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A REVERSE HILBERT–LIKE OPTIMAL INEQUALITY

OMRAN KOUBA

(Communicated by J. Pečarić)

Abstract. We prove an inequality on positive real numbers, that looks like a reverse to the well-
known Hilbert inequality, and we use some unusual techniques from Fourier analysis to prove
that this inequality is optimal.

1. Introduction and notation

To explain the title of this note recall that the discrete Hilbert inequality reads as
follows:
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for every positive integer n and every real numbers x1, . . . ,xn , y1, . . . ,yn , see [4, Ch.
IX]. This inequality was intensively investigated, generalized, and extended. Further-
more, a multitude of similar inequalities, called “Hilbert-type inequalities” have been
studied ([3], [8]). An excellent account of recent developments in Hilbert-type inequal-
ities can be found in [5] and the references therein.

This research was initiated by a similar but reversed inequality that made the object
of a proposed problem to the American Mathematical Monthly [2]. It was asked to
prove that(
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for positive real numbers a1, . . . ,an and b1, . . . ,bn . Our aim is not to prove or to discuss
this inequality, but to notice that its form suggests the possibility of a typographic error
in the denominator of the second term on the left, should it be (b j + bk)2 instead of
(b j +b j)2 ?

In this note we show that the rectified version of this inequality does not hold, but
rather another one with a larger constant on the right side, and we will show that this
constant is the best possible. So, let us fix some notation and describe this work.
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For a positive integer n and two vectors a = (a1, . . . ,an) and b = (b1, . . . ,bn) of
positive real numbers we consider the quantities

Ta,b =
n

∑
k=1

ak

bk
, (1)

and
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(bk +bl)m for m = 1,2,3. (2)

In Proposition 1 we prove that, for every positive integer n and every vectors
a = (a1, . . . ,an) and b = (b1, . . . ,bn) of positive real numbers, we have
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2 � 2S(2)
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√

2
√

S(1)
a,bS

(3)
a,b (3)

The difficulty does not reside in the proof of (3) but, in fact, it resides in showing
that it is optimal in the sense that 2

√
2 is the best possible constant. Precisely, we will

prove in Theorem 1 that if for every positive integer n and every vectors a = (a1, . . . ,an)

and b = (b1, . . . ,bn) of positive real numbers, we have (Ta,b)
2 � 2S(2)
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then λ � 2
√

2.
This appears a difficult task, and requires tools from approximation theory and

Fourier analysis. Indeed, we will prove in Proposition 2 that, for every h > 0 there
exists two families of positive numbers (a j(h)) j∈Z and (b j(h)) j∈Z such that

∀t � 0,
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with lim
h→0+

δ (h) = 0, and this will be exploited in proving the announced optimality

result.

2. The main results

In the next proposition, we give a proof of (3).

PROPOSITION 1. For every positive integer n and every vectors a = (a1, . . . ,an)
and b = (b1, . . . ,bn) of positive real numbers, we have

(
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Proof. Consider the function f : R
+−→R

+ , defined by

f (t) =
n

∑
j=1

a je
−b jt
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Using the Cauchy-Schwarz inequality, we have(∫ ∞
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Noting that
∫ ∞
0 tme−btdt = m!

bm+1 for m = 0,1,2, we obtain∫ ∞
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and (4) becomes
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Applying (5) to λ a = (λa1, . . . ,λan) and λ b = (λb1, . . . ,λbn) for some λ > 0,
we obtain
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and the desired inequality follows by choosing λ =
√

2S(3)
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a,b . �

Analyzing the preceding proof, we see that in order to prove the optimality of
(3) and to realize equality we need the function t �→ f (t) to be proportional to t �→
1/(1+ t)2 , but this is impossible since the first has an exponential decay at +∞ . This
remark holds the idea of what we will do next!. We will look for “almost” equality by
approximating t �→ 1/(1+ t)2 by a linear combination of decreasing exponentials with
positive coefficients. The next Proposition 2 provides us with the desired conclusion.
Before we proceed, we will need the next two technical lemmas.

LEMMA 1. The necessary and sufficient condition, on the positive parameter λ ,
for the following inequality to hold, for x ∈ R ,

πx(1+ x2)
sinh(πx)

� 1

cosh2(λx)

is that λ � λ0
def=
√

π2

6 −1≈ 0.803078 .

