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Abstract. In this paper we deal with γ -quasiconvex functions when −1 � γ � 0 , to derive some
two-sided Jensen type inequalities. We also discuss some Jensen-Steffensen type inequalities
for 1 -quasiconvex functions. We compare Jensen type inequalities for 1 -quasiconvex functions
with Jensen type inequalities for superquadratic functions and we extend the result obtained for
γ -quasiconvex functions to more general classes of functions.

1. Introduction

In [4], [5], [6], and [7] Jensen’s type inequalities for γ -quasiconvex functions
where γ � 0 and for γ -superquadratic functions are derived and discussed from which
Hardy type inequalities were proved.

In this paper we first deal with γ -quasiconvex functions when −1 � γ � 0 (see
Section 2). In Section 3 we derive some two-sided Jensen type inequalities. In Section 4
some new Jensen-Steffensen type inequalities for 1-quasiconvex functions are derived.
In Section 5 we compare Jensen type inequalities for 1-quasiconvex functions with
Jensen type inequalities for superquadratic functions and finally, we extend the result
obtained for γ -quasiconvex functions to a more general class of functions.

We start with some definitions and results that are relevant for our discussions in
the sequel.

A convex function ϕ on [0,b) , 0 < b � ∞, is characterized by the following
inequality:

ϕ(y)−ϕ(x) � Cϕ (x)(y− x),∀x,y ∈ (0,b]. (1.1)

The function K (x) = xγϕ (x) , where ϕ is convex, is called γ -quasiconvex.
In [6] we proved:

LEMMA 1. [6, Lemma 1] Let K (x) = xγϕ (x) , γ ∈ R+, where ϕ is convex on
[0,b) . Then

K (y)−K (x) � ϕ (x)(yγ − xγ)+Cϕ (x)yγ (y− x) , (1.2)
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holds for x ∈ [0,b) , y ∈ [0,b) , where Cϕ (x) is defined by (1.1). Moreover, the Jensen
type inequality

∫
Ω

K ( f (s))dμ (s)−K

(∫
Ω

f (s)dμ (s)
)

(1.3)

�
∫

Ω

[
ϕ (x)

(
( f (s))γ − xγ)+Cϕ (x) ( f (s))γ ( f (s)− x)

]
dμ (s)

holds, where f is any nonnegative function, f and K ( f (s)) are μ -integrable func-
tions on the probability measure space (Ω,μ) and x =

∫
Ω f (s)dμ (s) > 0.

If ϕ is concave, then the reverse inequalities of (1.1), (1.2), and (1.3) hold, in
particular

∫
Ω

K ( f (s))dμ (s) −K

(∫
Ω

f (s)dμ (s)
)

(1.4)

�
∫

Ω

[
ϕ (x)

(
( f (s))γ − xγ)+Cϕ (x) ( f (s))γ ( f (s)− x)

]
dμ (s) .

EXAMPLE 1. Inequalities (1.1), (1.2), and (1.3) are satisfied by K (x) = xp, p �
γ + 1. For γ < p � γ + 1 the reverse inequalities hold. They reduce to equalities for
p = γ +1 e.g., it yields when x =

∫
Ω f (s)dμ (s) > 0 that

∫
Ω

( f (s))1+γ dμ(s)−
(∫

Ω
f (σ)dμ (σ)

)1+γ
(1.5)

= x
∫

Ω

(
( f (s))γ − xγ)dμ (s)+

∫
Ω

( f (s))γ ( f (s)− x)dμ (s) .

THEOREM 1. [6, Theorem 1] Let γ ∈R+, and f be nonnegative function. Let f
and ϕ ◦ f be μ -integrable functions on the probability measure space (Ω,μ) and x =∫

Ω f (s)dμ (s) > 0 . If ϕ is a differentiable, nonnegative, convex, increasing function
on [0,b) , 0 < b � ∞ and ϕ (0) = limzϕ ′

z→0+
(z) = 0, then the Jensen type inequalities

∫
Ω

ϕ ( f (s))( f (s))γ dμ (s)−ϕ (x)xγ (1.6)

� ϕ (x)
∫

Ω

(
( f (s))γ − xγ)dμ (s)+ ϕ ′ (x)

∫
Ω

( f (s))γ ( f (s)− x)dμ (s) � 0

hold.

