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ON y-QUASICONVEXITY, SUPERQUADRACITY AND
TWO-SIDED REVERSED JENSEN TYPE INEQUALITIES
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Abstract. In this paper we deal with y-quasiconvex functions when —1 < y < 0, to derive some
two-sided Jensen type inequalities. We also discuss some Jensen-Steffensen type inequalities
for 1-quasiconvex functions. We compare Jensen type inequalities for 1-quasiconvex functions
with Jensen type inequalities for superquadratic functions and we extend the result obtained for
Y-quasiconvex functions to more general classes of functions.

1. Introduction

In [4], [5], [6], and [7] Jensen’s type inequalities for y-quasiconvex functions
where ¥ > 0 and for y-superquadratic functions are derived and discussed from which
Hardy type inequalities were proved.

In this paper we first deal with y-quasiconvex functions when —1 < 7 < 0 (see
Section 2). In Section 3 we derive some two-sided Jensen type inequalities. In Section 4
some new Jensen-Steffensen type inequalities for 1-quasiconvex functions are derived.
In Section 5 we compare Jensen type inequalities for 1-quasiconvex functions with
Jensen type inequalities for superquadratic functions and finally, we extend the result
obtained for y-quasiconvex functions to a more general class of functions.

We start with some definitions and results that are relevant for our discussions in
the sequel.

A convex function @ on [0,b), 0 < b < oo, is characterized by the following
inequality:

P(y) = @(x) = Cp (x) (y —x),Vx,y € (0,b]. (1.1)

The function K (x) = x?¢ (x), where ¢ is convex, is called y-quasiconvex.
In [6] we proved:

LEMMA 1. [6, Lemma 1] Ler K (x) = x"¢@ (x), y € Ry, where @ is convex on
[0,b). Then
K(y)—K(x) 2 @ (x) (" —x") +Cy (x)y" (y —x), (1.2)
Mathematics subject classification (2010): 26D15.
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holds for x € [0,b), y € [0,b), where Cy (x) is defined by (1.1). Moreover, the Jensen

type inequality
& -&( [ s6an0) 13
> /Q [0 (x) ((f(5))" =x7) +Co (x) (f(5))" (f (5) —x)] dpe (5)
holds, where f is any nonnegative function, f and K (f (s)) are [ -integrable func-

tions on the probability measure space (Q,11) and x = [, f (s)du (s) > 0.
If @ is concave, then the reverse inequalities of (1.1), (1.2), and (1.3) hold, in

particular
[xoaue k([ o) (14
< [T (67 1) +Co () ()7 (7 () 0] ().

EXAMPLE 1. Inequalities (1.1), (1.2), and (1.3) are satisfied by K (x) =x?, p >
Y+ 1. For y<p < vy+1 the reverse inequalities hold. They reduce to equalities for
p=7v+1e.g.,ityields when x = [ f (s)du (s) > 0 that

[ )" augs) (/f ) (o )1” (15)

—x [ () =) au )+ [ (6D (6) =x)dus).

THEOREM 1. [6, Theorem 1] Let y € Ry, and f be nonnegative function. Let f
and Qo [ be W -integrable functions on the probability measure space (Q, L) and x =
Jof(s)du(s) > 0. If @ is a differentiable, nonnegative, convex, increasing function
on [0,b), 0 <b < e and ¢ (0) =1limz@’ (z) =0, then the Jensen type inequalities

707"
Lo o) du)—ows (16)
> o /Q ((F6) =) du s) ¢’ () [ (F9) ((9) =)t (5) > 0
hold.

REMARK 1. Note that when y =0 the second inequality in (1.6) reduces to equal-
ity, so that then (1.6) coincides with the usual Jensen’s inequality.

EXAMPLE 2. By applying (1.3) with p(s) = Z a;0; with 2 a; =1 and &; unit

masses at x =x;, v, = f(x;), i=1,...N, N¢€ Z+, we obtaln that the following
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special case of (1.3) yields the inequality

N N
D, ok (vi) —K (Z O‘i%‘) (1.7)
Py} i=1

which holds for x; € [0,b), y; €[0,b), 0< o<1, i=1,...,n, and ¥V o = 1.
Moreover, under the conditions on @ in Theorem 1, as @ is differentiable so that Cy, =
@', then the right handside of (1.7) is nonnegative and therefore we get that (1.7) is a
genuine scale of refined discrete Jensen type inequalities.

