
Mathematical
Inequalities

& Applications

Volume 18, Number 2 (2015), 569–580 doi:10.7153/mia-18-42

ON THE FAN AND LIDSKII MAJORISATIONS

OF POSITIVE SEMIDEFINITE MATRICES

EUN-YOUNG LEE

(Communicated by J.-C. Bourin)

Abstract. Let A,B be two positive definite matrices. The Fan-Lidskii majorisations can be sub-
sumed as the symmetric norm rearrangement inequalities

‖A↓ +B↑‖ � ‖A+B‖� ‖A↓ +B↓‖
where the up/down arrows on A,B mean the diagonal matrices with the same eigenvalues in

decreasing/increasing order down to the diagonal. We refine these relations with sums of type
A +UBU∗ and A +VBV∗ for two unitary matrices U,V associated in a quite natural way to
A and B . Stronger results than majorisation are given by using simple averages in the unitary
orbits of A+B , A+UBU∗ and A+VBV ∗ . Proofs rely on an orbital decomposition for positive
block-matrices.

Some well-known rearrangement inequalities in classical analysis say that a given
norm is maximized/minimized when two functions or sequences are arranged in the
same/opposite way. It seems meaningless to discuss more on such rearrangement in-
equalities. However, in the non-commutative world of matrices, or Hilbert space oper-
ators, the situation is different. It is the concern of this article.

1. Majorisation

This note focuses on a refinement of two classical majorisations, the fundamental
Fan and Lidskii rearrangement norm inequalities. Majorisation plays a central role in
matrix analysis and its applications. This section briefly summarizes it with an em-
phasis on norm or anti-norm relations on the positive (semidefinite) cone. Section
2 contains a new result, a refinement of the Fan-Lidskii inequalities, or intermediate
inequalities. The proof, in Section 3, depends on a quite interesting decomposition
technique for block-matrices.

Mn denotes the space of n×n matrices with complex entries and M+
n its positive

semidefinite part.
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1.1. Norms and anti-norms

A symmetric norm ‖ · ‖ on Mn , also called a unitarily invariant norm, is a norm
such that ‖UAV‖ for all A ∈ Mn and all unitaries U,V ∈ Mn . Hence, from the polar
decomposition, a symmetric norm can be defined by its restriction to the positive cone
M+

n by three properties as follows.

DEFINITION 1.1. A symmetric norm ‖ · ‖ on M+
n is a non-zero functional such

that

1. ‖λA‖ = λ‖A‖ for all A ∈ M+
n and all reals λ � 0,

2. ‖A‖ = ‖UAU∗‖ for all A ∈ M+
n and all unitaries U ,

3. ‖A‖ � ‖A+B‖� ‖A‖+‖B‖ for all A, B ∈ M+
n .

Symmetric norms are homogeneous, convex, and unitarily invariant on the positive
semidefinite cone. The concave counterpart notion is that of symmetric anti-norms.

DEFINITION 1.2. A symmetric anti-norm ‖ · ‖! on M
+
n is a non-negative contin-

uous functional such that

1. ‖λA‖! = λ‖A‖! for all A ∈ M+
n and all reals λ � 0,

2. ‖A‖! = ‖UAU∗‖! for all A ∈ M
+
n and all unitaries U ,

3. ‖A+B‖! � ‖A‖! +‖B‖! for all A, B ∈ M
+
n .

EXAMPLE 1.3. For all p � 1, the Schatten p -norms,

A �→ {TrAp}1/p

constitute a well-known family of symmetric norms on M+
n . When p ∈ (0,1] , these

functionals are anti-norms. If p ∈ (−∞,0) , these functional are well defined on the
invertible part of Mn and can be extended in a continuous way with the zero value to
the non-invertible part. These also constitute a family of anti-norms.

EXAMPLE 1.4. The Minkowski functional

A �→ det1/nA

is an anti-norm on M
+
n . This is reflected by the Minkowski inequality

det1/n(A+B) � det1/nA+det1/nB

for all A,B ∈ M+
n .

Since for p ∈ (0,1) , A �→ {TrAp}1/p and A �→ {TrAp−1}1/(p−1) are symmetric
anti-norms on M+

n and since the weighted geometric operation apb1−p is a concave
operation on pairs of positive numbers a,b we obtain the next example of symmetric
anti-norms.
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EXAMPLE 1.5. Let p ∈ [0,1] . An example of anti-norm on M+
n is given by the

functional defined for invertible positive operators by

A �→ TrAp

TrAp−1 (1.1)

and vanishing on the non-invertible part of M+
n . This continuous functional is clearly

increasing and homogeneous on M+
n , thus that it is an anti-norm is equivalent to the

super-additivity property

Tr(A+B)p

Tr(A+B)p−1 � TrAp

TrAp−1 +
TrBp

TrBp−1 .

for all A,B ∈ M+
n .