REMARK 1. Note that when γ = 0 the second inequality in (1.6) reduces to equal-
ity, so that then (1.6) coincides with the usual Jensen’s inequality.

EXAMPLE 2. By applying (1.3) with μ(s) =
N
∑
i=1

aiδi with
N
∑
i=1

ai = 1 and δi unit

masses at x = xi, yi = f (xi) , i = 1, ...,N, N ∈ Z+ , we obtain that the following
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special case of (1.3) yields the inequality

N

∑
i=1

αiK (yi)−K

(
N

∑
i=1

αiyi

)
(1.7)

� ϕ

(
N

∑
j=1

α jy j

)(
N

∑
i=1

αiy
γ
i −
(

N

∑
j=1

α jy j

)γ)
+Cϕ

(
N

∑
j=1

α jy j

)
N

∑
i=1

αiy
γ
i

(
yi−

N

∑
j=1

α jy j

)
,

which holds for xi ∈ [0,b) , yi ∈ [0,b) , 0 � αi � 1, i = 1, ...,n, and ∑N
i=1 αi = 1.

Moreover, under the conditions on ϕ in Theorem 1, as ϕ is differentiable so that Cϕ =
ϕ ′, then the right handside of (1.7) is nonnegative and therefore we get that (1.7) is a
genuine scale of refined discrete Jensen type inequalities.

DEFINITION 1. [3] A function ϕ : [0,b) → R is called superquadratic provided
that for all 0 � x < b there exists a constant Cϕ (x) ∈ R such that

ϕ(y)−ϕ(x) � Cϕ(x)(y− x)+ ϕ (|y− x|) (1.8)

for every y, 0 � y < b. The function ϕ is called subquadratic if −ϕ is superquadratic.

From the definition of superquadracity we easily get:

LEMMA A. [3] The function ϕ is superquadratic on [0,b) if and only if

1
An

n

∑
i=1

aiϕ (xi)−ϕ (x) � 1
An

n

∑
i=1

aiϕ (|xi− x|) (1.9)

holds for all xi ∈ [0,b) , i = 1, ...,n, and ai � 0, i = 1, ...,n, are such that An =
∑n

i=1 ai > 0 and x = 1
An

∑n
i=1 aixi.

The function ϕ is superquadratic on [0,b) if and only if

∫
Ω

ϕ ( f (s))dμ (s)−ϕ
(∫

Ω
f (s)dμ (s)

)
�
∫

Ω
ϕ
(∣∣∣∣ f (s)−

∫
Ω

f (σ)dμ (σ)
∣∣∣∣
)

dμ (s) ,

(1.10)
where f is any non-negative μ -integrable function on a probability measure space
(Ω,μ) and

∫
Ω f (s)dμ (s) > 0 .

LEMMA B. [3] Let ϕ be a superquadratic function with Cϕ (x) as in Definition
1. Then:

(i) ϕ(0) � 0,

(ii) if ϕ(0) = ϕ ′(0) = 0, then Cϕ(x) = ϕ ′(x) whenever ϕ is differentiable at 0 <
x < b.

(iii) if ϕ � 0, then ϕ is convex and ϕ(0) = ϕ ′(0) = 0.
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LEMMA C. [3] Suppose that ϕ : [0,b) → R is continuously differentiable and

ϕ(0) � 0. If ϕ ′ is superadditive or ϕ′(x)
x is nondecreasing, then ϕ is superquadratic.

The power functions ϕ (x) = xp, x � 0 are superquadratic when p � 2 and sub-
quadratic when 1 � p � 2. When ϕ (x) = x2 (1.8) reduces to equality and therefore the
same holds for (1.9) and (1.10).

2. γ -quasiconvex functions, −1 � γ � 0

The definition of γ - quasiconvex function K (x) , K (x) = xγϕ (x) can be mean-
ingful even if γ < 0. We can for example state the following complement of Theorem
1:

THEOREM 2. Let −1 � γ � 0, and let f be a μ -integrable and non-negative
function on the probability measure space (Ω,μ) and x =

∫
Ω f (s)dμ (s) > 0. If ϕ is

a differentiable, non-negative, convex increasing function and ϕ (0) = limzϕ ′ (z) = 0,
z→0+

then ∫
Ω

ϕ ( f (s))( f (s))γ dμ (s)−ϕ (x)xγ (2.1)

� ϕ (x)
∫

Ω

(
( f (s))γ − xγ)dμ (s)+ ϕ ′ (x)

∫
Ω

( f (s))γ ( f (s)− x)dμ (s)

holds and the right hand-side expression of (2.1) is non-positive.

