ2),

which is obviously equivalent to (5), can be written in the form

Trρ123 (lnq(ρ123)− lnq(ρ12⊗ I3)) � Trρ23 (lnq(ρ23)− lnq(ρ2⊗ I3)) . (20)

By (16), if ρ123 = ∑ j λ j
∣∣ϕ j

〉〈
ϕ j

∣∣ and ρ12 ⊗ I3 = ∑k μk |ψk〉〈ψk| , then the left
hand side of (20) is

∑
j,k

λ j (lnq λ j − lnq μk)
∣∣〈ϕ j |ψk〉

∣∣2 .
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By (7), this expression can be written as

∑
j,k

λ j

(
− lnq

(
μk

λ j

)
λ q−1

j

)∣∣〈ϕ j |ψk〉
∣∣2 . (21)

In addition, if U = ρ
1
2 (q−1)
123 then

∣∣〈ψk|U
∣∣ϕ j

〉∣∣2 = λ q−1
j

∣∣〈ψk

∣∣ϕ j
〉∣∣2 ,

hence by the result of Lemma 1, we can write (21) as the following relative entropy

∑
j,k

λ j

(
− lnq

(
μk

λ j

))∣∣〈ψk|U
∣∣ϕ j

〉∣∣2 = SU
− lnq

(ρ123 ||ρ12⊗ I3) . (22)

The observation that the right hand side of (20) can be written as a relative entropy
similarly to (22) completes the proof. �

Note that in the special case q = 1, Theorem 1 states the equivalence of the mono-
tonicity of the Umegaki relative entropy and the SSA of the von Neumann entropy.

THEOREM 2. For 0 < q � 2 the inequality

Sq(ρ12)+Sq(ρ23)−Sq(ρ123)−Sq(ρ2)

� (q−1)

(
S
(− lnq ρ123)

1
2

lnq
(ρ123||ρ12⊗ I3)−S

(− lnq ρ23)
1
2

lnq
(ρ23 ||ρ2⊗ I3)

)

holds.

Remark that this statement recovers the strong subadditivity of the von Neumann
entropy if q = 1.

Proof. We noted that if ρ123 = ∑ j λ j
∣∣ϕ j

〉〈
ϕ j

∣∣ and ρ12 ⊗ I3 = ∑k μk |ψk〉〈ψk| ,
then the left hand side of (20) is

∑
j,k

λ j (lnq λ j − lnq μk)
∣∣〈ϕ j |ψk〉

∣∣2 .

According to (15), it is equal to

∑
j,k

λ j

(
− lnq

(
μk

λ j

)
− (q−1) lnq

(
μk

λ j

)
lnq λ j

)∣∣〈ϕ j |ψk〉
∣∣2 , (23)

and by Lemma 1, (23) has the form

S− lnq (ρ123 ||ρ12⊗ I3)+ (q−1)S(− lnq ρ123)
1
2

lnq
(ρ123 ||ρ12⊗ I3) . (24)
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If we rewrite the right hand side of (20) similarly to (24), we get that the SSA is
equivalent to

S− lnq (ρ123 ||ρ12⊗ I3)+ (q−1)S(− lnq ρ123)
1
2

lnq
(ρ123 ||ρ12⊗ I3)

� S− lnq (ρ23 ||ρ2⊗ I3)+ (q−1)S(− lnq ρ23)
1
2

lnq
(ρ23 ||ρ2⊗ I3) . (25)

It is easy to derive from the Löwner-Heinz theorem [5, 6, 13] that lnq x is operator
monotone, if 0 < q � 2. An operator monotone function is operator concave [13], hence
− lnq x is operator convex.

By the monotonicity property (12), for 0 < q � 2 we have

S− lnq (ρ123 ||ρ12⊗ I3) � S− lnq (ρ23 ||ρ2⊗ I3) ,

and by (25), this is equivalent to

−Sq(ρ123)+Sq(ρ12)− (q−1)

(
S
(− lnq ρ123)

1
2

lnq
(ρ123 ||ρ12⊗ I3)

)

� −Sq(ρ23)+Sq(ρ2)− (q−1)

(
S
(− lnq ρ23)

1
2

lnq
(ρ23 ||ρ2⊗ I3)

)
. (26)

This is the statement of the theorem. �

The notation (19) will be used again. Because of the monotonicity property (12),
for 0 < q � 2 and f (x) = − lnq x,A = ρ123,B = ρ12⊗ I3,T =V we have

SI1⊗V
− lnq

(ρ123 ||ρ12⊗ I3) � SV
− lnq

(ρ23 ||ρ2⊗ I3) . (27)

This formula is quite similar to the SSA inequality (18). By (27),

SU
− lnq

(ρ123 ||ρ12⊗ I3) � SI1⊗V
− lnq

(ρ123||ρ12⊗ I3) (28)

implies the strong subadditivity (18). We try to find a sufficient condition for (28).

