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RADIAL P–TH MOMENT OF A RANDOM VECTOR
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Abstract. In this paper, we first introduce a new concept – radial p -th moment of a random
vector for star body, which is a general form of the standard p -th moment. Further we establish
some properties of the radial p -th moment and give some related applications.

1. Introduction

There is a close connection among information theory, probability and convex
geometry. During the past two decades, it has attracted increased interest (see e.g.,
[1, 4, 5, 6, 8, 11, 12, 13, 19, 20, 21, 22, 23, 24, 26, 27]).

E. Lutwak, D. Yang, and G. Zhang et al. initiated the interdisciplinary research of
convex geometric analysis and information theory. Their articles [11, 19] stated geome-
try and information theory interact in a wide of ways over both theory and applications.
O. G. Guleryuz, E. Lutwak, D. Yang, and G. Zhang [11] showed that geometric inequal-
ities for bodies in Euclidean space can be obtained by applying information theoretic
inequalities to the larger class of contoured distributions. Further, they [11] showed that
new reverse information-theoretic inequalities for convex contoured distribution can be
obtained from recently established reverse geometric inequalities for convex bodies
[16]. Moreover, E. Lutwak, D. Yang, and G. Zhang [20, 21] extended the moment-
entropy inequality, Stam’s inequality and Cramer-Rao inequality (also, see [18]), and
established the new moment-entropy inequality. Following their work, we introduce a
new concept – radial p -th moment of a random vector for star body, which is a general
form of the standard p -th moment. Then we establish some properties of the radial
p -th moment and give some related applications.

The plan of the paper is as follows. First, in the next section is devoted to setting
notation and preliminaries. Then, in Section 3, radial p -th moment of a random vector
for star body is defined, elementary properties and some related applications of radial
p -th moment are pointed out.
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2. Notations and preliminaries

We consider the n -dimensional Euclidean space R
n equipped with its usual inner

product 〈,〉 , norm ‖ · ‖ , the unit sphere Sn−1 and the unit ball B .
If K ⊂R

n is nonempty, compact, and star-shaped, its radial function ρk is defined
by

ρk(x) = max{λ : λx ∈ K}, (1)

for all x ∈ R
n\{0} . If ρk is both positive and continuous, we will call K a star body

(see e.g., [9, 10, 25]). Note that throughout, star bodies are assumed to contain the
origin in their interiors.

Obviously, for star body K1,K2

K1 ⊂ K2 if and only if ρk1 � ρk2 . (2)

Hence a star body is uniquely determined by its radial function.
A star body that is convex is called a convex body. An origin symmetric convex

body K defines a norm ‖ · ‖K , whose unit ball is K , that is

‖x‖K =
1

ρK(x)
, x ∈ R

n. (3)

Conversely, the unit ball of any n -dimensional normed space (Rn,‖ · ‖) is an origin-
symmetric convex body.

We shall use δ̃ to denote the radial metric [9]: If K and L are star bodies, then
δ̃ (K,L) is defined by

δ̃ (K,L) = sup
u∈Sn−1

|ρK(u)−ρL(u)| = ‖ρK −ρL‖∞. (4)

For a star body K , we define �pK to be the origin symmetric star body given by:

2ρ�pK(x)−p = ρK(x)−p + ρ−K(x)−p, (5)

where −K = {−x : x ∈ K} .
For star bodies K,L, and a,b � 0 (not both zero), the Lp -harmonic radial combi-

nation a ·K+̃b ·L is the star body defined (see e.g., [15, 17]) by

ρa·K+̃b·L(x)−p = aρK(x)−p +bρL(x)−p. (6)

Roughly speaking, a distribution is called contoured, if there is a set in R
n such

that any level set of the probability density function is a dilate of this set. We call this set
the contour body of the distribution. Any reasonable star-shaped set in R

n that contains
the origin in its interior can be realized as the contour body of a contoured distribution
(see [11]).

In this paper, we will denote the standard Lebesgue density on R
n by dx . The

notation |A| stands for determinant of an n×n matrix A . If X is a random vector in R
n ,
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then the associated probability measure on R
n will be denoted by mX . If the measure

mX is absolutely continuous with respect to Lebesgue measure, then the corresponding
Radon-Nikodym derivative is called the density function of the random vector X and
denoted by fX . Further if A ∈ GL(n) and y ∈ R

n , then

fAX (y) = |A|−1 fX (A−1y). (7)

Given t ∈ R, let t+ = max{t,0} . Let

Γ(t) =
∫ ∞

0
xt−1e−xdx and B(p,q) =

∫ 1

0
xp−1(1− x)q−1dx (p,q > 0)

denote the Gamma function and Beta function respectively.
For each p ∈ (0,∞) and λ ∈ ( n

n+p ,∞) , let X be random vector in R
n whose

density function G : R
n → [0,∞) is given by

G(x) =

⎧⎨
⎩ap,λ (1+(1−λ )|x|p)

1
λ−1
+ , if λ 	= 1,

ap,1e−|x|p , if λ = 1,
(8)

where

ap,λ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1−λ )
n
p +1

ωnB( n
p +1, 1

1−λ − n
p )

, if λ < 1,

1
ωnΓ( n

p+1) , if λ = 1,

(λ−1)
n
p +1

ωnB( n
p +1, 1

λ−1 )
, if λ > 1,

where ωn denotes the volume of the n -dimensional unit ball B . Any random vector
Y in R

n that can be written as Y = AX , for some A ∈ GL(n) is called a generalized
Gaussian.

3. The radial p -th moment

It will be convenient to re-define the radial function so that it is defined not only
for x 	= 0 but for x = 0 as well. Define

ρK(x)−1 =
{

0, if x = 0,
ρK(x)−1, if x 	= 0.