Proof. We start with the proof of (2.1): First we note that inequality (1.2) holds
for every γ. Therefore when ϕ is differentiable (Cϕ (x) = ϕ ′ (x)) then (1.3) holds too
when the involved integrals exist. Hence, inequality (2.1) holds. Now we have to show
that when −1 � γ � 0 the right hand-side of (2.1) is non-positive.

For the case −1 < γ � 0 the fact that the right hand-side expression in (2.1) is
non-positive follows similarly as in the proof of Theorem 1 in [6] because now∫

Ω
( f (s))γ f (s)dμ (s)−

∫
Ω

f (s)dμ (s)
∫

Ω
( f (s))γ dμ (s) � 0

holds by Chebychev’s inequality and also

∫
Ω

( f (s))1+γ dμ (s)−
(∫

Ω
f (σ)dμ (σ)

)1+γ
=
∫

Ω
( f (s))1+γ dμ (s)− x1+γ

= x
∫

Ω

(
( f (s))γ − xγ)dμ (s)+

∫
Ω

( f (s))γ ( f (s)− x)dμ (s) � 0.

holds for −1 < γ � 0.
For the case γ = −1 we must show that

ϕ (x)
∫

Ω

(
1

f (s)
− 1

x

)
dμ (s)+ ϕ ′ (x)

∫
Ω

1
f (s)

( f (s)− x)dμ (s) � 0, (2.2)
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in other words we must prove that

I0 =
∫

Ω

[
ϕ
(∫

Ω
f (s)dμ (s)

)(
1

f (s)
− 1∫

Ω f (s)dμ (s)

)
(2.3)

+ ϕ
′
(∫

Ω
f (s)dμ (s)

)(
1−

∫
Ω f (s)dμ (s)

f (s)

)]
dμ (s)

� 0.

By using Jensen’s inequality for the convex function φ (x) = x−1, x > 0, we find
that

∫
Ω

f (s)dμ (s)
∫

Ω

1
f (s)

dμ (s) =
∫

Ω
( f (s))dμ (s)

∫
Ω

( f (s))−1 dμ (s) (2.4)

�
∫

Ω
f (s)dμ (s)

(∫
Ω

f (s)dμ (s)
)−1

= 1

(this inequality follows also from the Harmonic-Arithmetic mean inequality).
Moreover, since ϕ is convex and ϕ (0) = 0 = lim

z→0
zϕ ′ (z) it follows that

xϕ ′ (x)−ϕ (x) � 0. (2.5)

By using (2.4) and (2.5) we have that

I0 =
∫

Ω

[
ϕ
(∫

Ω
f (s)dμ (s)

)(
1

f (s)
− 1∫

Ω f (s)dμ (s)

)

+ ϕ
′
(∫

Ω
f (s)dμ (s)

)(
1−

∫
f (s)dμ (s)

f (s)

)]
dμ (s)

=
∫

Ω

[
1∫

Ω f (s)dμ (s)
ϕ ( f (s)dμ (s))+ ϕ ′

(∫
Ω

f (s)dμ (s)
)]

·

·
(

1−
∫

Ω f (s)dμ (s)
f (s)

)
dμ (s)

=
[
−ϕ (x)

x
+ ϕ ′ (x)

](
1−

∫
Ω

f (s)dμ (s)
∫

Ω

1
f (s)

dμ (s)
)

� 0.

Hence (2.3), and thus also (2.2) is proved. The proof is complete �

REMARK 2. From the case γ =−1 it follows that when ϕ is convex and ϕ (0) =
0 = lim

z→0+
(zϕ ′ (z)) and ϕ(x)

x is concave we get a negative lower bound to our Jensen’s

type difference. This important fact is further developed in the next section.
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3. Some two-sided reversed Jensen type inequalities

First we state the following consequence of Theorem 2:

PROPOSITION 1. Let the conditions in Theorem 2 be satisfied and assume in ad-
dition that ϕ(x)

x is concave. then the following two sided Jensen type inequality holds:

ϕ (x)
∫

Ω

(
( f (s))−1− x−1

)
dμ (s)+ ϕ ′ (x)

∫
Ω

( f (s))−1 ( f (s)− x)dμ (s) (3.1)

�
∫

Ω

ϕ ( f (s))
f (s)

dμ (s)− ϕ (x)
x

� 0.