Besides these examples, a remarkable family of symmetric anti-norms arise from
symmetric norms as follows.

EXAMPLE 1.6. Let ‖ · ‖ be a symmetric norm on Mn and p > 0. If A ∈ M
+
n is

invertible, set
‖A‖! := ‖A−p‖−1/p

and extend this functional to the non-invertible part by taking the value zero. Then ‖·‖!

is a symmetric anti-norm. This is reflected by the superadditive inequality

‖(A+B)−p‖−1/p � ‖A−p‖1/p +‖B−p‖−1/p (1.2)

for all A,B ∈ M+
n (with the vanishing condition for non-invertible matrices).

Another functional of interest on M+
n is the diameter of the numerical range, i.e.,

the difference between the largest and the smallest eigenvalues. It can be expressed in
terms of the operator norm ‖ · ‖∞ as

A �→ ‖A‖∞−‖A−1‖−1
∞

where we still adhere to the natural continuity convention for non-invertible matrices.
This suggests to extend this notion. Given a symmetric norm ‖ · ‖ , the associated
diameter is the functional on M+

n ,

A �→ diam‖·‖(A) = ‖A‖−‖A−1‖−1. (1.3)

From (1.2) we infer the following proposition.

PROPOSITION 1.7. For any symmetric norm with ‖E‖ = 1 on rank one projec-
tions E , the associated diameter (1.3) is a non-negative functional, and it is a weakly
symmetric semi-norm, that is:

1. diam‖·‖(λA) = λdiam‖·‖(A) for all A ∈ M
+
n and all reals λ � 0 ,
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2. diam‖·‖(A) = diam‖·‖(UAU∗) for all A ∈ M+
n and all unitaries U ,

3. diam‖·‖(A+B) � diam‖·‖(A)+diam‖·‖(B) for all A, B ∈ M+
n .

Proof. The homogeneity and unitary invariance properties are obvious. The sub-
additivity property follows from the subadditivity of A �→ ‖A‖ and A �→ −‖A−1‖−1

(due to Example 1.6). To prove that diam‖·‖ is a non-negative functional, that is

‖A‖−1 � ‖A−1‖ (1.4)

on the non-invertible part of M+
n , we use the normalization condition ‖E‖= 1 on rank

one projections E . Let ‖ · ‖D be the dual norm: for Z ∈ M+
n ,

‖Z‖D = maxTrAZ

where the maximum runs over all A ∈ M+
n with ‖A‖ = 1. Since the dual of ‖ · ‖D is

‖ · ‖ itself, we infer that we also have the normalization condition ‖E‖D = 1 for all
rank one projections E . Hence, if M ∈ M+

n satisfies ‖M‖D = 1, then TrM � 1. In
particular with such an M such that

‖A‖ = TrMA

we have, by using Jensen inequality for t �→ t−1 ,

‖A‖−1 = {TrMA}−1

� {{TrM}−2TrMA−1

� TrMA−1

� ‖A−1‖
hence (1.4) holds. �

REMARK 1.8. Symmetric (or unitarily invariant) norms is a basic notion in Ma-
trix and Operator Theory whose first examples are the operator-, trace-, and Hilbert-
Schmidt norms. The general study goes back to von Neumann in the thirties. Details
can be found in most books on matrices or operators, for instance [2], [8]. In [2],
weakly symmetric (unitarily invariant) norms are also discussed. The notion of sym-
metric anti-norms on M+

n is due to Bourin and Hiai, see [3], [4] where a lot of examples
and properties are given. The nice family of anti-norms of Example 1.6 appears in [4]
and are called derived anti-norms; a lot of inequalities related to these anti-norms are
obtained in this paper. A simple proof that these functionals are anti-norms is also given
in [5]. Example 1.5 is new, though implicit in [3].

1.2. Majorisation

A few notation is necessary in order to state the various forms of a majorisation
relation. If A ∈ M

+
n (C) , denote by λ ↓

j (A) , resp. λ ↑
j (A) , the sequence of eigenvalues
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of A arranged in decreasing, resp. increasing, order. Also, denote by A↓ , resp. A↓ , the
diagonal matrix with the λ ↓

j (A) , resp. the λ ↑
j (A) , down to the diagonal.

