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Abstract. According to the Minkowski determinant theorem the function f (A) = det(I−A)1/n

is concave on the set of n×n positive contractive matrices, that is, 0 � A � I. When n > 1 the
exponent 1/n can not be removed. On the other hand det(I−A) has meaning even for a trace-
class Hilbert space operator A . In this paper we will prove that the function f (A) = det(I−A)
is concave on the set of density operators, that is, 0 � A with tr(A) = 1.

1. Introduction

The study on operator inequalities and convex operator functions is an interesting
subject for many researchers ([1–3]). Moreover, many operator inequalities have been
applied to the research of quantum information and other fields ([3, 6]). According to
the Minkowski determinant theorem ([6, P. 54]), the function f (A) = det(I −A)1/n is
concave if A is a positive contractive matrix of order n . An example given at the end
of this note will show the exponent 1/n can not be removed when n > 1. On the other
hand, based on the importance of trace-class operators on a Hilbert space to quantum
information theory and quantum computation, we shall investigate the concavity of
density operators function f (A) = det(I−A) , where A is a density operator.For a trace-
class operator A, det(I −A) is also usually called the Fredholm determinant. As an
application, the gap of the proof [5, Theorem 1] can be made up.

We shall adopt the following conventions and notations. Let H be an n -dimension
Hilbert space and S (H ) be the set of all quantum states on the quantum system H .
That is ρ ∈S (H ) if and only if ρ � 0 and tr(ρ) = 1. For an n by n matrix A = [ai j] ,
the trace of A is defined by tr(A) = ∑n

i=1aii. As usual, λ (ρ) is used to denote the eigen-
values of ρ with the non-increasing order.

Let x,y ∈ D ⊂ R
n, where D = {(z1,z2, · · · ,zn) : z1 � z2 � · · · � zn}. We say that

x is majorised by y , in symbols x ≺ y, if

k

∑
i=1

xi �
k

∑
i=1

yi, for k = 1,2, · · · ,n−1; and
n

∑
i=1

xi =
n

∑
i=1

yi.
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Ma jorization is a powerful and flexible mathematical tool which could be applied to a
variety of problems in quantum mechanics. Another definition, which is closely related
to majorization is Schur-convexity. A real-valued function Φ define on a set A ⊂ R

n

is said to be Schur-convex(Schur-concave) on A if

x ≺ y on A ⇒ Φ(x) � Φ(y)(Φ(x) � Φ(y)).

2. Concavity of operators function f (A) = det(I−A)

Let C ⊆R
n be a convex set. A function f : C →R is said to be concave provided

that the inequality f ((1−λ )x+ λy) � (1−λ ) f (x)+ λ f (y) holds for every x,y ∈ C
and every 0 � λ � 1. Also, f is called convex if and only if − f is concave. To prove
the main result, we first show the following lemma.

LEMMA 2.1. The function

f (x) := {
n

∑
i=1

xi} · {
n

∏
j=1

(1− x j)} f or x = (x1, . . . ,xn) ∈ R
n

is concave on the convex set

P :=
{

x = (x1, . . . ,xn) |
n

∑
i=1

xi � 1, 0 � xi � 1 (i = 1, . . . ,n)
}
.

Proof. When n = 1, concavity in question is nothing but the concavity of the
function x(1− x) for 0 � x � 1.

Now let n � 2. By a well-known fact (see [7, Theorem 4.5]) concavity in question
is equivalent to the negative definiteness of the Hessian (matrix) Hf (x) := [ ∂ 2

∂xi∂x j
f (x)]ni, j=1

on int(P) , the interior of P . Notice that

int(P) =
{
(x1, . . . ,xn)|

n

∑
i=1

xi < 1,0 < xi < 1 (i = 1,2, . . . ,n)
}
.

To get an explicit form of Hf (x) , write

s(x) :=
n

∑
i=1

xi and t(x) :=
n

∏
i=1

(1− xi).

Notice that both s(x) and t(x) are positive on int(P) . By a direct calculation the explicit
form of Hf (x) := [h j, j(x)]ni, j=1 is given by

hi,i(x) =
−2t(x)
1− xi

and hi, j(x) =
{s(x)+ xi + x j −2}t(x)

(1− xi)(1− x j)
f or i �= j (i, j = 1,2, . . . ,n).

When n = 2, we have

−Hf (x)
2

=
(

1− x2 1− x1− x2

1− x1− x2 1− x1

)
.
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Since both diagonal entries of the matrix on the right hand side are positive and its
determinant is positive on int(P) ; in fact

(1− x2)(1− x1)− (1− x1− x2)2 = (1− x1− x2)(x1 + x2)+ x1x2 > 0

we can conclude that Hf (x) is negative definite on int(P) .

Now let n � 3 and let Q1(x) := diag(1− x1, . . . ,1− xn) . Notice that

QT
1 (x) ·Hf (x) ·Q1(x) = t(x)

{
− s(x)I +(s(x)−2)J+

(
xi + x j

)n

i, j=1

}

where J is the matrix with all entries equal to 1, and that

J = eT e and (xi + x j)n
i, j=1 = eT x+ xTe

where e := (1,1, . . . ,1).
To diagonalize the real symmetric matrix Hf (x) via *-congruence, let us use the

matrix units Ei, j (i, j = 1,2, . . . ,n) in the space of n× n complex matrices Mn; the
(i, j)-entry of Ei, j is 1 and other entries are 0.