Proof. The left handside inequality is just Theorem 2 applied for γ = −1 and the
right hand side inequality is just the reversed Jensen’s inequality. �

The following consequence of Proposition 1 is useful for applications:

COROLLARY 1. Let 0 < p � 1, and let f be a μ -measurable and positive func-
tion on the probability measure space (μ ,Ω) and x =

∫
Ω f (s)dμ (s) > 0. Then

−I1 +
(∫

Ω
f (s)dμ (s)

)p

�
∫

Ω
( f (s))p dμ (s) �

(∫
Ω

f (s)dμ (s)
)p

,

where

I1 = p

(∫
Ω

f (s)dμ (s)
)p(

1−
∫

Ω
f (s)dμ (s)

∫
Ω

( f (s))−1 dμ (s)
)

> 0.

Proof. Apply (3.1) with ϕ (u) = u1+p, 0 < p � 1. The right hand side inequality
follows directly. The left hand side expression is equal to

(∫
Ω

f (s)dμ (s)
)p+1∫

Ω

(
1

f (s)
− 1∫

Ω ( f (s))dμ (s)

)
dμ (s)+

(p+1)
(∫

Ω
f (s)dμ (s)

)p∫
Ω

(
1− 1

f (s)

∫
Ω

( f (s))dμ (s)
)

dμ (s)

= p

(∫
Ω

f (s)dμ (s)
)p+1∫

Ω

(
1∫

Ω ( f (s))dμ (s)
− 1

f (s)

)
dμ (s)

= p

(∫
Ω

f (s)dμ (s)
)p+1

((∫
Ω

f (s)dμ (s)
)−1

−
∫

Ω
( f (s))−1 dμ (s)

)
= I1

The proof is complete. �
We shall now derive some more useful inequalities as those in Proposition 1 and

Corollary 1 and we need the following Lemma which can be proved by obvious calcu-
lations.
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LEMMA 2. Let ϕ : R+ →R be differentiable function x,y∈ R+ and γ ∈ R. Then

ϕ(x)(yγ − xγ)+ ϕ ′(x)yγ (y− x)

− [(xϕ(x))
(
yγ−1− xγ−1)+(xϕ(x))′yγ−1(y− x)

]
= yγ−1ϕ ′(x)(y− x)2. (3.2)

Our next two sided reversed Jensen type inequality reads:

PROPOSITION 2. Let f be a non-negative μ -measurable function on the proba-
bility measure space (μ ,Ω) and x =

∫
Ω f (s)dμ (s) > 0. Assume that ϕ is a differen-

tiable non-negative, convex function, ϕ (0) = lim
z→0+

zϕ ′ (z) = 0. Moreover, assume that

ϕ(x)
x is concave. Then the following two-sided Jensen type inequality holds:

−
(

ϕ (x)
x

)′ ∫
Ω

( f (s)− x)2

g(s)
dμ (s) �

∫
Ω

ϕ ( f (s))
f (s)

dμ (s)− ϕ (x)
x

� 0. (3.3)

Proof. The assumption that ϕ(x)
x is concave implies that

ϕ (y)
y

− ϕ (x)
x

�
(

ϕ (x)
x

)′
(y− x) . (3.4)

From (1.3) for γ = −1 we get that

ϕ (y)
y

− ϕ (x)
x

� ϕ (x)
(

1
y
− 1

x

)
+

ϕ ′ (x)
y

(y− x) (3.5)

Moreover, by using (3.2) with γ = 0 and ϕ (x) replaced by ϕ(x)
x we find that(

ϕ (x)
x

)′
(y− x) =

[
ϕ (x)

(
y−1− x−1)+ ϕ ′ (x)y−1 (y− x)

]
+ y−1

(
ϕ (x)

x

)′
(y− x)2 .

