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CONCAVITY OF THE FUNCTION
f(A) = det(I —A) FOR DENSITY OPERATOR A

YAN-NI Dou, HA1 DU AND YUAN LI

(Communicated by T. Ando)

Abstract. According to the Minkowski determinant theorem the function f(A) = det(I — A)'/
is concave on the set of n x n positive contractive matrices, that is, 0 <A < 1. When n > 1 the
exponent 1/n can not be removed. On the other hand det( —A) has meaning even for a trace-
class Hilbert space operator A. In this paper we will prove that the function f(A) = det(I —A)
is concave on the set of density operators, that is, 0 <A with tr(A) = 1.

1. Introduction

The study on operator inequalities and convex operator functions is an interesting
subject for many researchers ([1-3]). Moreover, many operator inequalities have been
applied to the research of quantum information and other fields ([3, 6]). According to
the Minkowski determinant theorem ([6, P. 54]), the function f(A) = det(I —A)'/" is
concave if A is a positive contractive matrix of order n. An example given at the end
of this note will show the exponent 1/n can not be removed when n > 1. On the other
hand, based on the importance of trace-class operators on a Hilbert space to quantum
information theory and quantum computation, we shall investigate the concavity of
density operators function f(A) =det(I —A), where A is a density operator.For a trace-
class operator A, det(I —A) is also usually called the Fredholm determinant. As an
application, the gap of the proof [5, Theorem 1] can be made up.

We shall adopt the following conventions and notations. Let .72 be an n-dimension
Hilbert space and . (4¢) be the set of all quantum states on the quantum system .77 .
Thatis p € .7 (¢) if and only if p >0 and tr(p) = 1. For an n by n matrix A = [a;j],
the trace of A is defined by 7r(A) =X} ,a;i. Asusual, A(p) is used to denote the eigen-
values of p with the non-increasing order.

Let x,y € 2 CR", where 2 ={(z1,22,"**,2n) 121 =22 = -~ = Zn}. We say that
x is majorised by y, in symbols x <y, if

k

k
in < Ey,-, fork=1,2,---,n—1; and ix,- = iy,-.
i=1 i=1 i=1 i=1
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Majorization is a powerful and flexible mathematical tool which could be applied to a
variety of problems in quantum mechanics. Another definition, which is closely related
to majorization is Schur-convexity. A real-valued function @ define on a set .o/ C R”
is said to be Schur-convex(Schur-concave) on &7 if

x=<yond = ®O(x) <O(y) (®(x) = D(y)).

2. Concavity of operators function f(A) = det(I—A)

Let ¥ C R" be a convex set. A function f:% — R is said to be concave provided
that the inequality f((1 —A)x+Ay) > (1 —A)f(x) +Af(y) holds for every x,y € ¢
and every 0 < A < 1. Also, f is called convex if and only if —f is concave. To prove
the main result, we first show the following lemma.

LEMMA 2.1. The function
fx):= {Ex,}{H(l —xj)}  forx=(x1,...,x,) €R"
i=1 j=1

is concave on the convex set

n

P:= {x:(x17...,x,,)| Y xi<1,0<x<1 (i=1,...,n)}.
i=1

Proof. When n = 1, concavity in question is nothing but the concavity of the
function x(1 —x) for 0 <x < 1.

Now let n > 2. By a well-known fact (see [7, Theorem 4.5]) concavity in question

n

is equivalent to the negative definiteness of the Hessian (matrix) H(x) := [%;X_ FEI 2
! 1OA) ’

on int(P), the interior of P. Notice that
n
mwﬂ:{ghuﬂm\2m<1p<m<1uzhznwm}
i=1

To get an explicit form of Hy(x), write

n

n
s(x) = Ex,- and 7(x) == J(1—x).
i=1 i=1
Notice that both s(x) and #(x) are positive on int(P). By a direct calculation the explicit
form of Hy(x) := [h;;(x)]} ,_, is given by

hii(x) = —20) {s(x) +xi+x; — 2}t (x)

(1= x;) (1 —x;)

and B j(x) = fori#j(i,j=1,2,....n).

1 — Xi
When n =2, we have

—H(x) <l—x2 1—x1—x2>.

2 - l—x1—x 1—x
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Since both diagonal entries of the matrix on the right hand side are positive and its
determinant is positive on int(P); in fact

(1 —)CQ)(I —xl) — (1 — X1 —x2)2 = (1 — X —)Q)()Cl —|—)C2)—|—)C1XQ >0

we can conclude that Hy(x) is negative definite on int(P).