MAJORISATION. Let A,B ∈ M+
n (C) such that TrA = TrB . The following five

conditions are equivalent.

(1) For all k = 1,2, ...n ,
k

∑
j=1

λ ↓
j (A) �

k

∑
j=1

λ ↓
j (B).

(2) For all symmetric norms, ‖A‖ � ‖B‖ .

(3) For all k = 1,2, ...n ,
k

∑
j=1

λ ↑
j (A) �

k

∑
j=1

λ ↑
j (B).

(4) For all symmetric anti-norms, ‖A‖! � ‖B‖! .

(5) There exist some unitaries Ui ∈ Mn , i = 1, . . . ,n such that

A =
n

∑
i=1

αiUiBU∗
i

for some nonnegative scalars αi , ∑n
i=1 αi = 1.

These conditions are five forms of the majorisation relation: A is majorised by B .

REMARK 1.9. Majorisation relations lie at the heart of matrix analysis and the
literature is quite vast; a nice sample is Ando’s survey [1]. The implication (1) ⇒ (2)
is the Fan principle for symmetric norms. Its equivalent anti-norm counterpart (3) ⇒
(4) is pointed out in [3]. The condition (5) shows that A ≺ B means that A is the
convex hull of the unitary orbit of B . This has been known for decades in a weak
form by using a family of n! unitaries instead of only n unitaries. The number n! is
related to another classical form of majorisation involving doubly stochastic matrices.
Surprisingly enough, it is only in 2003 that, in a short note [9], Zhan noticed the sharp
number n by a simple application of Caratheodory’s theorem.

1.3. Fan and Lidskii

The famous Ky Fan and Lidskii majorisations can be written as a double inequality
for pairs of positive operators.

FAN-LIDSKII. Let A,B ∈ M
+
n . Then for all symmetric norms,

‖A↑+B↓‖ � ‖A+B‖� ‖A↓ +B↓‖ (1.5)
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and these inequalities reverse for symmetric anti-norms.

When AB = BA , this is relevant to the Hardy-Littlewood-Polya inequalities for
rearrangement invariant sequence spaces. Thanks to the above fifth form of the majori-
sation, (1.5) can be written in a more precise statement by making use of unitary orbits
as follows:

A+B =
n

∑
i=1

αiUi(A↓ +B↓)U∗
i (1.6)

for n unitary Ui ∈ Mn pondered with a non-negative weight αi , ∑n
i=1 αi = 1, and

similarly,

A↓ +B↑ =
n

∑
i=1

βiVi(A+B)V∗
i (1.7)

for n unitary Vi ∈ Mn pondered with a non-negative weight βi , ∑n
i=1 βi = 1.

REMARK 1.10. The second inequality in (1.5) is equivalent the Fan majorisation
principle (1)⇒ (2) given in the above five forms of majorisation. The second inequal-
ity in (1.5) is the Lidskii majorisation. It is a much more subtle majorisation. It is often
stated as a fundamental variational inequality. In 1999, Li and Mathias [7] obtained a
remarkably simple proof of the Lidskii majorisation.

QUESTION 1.11. Let U (A) denote the unitary orbit of A . Since A↓,A↑ ∈ U (A)
and B↓,B↑ ∈ U (B) , the expression (1.6) of the Fan majorisation raises the question
whether there exist natural A′ ∈ U (A) and B′ ∈ U (B) such that

A+B =
W1(A′ +B′)W ∗

1 +W2(A′ +B′)W ∗
2

2
.

for some unitary W1,W2 ∈ Mn . Of course, we may consider a similar question for the
expression (1.7) of the Lidskii majoristaion.

2. Average of unitary orbits

The following two theorems are our main results. The first one provides a rather
simple answer to Question 1.11 for the Fan majorisation.

THEOREM 2.1. Let A,B ∈ M+
n and let U be the unitary in the polar decomposi-

tions A1/2B1/2 = U |A1/2B1/2| . Then,

A+B =
Λ1(A+UBU∗)Λ∗

1 + Λ2(A+UBU∗)Λ∗
2

2

for some unitaries Λ1,Λ2 ∈ Mn .

Here, of course, if A or B is not invertible, the unitary U in the polar decompo-
sition is not unique. The matrix A1/2B1/2 can be regarded as a geometric mean and
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hence U is quite naturally attached to the pair A,B . It is a rather surprising result that
A+B is the average of two elements in the unitary orbit of A+UBU∗ .