Proof. Suppose that the proposed inequality is satisfied for some λ > 0 then we
must have

(1+ x2)cosh2(λx)−1
x2 � 1

x2

(
sinh(πx)

πx
−1

)
for every nonzero x . Letting x tend to 0 we obtain 1+ λ 2 � π2/6.
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Conversely, let λ0 =
√

π2

6 −1, and consider the function

f (x) =
sinh(πx)

πx
− (1+ x2)cosh2(λ0x) =
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− 1
2
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The power series expansion of f is given by
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From this, it is straightforward to see that the sequence

(
an+1
an

)
n�2

is decreasing, and

that a3
a2
≈ 0.8177 < 1. Thus, an � a2 ≈ 0.96531 < 1 for every n � 2. This proves

that f (x) � 0 for every real number x , and the proposed inequality follows for λ ∈
[0,λ0] . �

LEMMA 2. For t � 0 , let ft : R→R be the function defined by

ft(x) = e2x−(1+t)ex
.

Then the Fourier transform f̂t =
∫
R

ft (x)eix(·) dx of ft satisfies

∣∣∣ f̂t (w)
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� 1
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1
cosh(λ0w)

,

where λ0 was defined in Lemma 1.

Proof. Indeed we have

f̂t(w) =
∫ ∞

−∞
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=
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−∞
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=
1
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0
s1−iwe−s ds =

Γ(2− iw)
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where Γ is the well-known Eulerian Gamma function [7].
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Thus ∣∣∣ f̂t(w)
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Here we used Euler’s reflection formula for the Gamma function: Γ(z)Γ(1− z) =
πz

sin(πz)
, (see [1, Chapter 6, formula 6.1.17]). Finally

∣∣∣ f̂t (w)
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(1+ t)2

√
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sinh(πw)

, (6)

and the proposed inequality follows from Lemma 1. �
In the next proposition we prove the announced approximation result. In fact,

the approach consists of approximating the function t �→ 1/(1 + t)2 , expressed as an
integral of a positive function of exponential type, using the trapezoidal quadrature rule,
and then we use Poisson’s formula to obtain good control on the absolute value of the
error. For more details on this approach, we refer the reader to [6] and the references
therein.

PROPOSITION 2. For h > 0 and n ∈ Z , let

an(h) = hexp
(
2nh− enh

)
, bn(h) = enh,

then

∀t � 0,
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4
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,

where λ0 was defined in Lemma 1.

Proof. Note that for t � 0 we have

1
(1+ t)2 =

∫ ∞

0
ue−(1+t)u du =

∫ ∞

−∞
ft(x)dx (7)

where ft is the positive function defined in Lemma 2.
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The function ft is super-exponentially decreasing for positive x and exponentially
decreasing for negative x . A simple upper bound for ft is obtained as follows, for x � 0
we have

2x− (1+ t)ex � 2x− ex � 2ex−1− ex = (2− e)ex−1 � (2− e)x (8)

since x � ex−1 for every real x . And, for x < 0, we have

2x− (1+ t)ex < 2x < (e−2)x (9)

Combining (8) and (9) we see that ft(x) � e(2−e)|x| , for x ∈R .
This simple upper bound shows that the series ∑n∈Z ft(·+ nh) is uniformly con-

vergent on every compact subset of R . Therefore, we define an h -periodic continuous
function Ft by the formula
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where f̂t is the Fourier transform of ft . In particular, according to Lemma 2, the
Fourier series of Ft is normally convergent and consequently it is equal to Ft . Taking
the value at x = 0 we get
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and the proposition follows. �
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Now we are ready to prove the main result of this note.

THEOREM 1. Consider a positive real constant λ such that, for every positive
integer n and every vectors a = (a1, . . . ,an) and b = (b1, . . . ,bn) of positive real num-
bers, we have (

Ta,b
)2 � 2S(2)

a,b + λ
√

S(1)
a,bS

(3)
a,b (13)

Then λ � 2
√

2 .

Proof. Consider h > 0 and let the families (an(h))n∈Z and (bn(h))n∈Z be defined
as in Proposition 2. Accordingly we have
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and, for m = 0,1,2,
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Now, according to (14) there is a positive integer ν such that

1−2δ (h) �
ν

∑
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Taking n = 2ν + 1, a = (an(h))−ν�n�ν , and b = (bn(h))−ν�n�ν , we obtain using
(16)–(19):

1−2δ (h) � Ta,b,
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3
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and from (13) we conclude that

(1−2δ (h))2 � (1+ δ (h))2

3

(
1+

λ√
2

)
.

Letting h tend to 0 and recalling that limh→0 δ (h) = 0 we obtain λ � 2
√

2. �
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