Now let n > 3 and let Q) (x) := diag(1 —xj,...,1 —x,). Notice that

ij=1

n
07 () Hy () 01(0) = 1(){ =)+ (50) - 27+ (ni+;)
where J is the matrix with all entries equal to 1, and that
J=ele and (x; + X))} o = efx+xTe

where e¢:= (1,1,...,1).

To diagonalize the real symmetric matrix Hy(x) via *-congruence, let us use the
matrix units E;; (i,j = 1,2,...,n) in the space of n x n complex matrices M,; the
(i,])-entry of E; ; is 1 and other entries are 0.

Let
n—1 1 J

n—1
Q) = 2 {EEU} - 2Ei+17i+E"v"'
i i=1 i=1

For instance, in the case n =4,

1 3210
-1 L Lo
2 3
O) = |
0 -130
0 0 —11
Notice that det(Q,) = 1.
It is immediate to see that
D —fT
Q%QF(_J, ' )
where
23 n
M,_; 3 D = diag(=,=,..., — d R*!'s5f=(0,...,0,1).
12 lag(laza 71’1—1) an 9f ( ) g )
Further we can see that for x = (xj,...,x,) € R",
X0, = (gl(x)7~~~ 7gn71(x)7xn)
where

gilx) = xj—xip1 (i=1,...,n—1).

~] —

-

1

J
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In particular, eQ, = (0,...,0,1). Write for x = (xi,...,x,) € R",
R 5 ¢(x) := (g1(x), -, 8n-1(x)).
Now

03 07 (x) - H(x) - Q1(x) Q>

= 100 { =503 Q2+ (5(x) = 2)(€02)" - (e02) + (¢Q2)" - (¥02) + (xQ2)" - (¢Q2) |

- t(x){ —s(x) (_Df _{T> +(s(x) —2) (3 (1)) T <g(0x) gé})cciT> }

_ SD @+ g
=1 (s<x>f+g<x> 2 1) ) '

Since s(x) > 0 and D is invertible, with help of the matrix

L plig() T 07
03(x) = (In(;l .\'(x)D {s( )lf +g(x) }>

W€ can see
0 (1)Q3 Of () - Hp(x) - 01(x) 0203 (x) =1(x) (_S(SC)D h?))
where

W) = @{swmg(x)}D—l{s<x>f+g<x>}T+2<xn 1)

1 n—2

- @{ ; H_ngiz(x)+ ?{gn—1(x)+s(x)}2} +2(x,—1).

Since —s(x)D is negative definite, H¢(x) is negative definite on int(P) if and only
if i(x) <0 on int(P). Obviously this is also equivalent to s(x)h(x) < 0.

To see that s(x)(x) < 0 on int(P), it suffices to prove that, with fixed 0 < A<,

n—1
I(xp, .., xy—1) i= (in+x£,0)) -h(xh...,xn,l,x,(qo)) <0

i=1

on the convex set

n—1
P:= {(xh...,xn,l) GR"*‘ in < 1—x,§°), xiz0(Gi=12,....n— l)}
i=1
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Since
I =S g 10
X1,y Xp_1) = ——gi (X1, X1,
1 1 = z+1g 1 1,Xn
n—1 0
+ n {gnfl(-xla"'v-xnfhxi(’l ))
0 0 0
—|—s(x1,...,xn_1,x,(q ))}2—|—s(x1,...,x,,_1,x,(q ))(Zx,(q ) -2)
and all g,-(xh...,xn,l,xgo)) (i=1,2,...,n—1) and s(xl,...,x,,,17x,(10)) are affine func-
tions of xp,...,x,—1, we can see that I(xy,...,x,_1) is a convex function of (xp,...,

Xu—1)- Therefore, I(xy,...,x,—1) attains its maximum on P at some of vertices of P.
The vertices of P are exactly vo,vy,... and v,_1, where

(k)

—
vo=(0,...,0) and vi=(0,...,0,1 —x",0,...,0) (k=1,2,....n—1).