To deal with Lidskii form of Question 1.11 we need to consider the ”right” geo-
metric mean in M+

n . Given two positive matrices A,B , their geometric mean is defined
as

A�B := A1/2(A−1/2BA−1/2)1/2A1/2

and satisfies several natural properties. It is the only positive solution of the matrix
Ricatti equation

XA−1X = B,

and hence A�B = B�A . This algebraic definition via an equation for invertible matrices
in M+

n is equivalent to the two natural requirements:

(i) A�B = A1/2B1/2 whenever AB = BA , and

(ii) Z∗(A�B)Z = (Z∗AZ)�(Z∗BZ) for all invertible Z ∈ Mn .

It follows that we have a decomposition

A�B = A1/2VB1/2 (2.1)

where V is a unitary operator. For not necessarily invertible A,B ∈ M
+
n , the geometric

mean is defined by
A�B = lim

r↘0
(A+ rI)�(B+ rI)

The factorization (2.1) for some unitaries V still exists, though not necessarily unique.
We are now in position to answer to the Lidskii version of Question 1.11.

THEOREM 2.2. Let A,B ∈ M+
n and let V be the unitary in the geometric mean

decomposition A�B = A1/2VB1/2 . Then,

A+VBV ∗ =
Λ1(A+B)Λ∗

1 + Λ2(A+B)Λ∗
2

2

for some unitaries Λ1,Λ2 ∈ Mn .

REMARK 2.3. These relations between A+B , A+UBU∗ , A+VBV ∗ are far from
being obvious, and it is interesting to note that even for matrices A,B ∈ Mn(R) , i.e.,
with real entries, it seems that we need to use unitaries Λ1,Λ2 ∈ Mn , i.e, with complex
entries.

REMARK 2.4. Operator algebraists may like to have similar statements for posi-
tive operators A,B in a von-Neumann algebra M . One might expect that Λ1,Λ2 are
then partial isometries in M . This is not clear. By inspecting the proof of the matrix
case, we have a version for Hilbert space operators A,B where the unitary condition on
Λ1,Λ2 is relaxed to a contraction assumption. Details are given in Section 3. However,
If A,B are nonsingular and trace class, then the situation is the same as in the matrix
case.
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COROLLARY 2.5. Let A,B ∈ M+
n be and let U,V be the unitaries in the geomet-

ric mean and polar decompositions A�B = A1/2VB1/2 and A1/2B1/2 = U |A1/2B1/2| .
Then, for all symmetric norms,

‖A+VBV ∗‖ � ‖A+B‖� ‖A+UBU∗‖

and these inequalities reverse for anti-norms.

By Example 1.4, these majorisations contain a determinantal inequality

det(A+VBV ∗) � det(A+B) � det(A+UBU∗).

Since the determinant is a quite special functional, it would be interesting to find more
pairs of unitaries (U,V ) satisfying this double inequality.

COROLLARY 2.6. Let A,B ∈ M+
n be and let U,V be the unitaries in the geomet-

ric mean and polar decompositions A�B = A1/2VB1/2 and A1/2B1/2 = U |A1/2B1/2| .
Then, for all symmetric norms,

diam‖·‖(A+VBV ∗) � diam‖·‖(A+B) � diam‖·‖(A+UBU∗).

Corollary 2.5 refines the Fan-Lidskii double majorisations (1.5). By using an ele-
mentary eigenvalue inequality for the sum of two Hermitian operators, λ j+k+1(S+T )�
λ j+1(S)+ λk+1(T ) , we also infer from Theorems 2.1-2.2 the following eigenvalue re-
lation.

COROLLARY 2.7. Let A,B ∈ M
+
n be and let U,V be the unitaries in the geomet-

ric mean and polar decompositions A�B = A1/2VB1/2 and A1/2B1/2 = U |A1/2B1/2| .
Then, for all j,k = 0,1, . . . ,

λ j+k+1(A+VBV ∗) � λ j+1(A+B)+ λk+1(A+B)

and

λ j+k+1(A+B) � λ j+1(A+UBU∗)+ λk+1(A+UBU∗).

Combining the previous two theorems yields the next corollary.