(3.6)
By combining (3.4), (3.5) and (3.6) we see that(

ϕ (x)
x

)′
(y− x)−

(
ϕ (x)

x

)′ 1
y

(y− x)2 � ϕ (y)
y

− ϕ (x)
x

�
(

ϕ (x)
x

)′
(y− x) . (3.7)

Next we put y = f (s) and x =
∫

Ω f (s)dμ (s) and integrating (3.7) over Ω with respect
to μ we obtain that (3.3) holds. Note especially that

∫
Ω

(y− x)dμ (s) =
∫

Ω

(
f (s)−

∫
Ω

f (s)dμ (s)
)

dμ (s) = 0.

The proof is complete. �
By applying Proposition 2 with ϕ (x) = x1+p , 0 < p � 1 we get the following

result:
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COROLLARY 2. Let 0 < p � 1, let f be a non-negative μ -measurable function
on the probability measure space (Ω,μ) and x =

∫
Ω f (s)dμ (s) > 0. Then

−I2 +
(∫

Ω
f (s)dμ (s)

)p

�
∫

Ω
( f (s))p dμ (s) �

(∫
Ω

f (s)dμ (s)
)p

,

where

I2 = p

(∫
Ω

f (s)dμ (s)
)p−1 ∫

Ω

( f (s)− x)2

f (s)
dμ (s) .

Next we will prove the following may be even more surprising variant of Proposi-
tion 1:

PROPOSITION 3. Let f be a non-negative μ -measurable function on the prob-
ability measure space (Ω,μ) and x =

∫
Ω f (s)dμ (s) > 0. Assume that ϕ is a differ-

entiable non-negative function such that lim
z→0+

zϕ ′ (z) = 0, ϕ(x)
x2 is convex and ϕ(x)

x is

concave. Then the following two-sided Jensen type inequality holds:

(
ϕ (x)
x2

)′ ∫
Ω

( f (s)− x)2 dμ (s) �
∫

Ω

ϕ ( f (s))
f (s)

dμ (s)− ϕ (x)
x

� 0. (3.8)

Proof. By discussing exactly as in the proof of Proposition 2 we find that under
the assumptions of Proposition 3 (instead of (3.7)) the following inequality holds:

ϕ (x)
x2 (y− x)+

(
ϕ (x)
x2

)′
y(y− x) � ϕ (y)

y
− ϕ (x)

x
�
(

ϕ (x)
x

)′
(y− x) . (3.9)

As before we put y = f (s) and x =
∫

Ω f (s)dμ (s) and integrating (3.9) over Ω
with respect to μ we find that (3.8) holds.

The proof is complete. �

By applying Proposition 3 with ϕ (x) = x1+p , 0 < p � 1, we obtain the following
Corollary 3:

COROLLARY 3. Let 0 < p � 1, let f be a μ -measurable function on the proba-
bility measure space (Ω,μ) and x =

∫
Ω f (s)dμ (s) . Then

−I3 +
(∫

Ω
f (s)dμ (s)

)p

�
∫

Ω
( f (s))p dμ (s) �

(∫
Ω

f (s)dμ (s)
)p

,

where

I3 = (1− p)
(∫

Ω
f (s)dμ (s)

)p−2 ∫
Ω

( f (s)− x)2 dμ (s) .
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4. A Jensen-Steffensen type inequality for 1 -quasiconvex functions

Let ρ1, ...,ρn be Jensen-Steffensen coefficients, that is, 0 � Pj = ∑ j
i=1 ρi � Pn,

Pn > 0, Pj = ∑n
i= j ρi � 0, j = 1, ...,n, and x = (x1, ...,xn) > 0 satisfies 0 < x1 � x2 �

... � xn . Let ϕ be an increasing convex function for x � 0, ϕ (0) = 0 and ψ (x) =
xϕ (x) . Let x = ∑n

i=1 ρixi
Pn

. We recall the known identity (see [2] and [8])

n

∑
i=1

ρiψ (xi)−Pnψ (x) (4.1)

=
k−1

∑
j=1

Pj
(
ψ (x j)−ψ

(
x j+1

))
+Pk (ψ (xk)−ψ (x))+Pk+1 (ψ (xk+1)−ψ (x))

+
n

∑
j=k+2

Pj
(
ψ (x j)−ψ

(
x j−1

))
.