For x = (0, ... ,O,x,(qo)) € R", it is easy to see that
s(x) :xﬁ,o)7 gilx)=0(=1,2,....n—2) and g,_1(x)+s(x)= —x,(qo) +x£,0) =0.
Therefore
I(vo) =26V (¥ — 1) < 0.
For x = (0,...,0,1 —xﬁ,o)707...,07x,(10)), it is easy to see that s(x) = 1 and

G()=0(=1,...k-2), g1(x)=—(1—x)

1
gil) ==(1 N (i=k....n—2) and gu_1(x)+s(x) = (1 20,
Then calculation will show
n—2 - —1
() = 3, 787 )+ = {gumt (1) 5()) +5(0) 2" ~2) =24 (7 1) <0.
=1

This completes the proof. [l
To show the main result, we also need the following consequence of Ky Fan max-
imum principle.

LEMMA 2.2. ([2, 6]) Let A,B be nxn Hermitian matrices, A(A),A(B), and
A(A+ B) are the vectors of eigenvalues of A,B, and A+ B with non-increasing order,
respectively. Then A(A+B) < A(A) + A(B).

LEMMA 2.3. ([2, 6]) The product function f(x) :=[1'_,x; is Schur-concave in
region of € := {(x1,x2,- - Xn) : x; = 0 for all i}.
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THEOREM 2.4. The function f(A) =tr(A)-det(I —A) is concave on the set of
positive trace-class operators A with tr(A) < 1 on a Hilbert space .

As a consequence, the function f(A) = det(I —A) is concave on the set of density
operators, that is, 0 < A and tr(A) = 1.

Proof. First suppose that dim(7#") = n < oo. We have to show that for 0 <A, B
in M, with tr(A),tr(B) <1 andfor 0 < A < 1,

tr(/lA+ (1- 7L)B> -det([— AA—(1 —/1)3)
> Atr(A)-det(I—A)+ (1 —A)t(B) - det(I — B).

Let x; > ... > x,(= 0) be the eigenvalues of A and let y; > ... > y,(= 0) be the
eigenvalues of B. Then by Lemma 2.1,

Atr(A) -det(I—A) + (1 — A)te(B) - det(I — B) = As(x)-1(x) + (1 —A)s(y) -£(y)
< s(?tx—i— (1 —/l)y) -t(?tx—f— (1 —/l)y)
where s(x) =Y x; and #(x) =T/, (1 —x;) as before.
Let z = (z1,...,2,) be the vector of the eigenvalues of AA+ (I — A)B. Notice

that s(z) = s(Ax+ (1 —A)y) and 1— z is majorized by 1 — (Ax+ (1 —A1)y). Then by
Lemma 2.3

tr()LA—i— (1A ) det( )B):s(z>-t(z>:s(;u+(1—z)y>-t(z>

<7Lx+ (1- )y) t(/lx+ (1- ))

>
> Atr(A) -det(I —A) + (1 — A)te(B) - det(I — B).

Next, when dim(7°) = oo, take an increasing sequence of orthoprojections of
finite rank P, converging strongly to the identity. Then the functions tr(P,AP,) - det(I —
P,AP,) (n=1,2,...) are concave on the set of A > 0 with tr(A) < I and

tr(A) -det(I —A) = lim tr(P,AP,) - det(I — P,AP,).

n—oo

Thus, the function f(A) = tr(A)-det(I —A) is concave on the set of A > 0 with tr(A) <
1. O

COROLLARY 2.5. Let a;,b; >0 fori=1,...,n with Y jaj=m and ¥}, b; =m,
where m > 0. Then

[T (m- 52 > 3 (Fon-a + Tlon-0),

i=1 i=1 i=1

Proof. Itis clear that 7, “’ =1and ¥} —' =1, then by Lemma 2.1,

[(i-5.7)> i(ﬂ(l——) I1(1-)):

i=1
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SO

[(n-*5) > 5(]

REMARK. Although it is obtained in [4] that
det(A+ B) > det(A) + det(B), (1)
for all positive semi-definite matrices A and B, however in general for 0 < A < 1,
det{AA+ (1 —A)B] = Adet(A) + (1 — 1) det(B) 2)

does not hold.
A simple example is the following.

11
A = diag(1,1) and B = diag(i’ 5),

Then 11 9 5 1 1
det|54+3B| = T < £ = S det(4) + 5 det(B).

Our Theorem shows that for quantum states A; € .%7(¢) and 0 < A; with >; A; = 1,

det(l— ZAiAi) > Z?L,-det(l—Ai).

Thus the gap of proof [5, Theorem 1], which used the inequality (2.2), has been made
up.
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