DEFINITION 1. [3] A function ¢ : [0,b) — R is called superquadratic provided
that for all 0 < x < b there exists a constant Cy(x) € R such that

@) = @(x) = Cp(x) (y —x) + ¢ (ly —x]) (1.8)
forevery y, 0 <y < b. The function ¢ is called subquadratic if —¢ is superquadratic.

From the definition of superquadracity we easily get:

LEMMA A. [3] The function @is superquadratic on [0,b) if and only if

ai (|x; —X|) (1.9)

HM:

o (@) 9> 13

HM:

1
Ay

holds for all x; € [0,b), i=1,...,n, and a; =20, i = 1,...,n, are such that A, =
Stiai>0 ana’x—A1 P aix;.
The function ¢ is superquadratic on [0,b) if and only if

Lotenans-o( [ r0we) > [o(|ro- [ r@aue|)awu,

(1.10)
where f is any non-negative |L-integrable function on a probability measure space

(Q, 1) and [ f (s)du(s) > 0.

LEMMA B. [3] Let ¢ be a superquadratic function with Cy (x) as in Definition
1. Then:

(i) 9(0)<0

(ii) if @(0) = @7(0) =0, then Cy(x) = @/(x) whenever @ is differentiable at 0 <
x <b.

(iii) if @ >0, then @ is convex and @(0) = @/(0) =
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LEMMA C. [3] Suppose that ¢ :[0,b) — R is continuously differentiable and

©(0) <O0. If @1 is superadditive or @ is nondecreasing, then @ is superquadratic.

The power functions @ (x) = xP, x > 0 are superquadratic when p > 2 and sub-
quadratic when 1 < p <2. When ¢ (x) = x? (1.8) reduces to equality and therefore the
same holds for (1.9) and (1.10).

2. y-quasiconvex functions, —1 <y <0

The definition of y- quasiconvex function K (x), K (x) = x7¢ (x) can be mean-
ingful even if y < 0. We can for example state the following complement of Theorem
1:

THEOREM 2. Let —1 < v <0, and let f be a U -integrable and non-negative
function on the probability measure space (Q, 1) and x = [¢, f(s)du(s) > 0. If ¢ is

a differentiable, non-negative, convex increasing function and ¢ (0) = limz¢’ (z) =0,
707"
then

Lot @) dus) - @ 2.1)
> o) /Q ((F ) =) i)+ 9' () [ (£ (£ () =) 5)
holds and the right hand-side expression of (2.1) is non-positive.

Proof. We start with the proof of (2.1): First we note that inequality (1.2) holds
for every y. Therefore when ¢ is differentiable (Cy (x) = ¢’ (x)) then (1.3) holds too
when the involved integrals exist. Hence, inequality (2.1) holds. Now we have to show
that when —1 < y < 0 the right hand-side of (2.1) is non-positive.

For the case —1 < y < 0 the fact that the right hand-side expression in (2.1) is
non-positive follows similarly as in the proof of Theorem 1 in [6] because now

L@ r@due - [ rs)aue) [ (7)) <o
holds by Chebychev’s inequality and also
1+y
Lo an) - ([ r@ant@) = [ 76 Tau) -2t
=3 [ (P& =) du )+ [ (7)) () =) (5) <.

holds for —1 <y < 0.
For the case Yy = —1 we must show that

11 , 1
00 [ (735 3)wO+00 [ 506D <0, @
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in other words we must prove that

Ioz/gz[“’(/szf(s)d“(s)) (fé) fgfs (s ) 23
o ([ roane ) (1- LB g o

< 0.

By using Jensen’s inequality for the convex function ¢ (x) = x~', x > 0, we find
that

1
Lo f@an) [ s = [[oan) @) au @

> [ rsauts (/f )y (s )1=1

(this inequality follows also from the Harmonic-Arithmetic mean inequality).
Moreover, since ¢ is convex and ¢ (0) =0 = hmz(p (z) it follows that

x@' (x) = (x) > 0. (2.5)

By using (2.4) and (2.5) we have that

o= [ |o(Lroaue) (f(S) fgf(s; i)
6 (fromo) (1= s
- Lrross <>"’(f” S </ﬂf() o)

_(1 fo 1 (s)

- [—@w%x)] (1—/Qf(s)du(s)/gmdu(s)> <0

Hence (2.3), and thus also (2.2) is proved. The proofis complete [

REMARK 2. From the case ¥ = —1 it follows that when ¢ is convex and ¢ (0) =
0= lir(r)l+ (z¢' (z)) and @ is concave we get a negative lower bound to our Jensen’s
—

type difference. This important fact is further developed in the next section.
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3. Some two-sided reversed Jensen type inequalities
First we state the following consequence of Theorem 2:

PROPOSITION 1. Let the conditions in Theorem 2 be satisfied and assume in ad-
dition that @ is concave. then the following two sided Jensen type inequality holds:

o) / (<f<>> ) du @) +9' ) [ (F6)7 6 -Ddue) 6D
<p ) (s) = ?() .