COROLLARY 2.8. Let A,B ∈ M+
n and let U,V be the unitaries in the geometric

mean and polar decompositions A�B = A1/2VB1/2 and A1/2B1/2 =U |A1/2B1/2| . Then,

A+VBV ∗ =
1
4

4

∑
k=1

Λk(A+UBU∗)Λ∗
k

for some unitaries Λ1,Λ2,Λ3,Λ4 ∈ Mn .
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3. Proof and the infinite dimension case

3.1. Proof of Theorems 2.1–2.2.

Proof. First we recall a decomposition established in [6]: Given any matrix in
M

+
2n(C) partitioned into blocks in Mn(C) with Hermitian off-diagonal blocks, we have

[
Y X
X Z

]
=

1
2
{J(Y +Z)J∗+K(Y +Z)K∗}

for some isometries J,K ∈M2n,n(C) . Hence the full matrix is the average of two copies
in the isometry orbit of the sum of the diagonal blocks Y+Z. Here the assumption that
X is Hermitian is crucial; it can not be relaxed to a normality assumption. Also, even
tough we start with matrices X ,Y,Z with real entries we use isometries J,K with real
entries. This may be written with two unitaries J,K ∈ M2n in the following way,

[
Y X
X Z

]
=

1
2

{
J

[
Y +Z 0

0 0

]
J∗ +K

[
Y +Z 0

0 0

]
K∗

}
. (3.1)

Now, observe that
[
A1/2 B1/2

0 0

][
A1/2 0
B1/2 0

]
=

[
A+B 0

0 0

]
(3.2)

and [
A1/2 0
B1/2 0

][
A1/2 B1/2

0 0

]
=

[
A A1/2B1/2

B1/2A1/2 B

]

are positive semidefinite and unitarily congruent since TT ∗ and T ∗T are positive and
unitarily congruent for any square matrix T . Further, with U the unitary factor in the
polar decomposition of A1/2B1/2 =U |A1/2B1/2| = |B1/2A1/2|U ,

[
I 0
0 U

][
A A1/2B1/2

B1/2A1/2 B

][
I 0
0 U∗

]
=

[
A |B1/2A1/2|

|B1/2A1/2| UBU∗

]
(3.3)

is positive semidefinite too. From (3.1) with Y = A and Z =UBU∗ we then infer, using
that (3.3) and (3.2) are unitarily congruent,

[
A+B 0

0 0

]
=

1
2

{
J

[
A+UBU∗ 0

0 0

]
J∗ +K

[
A+UBU∗ 0

0 0

]
K∗

}
. (3.4)

for some unitaries J,K ∈ M2n . It then follows that

A+B =
Λ1(A+UBU∗)Λ∗

1 + Λ2(A+UBU∗)Λ∗
2

2
(3.5)

for some contractions Λ1,Λ2 ∈ Mn . Taking the trace in (3.5) we infer

TrA+B = Tr(A+UBU∗)
Λ∗

1Λ1 + Λ2Λ∗
2

2
. (3.6)
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Assume that A,B are invertible. Then (3.6) shows that the contraction (Λ∗
1Λ1+Λ∗

2Λ2)/2
is the identity so that both Λ1 and Λ2 are unitaries. Indeed, if T ∈ M+

n is non-singular
and C ∈M+

n is a contraction such that TrT = TrTC , then I−C is a positive contraction
and TrT (I−C) = 0 so that C = I . Thus Theorem 2.1 is established for non-singular
A,B ∈ M+

n . The general case follows from a standard limit argument.
To prove Theorem 2.2, we proceed in a similar way. By a limit argument we

may assume that A,B are non-singular. Let A�B = A1/2VB1/2 be the geometric mean
decomposition and note that

[
A A�B

A�B B

]
=

[
A1/2 0
0 B1/2

][
I V

V ∗ I

][
A1/2 0
0 B1/2

]

=
[
A1/2 0
0 B1/2

][
I 0

V ∗ 0

][
I V
0 0

][
A1/2 0
0 B1/2

]

Thus [
A A�B

A�B B

]



[
I V
0 0

][
A1/2 0
0 B1/2

][
A1/2 0
0 B1/2

][
I 0

V ∗ 0

]
=

[
A+VBV ∗ 0

0 0

]

where the symbol 
 stands for the unitary congruence relation. From (3.1) we thus
have [

A+VBV ∗ 0
0 0

]
=

1
2

{
J

[
A+B 0

0 0

]
J∗ +K

[
A+B 0

0 0

]
K∗

}
.

for some isometries J,K ∈ M2n . Arguing as above with a trace argument completes the
proof of Theorem 2.2. �

3.2. The infinite dimension case

We briefly indicate how to adapt the proof of the matrix case to the setting of
operators on a general Hilbert space. We also give two applications which are not
obvious consequences of the matrix case.