Let

Q2 :=
n−1

∑
j=1

1
j

{ j

∑
i=1

Ei, j

}
−

n−1

∑
i=1

Ei+1,i +En,n.

For instance, in the case n = 4,

Q2 =

⎛
⎜⎜⎜⎜⎜⎝

1 1
2

1
3 0

−1 1
2

1
3 0

0 −1 1
3 0

0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎠ .

Notice that det(Q2) = 1.
It is immediate to see that

QT
2 Q2 =

(
D − f T

− f 1

)

where

Mn−1 	 D = diag(
2
1
,
3
2
, . . . ,

n
n−1

) and R
n−1 	 f = (0, . . . ,0,1).

Further we can see that for x = (x1, . . . ,xn) ∈ R
n,

xQ2 = (g1(x), . . . ,gn−1(x),xn)

where

gi(x) =
1
i

i

∑
j=1

x j − xi+1 (i = 1, . . . ,n−1).
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In particular, eQ2 = (0, . . . ,0,1). Write for x = (x1, . . . ,xn) ∈ R
n,

R
n−1 	 g(x) := (g1(x), . . . ,gn−1(x)).

Now

QT
2 QT

1 (x) ·Hf (x) ·Q1(x)Q2

= t(x)
{
− s(x)QT

2 Q2 +(s(x)−2)(eQ2)T · (eQ2)+ (eQ2)T · (xQ2)+ (xQ2)T · (eQ2)
}

= t(x)
{
− s(x)

(
D − f T

− f 1

)
+(s(x)−2)

(
O 0
0 1

)
+

(
O g(x)T

g(x) 2xn

)}

= t(x)
( −s(x)D s(x) f T +g(x)T

s(x) f +g(x) 2(xn−1)

)
.

Since s(x) > 0 and D is invertible, with help of the matrix

Q3(x) :=
(

In−1
1

s(x)D
−1{s(x) f T +g(x)T}

0 1

)

we can see

QT
3 (x)QT

2 QT
1 (x) ·Hf (x) ·Q1(x)Q2Q3(x) = t(x)

(−s(x)D 0
0 h(x)

)

where

h(x) =
1

s(x)
{s(x) f +g(x)}D−1{s(x) f +g(x)}T +2(xn−1)

=
1

s(x)

{n−2

∑
i=1

i
i+1

g2
i (x)+

n−1
n

{gn−1(x)+ s(x)}2
}

+2(xn−1).

Since −s(x)D is negative definite, Hf (x) is negative definite on int(P) if and only
if h(x) < 0 on int(P). Obviously this is also equivalent to s(x)h(x) < 0.

To see that s(x)h(x) < 0 on int(P) , it suffices to prove that, with fixed 0 < x(0)
n < 1,

l(x1, . . . ,xn−1) := (
n−1

∑
i=1

xi + x(0)
n ) ·h(x1, . . . ,xn−1,x

(0)
n ) < 0

on the convex set

P̃ :=
{
(x1, . . . ,xn−1) ∈ R

n−1
∣∣∣ n−1

∑
i=1

xi � 1− x(0)
n , xi � 0 (i = 1,2, . . . ,n−1)

}
.
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Since

l(x1, . . . ,xn−1) =
n−2

∑
i=1

i
i+1

g2
i (x1, . . . ,xn−1,x

(0)
n )

+
n−1

n
{gn−1(x1, . . . ,xn−1,x

(0)
n )

+s(x1, . . . ,xn−1,x
(0)
n )}2 + s(x1, . . . ,xn−1,x

(0)
n )(2x(0)

n −2)

and all gi(x1, . . . ,xn−1,x
(0)
n ) (i = 1,2, . . . ,n−1) and s(x1, . . . ,xn−1,x

(0)
n ) are affine func-

tions of x1, . . . ,xn−1 , we can see that l(x1, . . . ,xn−1) is a convex function of (x1, . . . ,
xn−1). Therefore, l(x1, . . . ,xn−1) attains its maximum on P̃ at some of vertices of P̃.

The vertices of P̃ are exactly v0,v1, . . . and vn−1 , where

v0 = (0, . . . ,0) and vk = (0, . . . ,0,

(k)︷ ︸︸ ︷
1− x(0)

n ,0, . . . ,0) (k = 1,2, . . . ,n−1).

For x = (0, . . . ,0,x(0)
n ) ∈ R

n , it is easy to see that

s(x) = x(0)
n , gi(x) = 0 (i = 1,2, . . . ,n−2) and gn−1(x)+ s(x) = −x(0)

n + x(0)
n = 0.

Therefore
l(v0) = 2x(0)

n (x(0)
n −1) < 0.