Proof. The left handside inequality is just Theorem 2 applied for Yy = —1 and the
right hand side inequality is just the reversed Jensen’s inequality. [

The following consequence of Proposition 1 is useful for applications:

COROLLARY 1. Let 0 < p < 1, and let f be a L -measurable and positive func-
tion on the probability measure space (11,Q) and x = [, f (s)du (s) > 0. Then

—11+</Qf(s)du(S)>p</Q(f( )P dy (s (/f Y (s )
—p([r0an) (1= [ 0o [ 06 we) o

Proof. Apply (3.1) with @ (1) = u'*?, 0 < p < 1. The right hand side inequality
follows directly. The left hand side expression is equal to

(L @an (S))M LG Rerme) LIk
<p+1>(/gf<s>du<+sl>)p/g(1—ﬁ [ ) auls)
P
=r(froawe) [ (Grome f()) 1)
=p</gf(s)du )pH((/f Y (s ) [ >>=11

The proof is complete. [

where

We shall now derive some more useful inequalities as those in Proposition 1 and
Corollary 1 and we need the following Lemma which can be proved by obvious calcu-
lations.
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LEMMA 2. Let ¢ : Ry — R be differentiable function x,y € Ry and y € R. Then

@(x) (Y =x") + @' (x)y" (y — x)
— (o) " T =21 + (xo(x) 'y (v —x)]
=yl (x)(y —x)* (3.2)

Our next two sided reversed Jensen type inequality reads:

PROPOSITION 2. Let [ be a non-negative [ -measurable function on the proba-
bility measure space (1,Q) and x = [, f(s)du (s) > 0. Assume that @ is a differen-
tiable non-negative, convex function, @ (0) = lim+z(p’ (z) = 0. Moreover, assume that

z—0

@ is concave. Then the following two-sided Jensen type inequality holds:

o)\ [ (f(s)—x)? o (f(s)) 0 (x)
_< - )/Q MO [ A - <0 GY)

)

Proof. The assumption that (PT is concave implies that

o) o _ (oY
0)_28) ¢ (24} . 64
From (1.3) for y = —1 we get that
() e 1L 1) ¢
BT E(P(X)<;—;)+ y (y—x) (3.5

Moreover, by using (3.2) with ¥ =0 and ¢ (x) replaced by £ ( ) we find that

(M)/(y—x)z [o() (' —x ) +¢' @)y L (y—x)] +y! (@)/(y_x)z.

X
(3.6)
By combining (3.4), (3.5) and (3.6) we see that

(M)’(y_x)_ <M>/l(y_x)2< o0) 90 _ (‘P("))/(y_x). 3.7

X X y y X X

Next we put y = f(s) and x = [, f (s) du (s) and integrating (3.7) over Q with respect
to 1 we obtain that (3.3) holds. Note especially that

Lo=aan6) = [ (10 [ roauw)ane -

The proof is complete. [

By applying Proposition 2 with ¢ (x) = x!*7, 0 < p < 1 we get the following
result:
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COROLLARY 2. Let 0 < p < 1, let f be a non-negative [L-measurable function
on the probability measure space (Q, 1) and x = [, f (s)du (s) > 0. Then

—Iz+</gf(s)du(S)>p</Q(f( Y du (s) (/f )du (s )

=p</Qf(S)du (s>)p_l/g%du (5).

Next we will prove the following may be even more surprising variant of Proposi-
tion 1:

where

PROPOSITION 3. Let f be a non-negative |L-measurable function on the prob-
ability measure space (Q, 1) and x = [¢ f(s)du (s) > 0. Assume that ¢ is a differ-

oY) (x)

entiable non-negative function such that lign 720’ (z) =0, +5- Is convex and (pT is
Z—U4

concave. Then the following two-sided Jensen type inequality holds:

(22) [ -vrane < [ 20— <o ay

X X

Proof. By discussing exactly as in the proof of Proposition 2 we find that under
the assumptions of Proposition 3 (instead of (3.7)) the following inequality holds:

20 -+ (282) s < 2D 2B  (20Y . )