Since ϕ is convex we get that

ψ (x)−ψ (y) � ψ ′ (x)(y− x)+ ϕ ′ (x) (y− x)2

and therefore, by using (4.1), we find that

n

∑
i=1

ρiψ (xi)−Pnψ (x)

�
[

k−1

∑
j=1

Pjψ ′ (x j+1
)(

x j − x j+1
)
+Pkψ ′ (x)(xk − x)

+Pk+1ψ ′ (x) (xk+1− x)+
n

∑
j=k+2

Pjψ ′ (x j−1
)(

x j − x j−1
)]

+

[
k−1

∑
j=1

Pjϕ ′ (x j+1
)(

x j − x j+1
)2 +Pkϕ ′ (x) (xk − x)2

+Pk+1ϕ ′ (x) (xk+1− x)2 +
n

∑
j=k+2

Pjϕ ′ (xk−1)(xk − xk−1)
2

]
.

The first parenthesis is greater than zero because ψ (x) is convex and since there is an
integer k, 1 � k � n such that xk � x � xk+1 as it was proved in [1, (2.8), (2.9) and
(2.10)], see also [2], and [8]. Hence

n

∑
i=1

ρiψ (xi)−Pnψ (x)

� [0]+
k−1

∑
j=1

Pjϕ ′ (x j+1
)(

x j+1− x j
)2 +Pkϕ ′ (x)(x− xk)

2

+Pk+1ϕ ′ (x)(xk+1 − x)2 +
n

∑
j=k+2

Pjϕ ′ (x j−1
)(

x j − x j−1
)2

.



624 S. ABRAMOVICH, L.-E. PERSSON AND N. SAMKO

Since ϕ is convex and x1 � ... � xk � x � xk+1 � ... � xn and Pj � 0, Pj > 0, j =
1, ...,n, we get that

k−1

∑
j=1

Pjϕ ′ (x j+1
)(

x j+1− x j
)2 +Pkϕ ′ (x)(x− xk)

2

+Pk+1ϕ ′ (xk+1− x)2 −
n

∑
j=k+2

Pjϕ ′ (x j−1
)(

x j − x j−1
)2

� ϕ ′ (x1)

(
k

∑
j=1

Pj +
n

∑
j=k+1

Pj

)
·

·
(

∑k−1
j=1 Pj

(
x j+1− x j

)
+Pk (x− xk)+Pk+1 (xk+1 − x)+ ∑n

j=k+2 Pj
(
x j − x j−1

)
∑k

j=1 Pj + ∑n
j=k+1 Pj

)2

= ϕ ′ (x1)

(
k

∑
j=1

Pj +
n

∑
j=k+1

Pj

)(
∑n

i=1 ρi |xi− x|
∑k

j=1 Pj + ∑n
j=k+1 Pj

)2

.

The last inequality here follows from (4.1) for the function ψ (x) = |x| .
Since ϕ is convex increasing and ϕ (0) = 0, it yields that ϕ(x)

x is increasing and
xϕ
( 1

x

)
is decreasing on (0,∞) . Therefore from the estimates

n

∑
j=1

Pj +
n

∑
j=k+1

Pj � max{n,n− k}Pn � (n−1)Pn

it follows that(
k

∑
j=1

Pj +
n

∑
j=k+1

Pj

)(
∑n

i=1 ρi |xi− x|
∑k

j=1 Pj + ∑n
j=k+1 Pj

)2

� Pn max{k,n− k}
(

∑n
i=1 ρi |xi − x|

max{n,n+1}Pn

)2

� (n−1)Pn

(
∑n

j=1 ρ j
∣∣x j − x

∣∣
(n−1)Pn

)2

.

By now combining all estimates abovewe obtain a series of estimates for N -quasiconvex
functions. For simplicity and for later purposes we only formulate this result for the
special case N = 1.