Let B denote the set of all bounded linear operators on an infinite dimensional
Hilbert space, and let B+ stands for the positive (semidefinite) part. For a general
T ∈ B , the positive operators TT ∗ and T ∗T are not necessarily unitarily congruent;
however there still exists a partial isometry W such that TT ∗ = WT ∗TW ∗ . In fact
it is the partial isometry occurring in the polar decomposition T = W |T | = |T ∗|W .
Similarly, the decomposition (3.1) still holds in the setting of operators X ,Y,Z ∈ B by
using partial isometries J,K ∈ M2(B) . We may then reproduce the proof of the matrix
case and obtain the identity (3.5) for some contractions Λ1,Λ2 ∈ B .

If A,B ∈ B+ are non-singular, then the partial isometry U occurring in the polar
decomposition A1/2B1/2 = U |A1/2B1/2| is actually a unitary. If A,B are further trace
class, then the trace argument given in the matrix case is still valid, so that (3.5) holds
with two unitary Λ1,Λ2 ∈ B .

THEOREM 3.1. Let A,B ∈ B+ and let U,V be the partial isometries in the geo-
metric mean and polar decompositions A�B = A1/2VB1/2 and A1/2B1/2 =U |A1/2B1/2| .
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Then,

A+B =
Γ1(A+UBU∗)Γ∗

1 + Γ2(A+UBU∗)Γ∗
2

2
and

A+VBV ∗ =
Γ3(A+B)Γ∗

3 + Γ4(A+B)Γ∗
4

2
for some contractions Γ1,Γ2,Γ3,Γ4 ∈ B . If furthermore A,B are trace class and non-
singular, then Γ1,Γ2,Γ3,Γ4 are unitary.

It is not possible to derive the next two corollaries for operators from the statement
for matrices of Section 2.

COROLLARY 3.2. Let A,B∈B+ and let U,V be the partial isometries in the geo-
metric mean and polar decompositions A�B = A1/2VB1/2 and A1/2B1/2 =U |A1/2B1/2| .
Then,

‖A+VBV ∗‖ess � ‖A+B‖ess � ‖A+UBU∗‖ess

Here the notation ‖A‖ess means the essential norm of A ∈ B , ‖A‖ess = infR ‖A+
R‖∞ where the infimum runs overs all finite ranks perturbations R .

For our last corollary we denote by T+ the set of all positive trace class operators.
A weakly symmetric norm ‖ · ‖w on T+ is a functional with values in [0,∞) such that

1. ‖λA‖w = λ‖A‖w for all A ∈ T
+ and all reals λ � 0,

2. ‖A‖w = ‖UAU∗‖w for all A ∈ T+ and all unitaries U ,

3. ‖A+B‖w � ‖A‖w +‖B‖w for all A, B ∈ T+ .

4. A ∈ T
+ and A �= 0 ensure ‖A‖w > 0.

If the fourth condition is not required, then ‖ · ‖w is called a weakly symmetric semi-
norm. Of course, these definitions are also valid for M+

n . Note that a weakly symmetric
(semi-)norms differ from a symmetric (semi-)norm as the monotony assumption A � B
in M+

n does not any longer ensure ‖A‖w � ‖B‖w .

COROLLARY 3.3. Let A,B ∈ T+ be non-singular and let U,V be the unitaries
in the geometric mean and polar decompositions A�B = A1/2VB1/2 and A1/2B1/2 =
U |A1/2B1/2| . Then, for all weakly symmetric semi-norm on T+ ,

‖A+VBV ∗‖w � ‖A+B‖w � ‖A+UBU∗‖w

A large family of weakly symmetric semi-norm on M+
n is given in Proposition

1.7. A non-trivial example of a weakly symmetric semi-norm on T+ is given by the
functional

‖A‖w = sup
S

{(
Tr(A2)S

)1/2−TrAS

}

where the supremum runs over the set of all two dimensional subspaces S ⊂ H and
AS denotes the compression of A onto S .
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4. Conclusion

Let A,B be two positive matrices. The naive geometric mean A1/2B1/2 =
U |A1/2B1/2| and the standard geometric mean A�B = A1/2VB1/2 provide two unitaries
U,V quite naturally associated to A,B . It turns out that the unitary orbits of the opera-
tors A+B , A+VBV ∗ , and A+UBU∗ satisfy some remarkable simple relations. This
is a rather surprising phenomenon.
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