X2 X2 X X

N

As before we put y = f(s) and x = [, f(s)du (s) and integrating (3.9) over Q
with respect to ¢ we find that (3.8) holds.
The proof is complete. [

By applying Proposition 3 with ¢ (x) =x'*7, 0 < p < 1, we obtain the following
Corollary 3:

COROLLARY 3. Let 0 < p < 1, let f be a [L-measurable function on the proba-
bility measure space (Q, 1) and x = [ f (s)du (s). Then

—13+</Qf(S)du(S)>p</Q(f( )P dp (s (/f )i (s )

-2

D [rowe) [ ro-Paue.

where
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4. A Jensen-Steffensen type inequality for 1-quasiconvex functions

Let py,...,pn be Jensen-Steffensen coefficients, that is, 0 < P; = le:l pi < Py,
P, >0, P;= Lipi=0, j=1,..,n, and X = (x1,...,x,) > 0 satisfies 0 < x; <x <
... <x,. Let @ be an increasing convex function for x > 0, ¢ (0) =0 and y(x) =

x@(x). Letx= zi}%np"x". We recall the known identity (see [2] and [8])

piv (xi) — Py (%) 4.1)

M-

1
1

~
|

1Pj (v (x)) = v (xje1)) + P (W (k) = W (%)) + Prsr (W (xis1) — W (%))

n

2 Pi(v)—w(xi-1)).

Jj=k+2

~.
Il

_|_

Since ¢ is convex we get that

Y-y ) 2y 00 -x)+ 9 &) (-’

and therefore, by using (4.1), we find that
n
Py (xi) = Py (%)
i=1
k—1

> P (xji1) (xj—xjp1) + Py’ (%) (¢ — %)
j=1

P

APV () (s — D)+ Y, Py’ (xj-1) (x —x,-_l)]
jaat)

k
+

—1
P’ (xj41) (x) —x,-+1)2 + P (%) (o — %)
=1

J

n
P10 (B) (i1 =07+ Y, Pio (i) (e — 1) -
j=k+2
The first parenthesis is greater than zero because y (x) is convex and since there is an
integer k, 1 < k < n such that x; <X < x4 as it was proved in [1, (2.8), (2.9) and
(2.10)], see also [2], and [8]. Hence

ipiwm) e

k-1
> [0]+ ZPﬂP/ (xj51) (xj41 _xj)2+Pk(P/ (®) F—x)°
j=1

+I_’k+1(p/(7c) (xk+1—)_c)2+ Z I_‘)j(p/ ()ijl) (xj—xj,l)z.
k42
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Since @ is convex and x; < ... <x <X <y < ... <x, and P >0, P; >0, j=
1,...,n, we get that

k-1
2 Pj(P/ (xj+1) (xj+1 —Xj)2 + Pc¢' (x) ()_C—xk)z
j=1

n
1P ¢ (s — 07— Y Pio (xjm1) (xj—xm1)
jokt2

ol 50)

Jj=k+1

— 2
<ZI; iP (x,H—xj)—f—Pk(x xk)—f—PkH (g1 —X )+2;!=k+2pj (xj—xj1)>
2./:1Pj+2j:k+1

2
i1 pilxi —X|
P;+ —
(Z 1%1 ) <2§1Pj+2?=k+le

The last inequality here follows from (4.1) for the function v (x) = |x].

Since ¢ is convex increasing and ¢ (0) = 0, it yields that @ is increasing and

xQ (%) is decreasing on (0,cc). Therefore from the estimates

i Z <max{n,n—k}P, < (n—1)P,
=1

it follows that

3 2
P+ i= lpi‘xi_ | )
(2 J%—l ) (Z P +2/ k1P

I\ 2
pi [xi — | i) |x x|
> P, kn—ky | == L) >(n—1)B, | Z——— | .
max {k,n — }<max{n n+l}P> (n=1) ( (n—1)P,
By now combining all estimates above we obtain a series of estimates for N -quasiconvex

functions. For simplicity and for later purposes we only formulate this result for the
special case N = 1.