THEOREM 3. Let ρ1, ...,ρn be Jensen-Steffensen coefficients, and suppose that
x = (x1, ...,xn) > 0 satisfies 0 < x1 � ... � xn . Let ϕ be an increasing convex function
for x � 0, ϕ (0) = 0 and let ψ (x) = xϕ (x) . Let x = ∑n

i=1
ρixi
Pn

, 0 � Pk = ∑k
i=1 ρi � Pn,

Pk = ∑n
i=k ρi � 0, Pn > 0. Then

n

∑
i=1

ρiψ (xi)−Pnψ (x)

� ϕ ′ (x)

(
k

∑
j=1

Pj + ∑
j=k+1

Pj

)(
∑n

i=1 ρi |xi− x|
∑k

j=1 Pi + ∑n
j=k+1 Pj

)2
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� ϕ ′ (x)Pn max{k,n− k}
(

∑n
i=1 ρi |xi− x|2

Pn max{k,n− k}

)

� ϕ ′ (x)(n−1)Pn

(
∑n

i=1 ρi |xi − x|
(n−1)Pn

)2

.

5. Further results and concluding remarks

First we will compare Jensen’s inequality for the convex function ψ , where ψ (x)
= xϕ (x) , ϕ is twice differentiable nonnegative increasing convex function on x �
0 satisfying ϕ (0) = 0 and the superquadratic function ψ . The function ψ is su-

perquadratic by Lemma B because ψ (0) = 0 and
(

ϕ(x)
x

)′
� 0, ϕ”(x) � 0, so that

(
ψ ′ (x)

x

)′
=
(

(xϕ (x))′

x

)′
=
(

ϕ (x)
x

)′
+ ϕ ′′ (x) > 0.

Denote x = ∑αixi, ∑αi = 1, 0 � αi � 1, x i � 0, i = 1, ...,n. As ψ (x) = xϕ (x) ,
then

∑αiψ (xi)−ψ (x) �
n

∑
i=1

αiϕ ′ (x)(xi − x)2 (5.1)

because ϕ is differentiable and convex and

∑αiψ (xi)−ψ (x) �
n

∑
i=1

αiψ |xi − x| (5.2)

holds since ψ is superquadratic.
When |xi− x| � x ⇐⇒ 0 � xi � 2x, i = 1, ...,n, (which is satisfied for instance

when 0 < a � xi � 2a, i = 1, ...,n, and for n = 2, α1 = α2 = 1
2 , x1,x2 > 0) we get that

(because ϕ(x)
x is increasing for x > 0)

ϕ (|xi − x|)
(|xi − x|) =

ψ (|xi− x|)
(xi− x)2 <

ϕ (x)
x

, i = 1, ...,n. (5.3)

Moreover, since ϕ(x)
x < ϕ ′ (x) when ϕ is differentiable nonnegative convex increasing

and ϕ (0) = 0 and xi � 2x, i = 1, ...,n, we get that xϕ ′ (x)−ϕ (x) � 0 so that, by (5.3),

ψ (|xi − x|)
(xi − x)2 <

ϕ (x)
x

=
ψ (x)
x2 � ϕ ′ (x) .

Hence by comparing (5.1) and (5.2) we get that (5.1) is sharper than (5.2), that is, we
get:

PROPOSITION 4. Let ψ (x) = xϕ (x) , where ϕ is non-negative convex increasing
and twice differentiable function on [0,b) , and ϕ (0) = 0. Then the inequalities

n

∑
i=1

αiψ (xi)−ψ (x) �
n

∑
i=1

αiϕ ′ (x) (xi − x)2 �
n

∑
i=1

αiψ (|xi − x|)
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hold for

xi � 2x, x = ∑αixi, 0 � αi � 1,
n

∑
i=1

αi = 1, i = 1, ...,n

Similarly we also get that:

PROPOSITION 5. Under the conditions of Theorem 1 for ψ (x) = xϕ (x) the in-
equalities ∫

Ω
ψ ( f (s))dμ (s)−ψ

(∫
Ω

f (s)dμ (s)
)

�
∫

Ω
ϕ ′
(∫

Ω
f (σ)dμ (σ)

)(
f (s)−

∫
Ω

f (σ)dμ (σ)
)2

dμ (s)

�
∫

Ω
ψ
(∣∣∣∣ f (s)−

∫
Ω

f (σ)dμ (σ)
∣∣∣∣
)

dμ (s) ,

hold when 0 < a � f (s) � 2a, s ∈ Ω.

Proof. The proof is similar to that of Proposition 4 and therefore omitted. �
Next we note that the results in this paper can be generalized in various directions.

Here we just present the following generalization of Lemma 1.