For x = (0, . . . ,0,

(k)︷ ︸︸ ︷
1− x(0)

n ,0, . . . ,0,x(0)
n ) , it is easy to see that s(x) = 1 and

gi(x) = 0 (i = 1, . . . ,k−2), gk−1(x) = −(1− x(0)
n )

gi(x) =
1
i
(1− x(0)

n ) (i = k, . . . ,n−2) and gn−1(x)+ s(x) =
n

n−1
(1− x(0)

n ).

Then calculation will show

l(vk) =
n−2

∑
i=1

i
i+1

g2
i (x)+

n−1
n

{gn−1(x)+s(x)}2 +s(x)(2x(0)
n −2) = 2x(0)

n (x(0)
n −1)< 0.

This completes the proof. �
To show the main result, we also need the following consequence of Ky Fan max-

imum principle.

LEMMA 2.2. ([2, 6]) Let A,B be n× n Hermitian matrices, λ (A),λ (B), and
λ (A+B) are the vectors of eigenvalues of A,B, and A+B with non-increasing order,
respectively. Then λ (A+B)≺ λ (A)+ λ (B).

LEMMA 2.3. ([2, 6]) The product function f (x) := ∏n
i=1 xi is Schur-concave in

region of C := {(x1,x2, · · ·xn) : xi � 0 for all i}.
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THEOREM 2.4. The function f (A) = tr(A) · det(I −A) is concave on the set of
positive trace-class operators A with tr(A) � 1 on a Hilbert space H .

As a consequence, the function f (A) = det(I−A) is concave on the set of density
operators, that is, 0 � A and tr(A) = 1.

Proof. First suppose that dim(H ) = n < ∞. We have to show that for 0 � A, B
in Mn with tr(A), tr(B) � 1 and for 0 < λ < 1,

tr
(

λA+(1−λ )B
)
·det

(
I−λA− (1−λ )B

)
� λ tr(A) ·det(I−A)+ (1−λ )tr(B) ·det(I−B).

Let x1 � . . . � xn(� 0) be the eigenvalues of A and let y1 � . . . � yn(� 0) be the
eigenvalues of B . Then by Lemma 2.1,

λ tr(A) ·det(I−A)+ (1−λ )tr(B) ·det(I−B) = λ s(x) · t(x)+ (1−λ )s(y) · t(y)
� s

(
λx+(1−λ )y

)
· t

(
λx+(1−λ )y

)

where s(x) = ∑n
i=1 xi and t(x) = ∏n

i=1(1− xi) as before.
Let z = (z1, . . . ,zn) be the vector of the eigenvalues of λA + (1− λ )B. Notice

that s(z) = s(λx+(1−λ )y) and 1− z is majorized by 1− (λx+(1−λ )y). Then by
Lemma 2.3

tr
(

λA+(1−λ )B
)
·det

(
I−λA− (1−λ )B

)
= s(z) · t(z) = s(λx+(1−λ )y) · t(z)

� s
(

λx+(1−λ )y
)
· t

(
λx+(1−λ )y

)
� λ tr(A) ·det(I−A)+ (1−λ )tr(B) ·det(I−B).

Next, when dim(H ) = ∞ , take an increasing sequence of orthoprojections of
finite rank Pn converging strongly to the identity. Then the functions tr(PnAPn) ·det(I−
PnAPn) (n = 1,2, . . .) are concave on the set of A � 0 with tr(A) � 1 and

tr(A) ·det(I−A) = lim
n→∞

tr(PnAPn) ·det(I−PnAPn).

Thus, the function f (A) = tr(A) ·det(I−A) is concave on the set of A � 0 with tr(A) �
1. �

COROLLARY 2.5. Let ai,bi � 0 for i = 1, ...,n with ∑n
i=1 ai = m and ∑n

i=1 bi = m,
where m > 0. Then

n

∏
i=1

(
m− ai +bi

2

)
� 1

2

( n

∏
i=1

(m−ai)+
n

∏
i=1

(m−bi)
)
.

Proof. It is clear that ∑n
i=1

ai
m = 1 and ∑n

i=1
bi
m = 1, then by Lemma 2.1,

n

∏
i=1

(
1− ai +bi

2m

)
� 1

2

( n

∏
i=1

(
1− ai

m

)
+

n

∏
i=1

(
1− bi

m

))
,
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so
n

∏
i=1

(
m− ai +bi

2

)
� 1

2

( n

∏
i=1

(m−ai)+
n

∏
i=1

(m−bi)
)
. �

REMARK. Although it is obtained in [4] that

det(A+B) � det(A)+det(B), (1)

for all positive semi-definite matrices A and B, however in general for 0 � λ � 1,

det[λA+(1−λ )B] � λ det(A)+ (1−λ )det(B) (2)

does not hold.
A simple example is the following.

A = diag(1,1) and B = diag
(1

2
,
1
2

)
.

Then

det
[1
2
A+

1
2
B
]

=
9
16

<
5
8

=
1
2

det(A)+
1
2

det(B).

Our Theorem shows that for quantum states Ai ∈ S (H ) and 0 � λi with ∑i λi = 1,

det(I−∑
i

λiAi) � ∑
i

λi det(I−Ai).

Thus the gap of proof [5, Theorem 1], which used the inequality (2.2), has been made
up.
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