THEOREM 3. Let py,...,pn be Jensen-Steffensen coefficients, and suppose that
X = (X1,...,X,) > 0 satisfies 0 < x; < ... < x,,. Let @ be an increasing convex function
for x>0, ¢(0) =0 andlet y(x) =x¢ (x). Let =Y pIQ:i7 0K P =3F pi<Py,
Fk = Z?kai >0, P, >0. Then

ipiww) Py

- 2
P+ D }'1 lpi|xi_ | )
(Z 1%1 ) (Z B+ P
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> ¢’ (x) Pymax {k,n — k} (

i pilxi— %
P,max{k,n—k}

! X —X 2
v ()

5. Further results and concluding remarks

First we will compare Jensen’s inequality for the convex function y, where v (x)
=x@(x), @ is twice differentiable nonnegative increasing convex function on x >

0 satisfying ¢ (0) = 0 and the superquadratic function y. The function y is su-
!/
perquadratic by Lemma B because v (0) =0 and (M> >0, ¢”(x) >0, so that

X
X

() - (452) - (2) oo

Denote X=X otx;, >0,=1,0< o<1, x; 20, i=1,....n. As ¥ (x) =x0 (x),
then

2

S oy (x) -y (®) =Y e () (x;— %) (5.1)
i=1
because ¢ is differentiable and convex and
D0y (i) — (%) = Zaill/|xi_x| (5.2)

i=1
holds since y is superquadratic.
When |x; —X| <X <= 0<x; <2%, i=1,...,n, (which is satisfied for instance
when 0 <a<x;<2a,i=1,...,n,andforn=2, o =0 = %, x1,Xx2 > 0) we get that

(because @ is increasing for x > 0)
¢ (xi—x)) _ "’(|x"_’§|) <29 (5.3)
(bki=x) (-3 X

Moreover, since @ < @' (x) when @ is differentiable nonnegative convex increasing

and ¢ (0) =0 and x; < 2%, i = 1,...,n, we get that X¢' (X) — ¢ (X) > 0 so that, by (5.3),

V(i—x) _o® _ w_(;) <o ().

(x; — %) x X

Hence by comparing (5.1) and (5.2) we get that (5.1) is sharper than (5.2), that is, we
get:

PROPOSITION 4. Let W (x) =x (x), where @ is non-negative convex increasing
and twice differentiable function on [0,b), and ¢ (0) = 0. Then the inequalities

2

o9’ (X) (xi —%)" = D oy (|xi —X|)

'M=
M=

iw(xi) VR

1 1
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hold for
X <2, X=y o, 0<o<l, Yo=1, i=1l..n

Similarly we also get that:

PROPOSITION 5. Under the conditions of Theorem 1 for y(x) = x@ (x) the in-

equalities
Lwtrenan-v( [ roamo)

> [0 (fr@am@) (ro- [, f(o)du<o>)2du<s>
v(lro- [ s @) aut.

hold when 0 < a < f(s) <2a, s € Q.

Proof. The proof is similar to that of Proposition 4 and therefore omitted. [J

Next we note that the results in this paper can be generalized in various directions.
Here we just present the following generalization of Lemma 1.

THEOREM 4. Let ¢ be a convex function on [0,b) and let g :[0,b) — R.. Then
¢ (x) g (x) = w(x) satisfies

wy)—wx) = @) (g(y) —g)+Cop(x) g (y) (y —x), (5.4)
where Cy (x) is the constant in (1.1). Moreover,

/ 0/ ()8 (f (9)du(s) = 9 (x)5 ()
0 [ £(/() WA (9)+Co () [ (7)) (f () =00 (o)

when f is nonnegative and f, @of, g, go f are U-integrable functions on a
probabiliy measure space (Q, 1) and

x:/f(s)d/,t(s) >0
Q

Moreover, if @ is nonnegative, increasing, convex, and differentiable on [0,b), and
0(0) = lin(l)z(p’ (z) =0 and g is nonnegative, increasing and xg(x) is convex when
—

0< x<b, then:
/Q<p(f(s))g(f(s))du (s)—p(x)g(x) (5.6)
> w(x)/S)(g(f(S))—g(X))du (S)+<P’(X)/Qg(f(S))(f(S)—X)du (s) =0,

(5.5)
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where
x:/f(s)du (s) > 0.
Q
The reverse of (5.4), (5.5) and (5.6) hold when @ is concave.

REMARK 3. When ¢ is convex and ¢g is concave, we get a lower bound of the
Jensen’s difference besides the zero upper bounds resulting from concavity. In other
words, we get for x = [, f(s)du (s) >0:

0 () [ ¢ () () =0 () +Co () [ ¢F () (f(5) = 0)du (s)
< [0 () el () du ) —psx) <o.