THEOREM 4. Let ϕ be a convex function on [0,b) and let g : [0,b) → R+. Then
ϕ (x)g(x) = w(x) satisfies

w(y)−w(x) � ϕ (x) (g(y)−g(x))+Cϕ (x)g(y)(y− x) , (5.4)

where Cϕ (x) is the constant in (1.1). Moreover,∫
Ω

ϕ ( f (s))g( f (s))dμ (s)−ϕ (x)g(x) (5.5)

� ϕ (x)
∫

Ω
g( f (s))−g(x)dμ (s)+Cϕ (x)

∫
Ω

g( f (s))( f (s)− x)dμ (s)

when f is nonnegative and f , ϕ ◦ f , g, g ◦ f are μ -integrable functions on a
probabiliy measure space (Ω,μ) and

x =
∫

Ω
f (s)dμ (s) > 0.

Moreover, if ϕ is nonnegative, increasing, convex, and differentiable on [0,b) , and
ϕ (0) = lim

z→0
zϕ ′ (z) = 0 and g is nonnegative, increasing and xg(x) is convex when

0 � x < b, then:∫
Ω

ϕ ( f (s))g( f (s))dμ (s)−ϕ (x)g(x) (5.6)

� ϕ (x)
∫

Ω
(g( f (s))−g(x))dμ (s)+ ϕ ′ (x)

∫
Ω

g( f (s))( f (s)− x)dμ (s) � 0,
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where
x =

∫
Ω

f (s)dμ (s) > 0.

The reverse of (5.4), (5.5) and (5.6) hold when ϕ is concave.

REMARK 3. When ϕ is convex and ϕg is concave, we get a lower bound of the
Jensen’s difference besides the zero upper bounds resulting from concavity. In other
words, we get for x =

∫
Ω f (s)dμ (s) > 0 :

ϕ (x)
∫

Ω
g( f (s))( f (s)− x)dμ (s)+Cϕ (x)

∫
Ω

g( f (s))( f (s)− x)dμ (s)

�
∫

Ω
ϕ ( f (s))g( f (s))dμ (s)−ϕ (x)g(x) � 0.

EXAMPLE 3. To demonstrate Remark 3, take the convex function ϕ (x) = x−1/2,
0 < a � x and g(x) = x and hence ϕ (x)g(x) = x1/2 is concave and then for
x =

∫
Ω f (s)dμ (s) > 0

x−
1
2

∫
Ω

( f (s)− x)dμ (s)− 1
2
x−

3
2

∫
Ω

( f (s)− x) f (s)dμ (s)

�
∫

Ω

(
( f (s))

1
2 − x

1
2

)
dμ (s) � 0

REMARK 4. It is well known that several of the classical inequalities can easily
be proved by just using Jensen’s inequality (see e.g., [9] and the references given there).
By using instead our new scales of refined Jensen type inequalities for γ -superconvex
functions it may be possible to derive also scales of refined versions of these classical
inequalities The present authors aim to investigate this idea in a forthcoming paper. In
particular as in [4], [5], [6], and [7] some new scales of refined Hardy type inequalities
will be derived.

REMARK 5. We say that a function ϕ is quasi-monotone and belongs to tha class
Q(a,b) , a,b ∈ R, if ϕ (x)x−a is non-decreasing and ϕ (x)x−b is non-increasing. such
classes are very important for applications (e.g., in interpolation theory, approximation
theory, Function spaces, index theory, etc.), see the review article [10] and the refer-
ences given there. In particular any function in the class Q(0,1) are quasi-convex e.g.
equivalent to a concave function .

In this paper we have seen that functions satisfying that ϕ is convex and ϕ(x)
x is

concave have a special importance for creating new two-sided Jensen type inequalities.
Hence, it seems to be very interesting to create a similar general theory for functions
satisfying two quasiconvexity/concavity conditions e.g. that ϕ (x)x−a is convex and
ϕ (x)x−b is concave.
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[8] J. E. PEČARIĆ, F. PROSCHAN, Y. L. TONG, Convex Functions, Partial Orderings, and Statistical
Applications, Academic Press, New York, 1992.

[9] L. E. PERSSON AND N. SAMKO, Inequalities and convexity, Operator Theory: Advances and Appli-
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