THEOREM 3. If ρ123 and I1⊗ρ23 commute, and (using the usual notation ρ123 =
∑ j λ j

∣∣ϕ j
〉〈

ϕ j
∣∣ and ρ12⊗ I3 = ∑k μk |ψk〉〈ψk|) we have λ j � μk whenever 〈ψk

∣∣ϕ j
〉 �=

0 , then for any 1 � q � 2 the strong subadditivity inequality

Sq(ρ123)+Sq(ρ2) � Sq(ρ12)+Sq(ρ23)

holds.

Note that if ρ123 is a classical probability distribution (that is, it is diagonal in a
product basis), then the conditions of Theorem 3 are clearly satisfied.
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Proof. By Lemma 1, (28) is equivalent to

∑
j,k

∣∣∣∣〈ψk|ρ
1
2 (q−1)
123

∣∣ϕ j
〉∣∣∣∣

2(
− lnq

(
μk

λ j

))
λ j

� ∑
j,k

∣∣∣∣〈ψk| I1⊗ρ
1
2 (q−1)
23

∣∣ϕ j
〉∣∣∣∣

2(
− lnq

(
μk

λ j

))
λ j .

If λ j � μk , then
(
− lnq

(
μk
λ j

))
λ j � 0. On the other hand,

∣∣∣∣〈ψk|ρ
1
2 (q−1)
123

∣∣ϕ j
〉∣∣∣∣

2

= λ q−1
j

∣∣〈ψk

∣∣ϕ j
〉∣∣2 .

If ρ123 and I1 ⊗ ρ23 commute, then I1 ⊗ ρ23 is diagonal in the basis
{

ϕ j
}

j∈J and

ρ123 � I1⊗ρ23 holds, that is, I1⊗ρ23 = ∑ j ν j
∣∣ϕ j

〉〈
ϕ j

∣∣ with some ν j � λ j.

If 1 � q, the map t 	→ t(q−1) is monotone on R+ , hence we have∣∣∣∣〈ψk| I1⊗ρ
1
2 (q−1)
23

∣∣ϕ j
〉∣∣∣∣

2

= νq−1
j

∣∣〈ψk

∣∣ϕ j
〉∣∣2 � λ q−1

j

∣∣〈ψk

∣∣ϕ j
〉∣∣2 .

We concluded that if the conditions of Theorem 3 are satisfied, then (28) holds, and
hence the proof is complete. �

The following example shows that one can apply Theorem 3 in essentially non-
classical cases, as well.

EXAMPLE 3. Set p,q ∈ [ 1
2 ,1

]
such that pq � 1− q and t ∈ R. Let us define V

and Λ by

V =

⎡
⎢⎢⎣

cost 0 0 −sin t
0 cost −sin t 0
0 sin t cost 0

sin t 0 0 cost

⎤
⎥⎥⎦ , Λ = Diag(pq,(1− p)q, p(1−q),(1− p)(1−q)).

V describes a family of orthonormal bases, this family can be considered as a one-
parameter extension of the Bell basis. Let ρ1 ∈ Mm(C) be an arbitrary density, and
ρ23 ∈ M2(C)⊗M2(C) be defined by

ρ23 = VΛV−1

=

⎡
⎢⎢⎣

pqcos2 t +(1− p)(1−q)sin2 t 0 0 (pq− (1− p)(1−q))sint cost
0 A11 A12 0
0 A21 A22 0

(pq− (1− p)(1−q))sint cost 0 0 (1− p)(1−q)cos2 t + pqsin2 t

⎤
⎥⎥⎦ ,

where

A11 = (1− p)qcos2 t + p(1−q)sin2 t , A12 = ((1− p)q− p(1−q))sint cost ,
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A21 = ((1− p)q− p(1−q))sint cost , A22 = p(1−q)cos2 t +(1− p)qsin2 t .

One can easily compute that

ρ2 = Tr3 ρ23 =
[

qcos2 t +(1−q)sin2 t 0
0 qsin2 t +(1−q)cos2 t

]
.

Let us take the density ρ123 = ρ1⊗ρ23. The spectrum of ρ123 is

m⋃
j=1

{ν j pq,ν j(1− p)q,ν j p(1−q),ν j(1− p)(1−q)},

where ν j ’s are the eigenvalues of ρ1 . The spectrum of ρ12 (or ρ12⊗ I3 ) is

m⋃
j=1

{ν j(qcos2 t +(1−q)sin2 t),ν j(qsin2 t +(1−q)cos2 t)}.

The assumption pq � 1−q guarantees that the eigenvalues of ρ123 are smaller than the
eigenvalues of ρ12 ⊗ I3 , whenever the corresponding eigenvectors are not orthogonal.
ρ123 and I1⊗ρ23 obviously commute, hence the conditions of Theorem 3 are satisfied
by ρ123 despite the fact that ρ23 can not be diagonized in any product basis.
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Alfréd Rényi Institute of Mathematics
H-1364 Budapest, POB 127, Hungary

e-mail: petz@math.bme.hu

Dániel Virosztek
Budapest University of Technology and Economics
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