EXAMPLE 3. To demonstrate Remark 3, take the convex function ¢ (x) = x~1/2,
0<a<x and g(x) =x and hence ¢ (x)g(x) = x/? is concave and then for

x= Jof (8)du(s) >0

REMARK 4. It is well known that several of the classical inequalities can easily
be proved by just using Jensen’s inequality (see e.g., [9] and the references given there).
By using instead our new scales of refined Jensen type inequalities for y-superconvex
functions it may be possible to derive also scales of refined versions of these classical
inequalities The present authors aim to investigate this idea in a forthcoming paper. In
particular as in [4], [5], [6], and [7] some new scales of refined Hardy type inequalities
will be derived.

REMARK 5. We say that a function ¢ is quasi-monotone and belongs to tha class
Q(a,b), a,b € R, if ¢ (x)x~¢ is non-decreasing and ¢ (x) x~? is non-increasing. such
classes are very important for applications (e.g., in interpolation theory, approximation
theory, Function spaces, index theory, etc.), see the review article [10] and the refer-
ences given there. In particular any function in the class Q(0,1) are quasi-convex e.g.
equivalent to a concave function .

In this paper we have seen that functions satisfying that ¢ is convex and @ is
concave have a special importance for creating new two-sided Jensen type inequalities.
Hence, it seems to be very interesting to create a similar general theory for functions
satisfying two quasiconvexity/concavity conditions e.g. that ¢ (x)x~¢ is convex and
@ (x)x~" is concave.

Acknowledgement. We thank the referee for some useful suggestions, which have
improved the final version of the paper.



628

[1]

[2]
[3]
[4]

[5

—_

[6]
[7]
[8]
[9]

[10]

S. ABRAMOVICH, L.-E. PERSSON AND N. SAMKO

REFERENCES

S. ABRAMOVICH, S. BANIC, M. KLARICIC BAKULA, A Variant of Jensen-Steffensen’s Inequality
for Convex and for Superquadratic Functions, J. Inequal. Pure Appl. Math. (JIPAM), 7 (2) Art 70,
(2006).

S. ABRAMOVICH, M. KLARICIC BAKULA, M. MATIC, AND J. PECARIC, A Variant of Jensen-
Steffensen’s Inequality and Quazi Arithmetic Means, J. Math. Anal. Appl., 307 (2005) 370-386.

S. ABRAMOVICH, G. JAMESON AND G. SINNAMON, Refining Jensen’s Inequality, Bull. Mathe. de
la Soc. des Sciences Mathe de Roumanie, (Novel Series) 47 (95), (2004), 3—14.

S. ABRAMOVICH AND L. E. PERSSON, Some new refined Hardy type inequalities with breaking
points p=2 or p =3, Proceedings of IWOTA 2011, Operator Theory: Advances and Applications,
Vol. 236, 1-10, 2014, Birkhiuser, Springer-Basel.

S. ABRAMOVICH AND L. E. PERSSON, Some new scales of refined Hardy type inequalities via func-
tions related to superquadracity, Math. Inequal. Appl. Vol. 16 (2013), 679-695.

S. ABRAMOVICH, L. E. PERSSON AND N. SAMKO, Some new scales of refined Jensen and Hardy
type inequalities, Math. Inequal. Appl., Vol. 17 (2014), 1105-1114.

J. A. OGUNTUASE AND L. E. PERSSON, Refinement of Hardy’s inequalities via superquadratic and
subquadratic functions, J. Math. Anal. Appl. 339 (2008), 1305-1312.

J. E. PECARIC, F. PROSCHAN, Y. L. TONG, Convex Functions, Partial Orderings, and Statistical
Applications, Academic Press, New York, 1992.

L. E. PERSSON AND N. SAMKO, Inequalities and convexity, Operator Theory: Advances and Appli-
cations, Birkhduser Verlag, Basel, Vol. 1, (2013), 1-29.

L. E. PERSSON, N. SAMKO AND P. WALL, Quasi-monotone weight functions and their characteris-
tics and applications, Math. Inequal. Appl. 15 (2012), no. 3, 687-705.

(Received January 6, 2014) S. Abramovich

Department of Mathematics, University of Haifa
Haifa, Israel
e-mail: abramos@math.haifa.ac.il

L.-E. Persson

Department of Engineering Sciences and Mathematics
Lulea University of Thechnology

SE 971 87, Luled, Sweden

and

Narvik University College

P.O. Box 385, N-8505 Narvic, Norway

e-mail: larserik@ltu.se

N. Samko

Department of Engineering Sciences and Mathematics
Lulea University of Thechnology

SE 971 87, Luled, Sweden

and

Narvik University College

P.O. Box 385, N-8505 Narvic, Norway

e-mail: Natasha.Samko@ltu.se

Mathematical Inequalities & Applications

v.ele-math.com

mia@ele-math.com