(9)

As usual, for p∈ (0,∞) , the standard p -th moment of a random vector X is given
in [21] by

E(|X |p) =
∫

Rn
|x|pdmX(x).

More generally, we define the radial p -th moment as follows.
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DEFINITION 1. The radial p -th moment of a random vector X for star body K is
defined by

EK |X |p =
∫

Rn
ρK(x)−pdmX(x). (10)

REMARK 1. (1). The idea of radial p -th moment exists in [19].
(2). If K is an origin symmetric convex body, using (3), (9) and (10), it follows

that

EK |X |p =
∫

Rn
‖x‖p

KdmX(x).

(3). In particular, when K = B , we have

EB|X |p = E|X |p,

which shows that the radial p -th moment is a general form of the p -th moment.

Further, some simple properties of the radial p -th moment will be discussed in the
following Proposition 1.

PROPOSITION 1. If X is a random vector, K and L are star body in R
n , then

(1) (Continuity). The radial p-th moment is continuous with respect to the radial
metric.

(2) (Monotonicity). It is monotone nonincreasing with respect to set inclusion,
that is, if K ⊂ L, then

EK |X |p � EL|X |p.
In particular,

EBn
∞ |X |p � EB|X |p � EBn

1
|X |p.

(3) (Change under affine transformations). If A ∈ GL(n) , then

EAK |AX |p = EK |X |p.

(4) (Dilate). If a,b > 0 , then

EaK |bX |p =
(b

a

)p
EK |X |p.

(5) (Positive multilinearity). If a,b � 0 (not both zero), then

Ea·K+̃b·L|X |p = aEK |X |p +bEK|X |p.

(6) (Symmetry). If the density function of a random vector X is even, then there
exists an originsymmetric star body �pK , such that

EK |X |p = E�pK |X |p.
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Proof. (1). According to the definition of the radial metric (4), it follows that
EK |X |p is continuous.

(2). Combining (2) with (10), we can obtain the desired result: if K ⊂ L, then

EK |X |p � EL|X |p.
According to (10), the radial p -th moment of the cube and octahedron can be given as
follows respectively.

EBn
1
|X |p =

∫
Rn

(
n

∑
i=1

|xi|)pdmX (x), EBn
∞ |X |p =

∫
Rn

max
i=1,··· ,n

|xi|pdmX (x).

It follows that
EBn

∞ |X |p � EB|X |p � EBn
1
|X |p.

(3). Applying (1), (7) and (10), we can conclude that

EAK|AX |p =
∫

Rn
ρAK(y)−pdmAX(y)

=
∫

Rn
ρK(A−1y)−p|A|−1 fX (A−1y)dy

= EK |X |p.
Proposition 1(3) shows that mass transportation [7] and star body can interact in

radial p -th moment.
(4). From (1), (7) and (10), we can deduce that

EaK |bX |p =
∫

Rn
ρaK(y)−pdmbX(y)

=
(b

a

)p ∫
Rn

ρK(b−1y)−pb−n fX (b−1y)dy

=
(b

a

)p
EK |X |p.

(5). It can be deduced easily from (6) and (10).
(6). From (5) and (10), it follows the desired result. �
Recall that if K is a convex body, the volume ratio of K is

vr(K) =
(V (K)

V (ε)

) 1
n
,

where ε is the John ellipsoid of K (see e.g., [2, 3]).
Similarly, for a star body K , we define the radial p -th moment ratio of K as

follows.

DEFINITION 2. If K is a star body, we define the radial p -th moment ratio of K
by

mr(K) =
( Eε |X |p

EK |X |p
) 1

p
,

where ε is the ellipsoid of maximal volume in K .
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According to the well-known John theorem, we have the following result.

PROPOSITION 2. (1) If K is a convex body in R
n and ε is its John ellipsoid

whose center lies at the origin, then

1 � mr(K) � n.

(2) If K is an originsymmetric convex body in R
n and ε is its John ellipsoid whose

center lies at the origin, then
1 � mr(K) �

√
n.

Proof. If K is a convex body in R
n and ε is its John ellipsoid whose center lies

at the origin, according to the well-known John theorem, we have

ε ⊂ K ⊂ nε.

When K is originsymmetric, we have

ε ⊂ K ⊂√
nε.

According to Proposition 1(2), Proposition 1(4) and Definition 2, these yield the
desired results. �

The previous Proposition 2 implies that if K is an origin symmetric convex body
in R

n and B is its John ellipsoid , then

EK |X |p �
( 1√

n

)p
E|X |p.

Further, we have the following result.

PROPOSITION 3. If K is an origin symmetric convex body in R
n that contains

the Euclidean unit ball B and for which

(V (K)
V (B)

) 1
n = R.

Then there is an orthogonal transformation A of R
n for which

max
{

EK |X |p, EA−1K |X |p
}

�
( 1

8R2

)p
E|X |p.

Proof. K. M. Ball (Theorem 4.2, [3], also see B. S. Kasin [14]) shows that if K is
a symmetric convex body in R

n that contains the Euclidean unit ball B and for which

(V (K)
V (B)

) 1
n = R.
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Then there is an orthogonal transformation A of R
n for which

K ∩AK ⊂ 8R2B.

The radius of the body K∩AK in a given direction is the minimum of the radii of
K and AK in that direction. Therefore

min
θ∈Sn−1

{ρK(θ ), ρK(Aθ )} � 8R2.

According to the definition (1), it follows that

min{ρK(x), ρK(Ax)} � 8R2

|x| (x 	= 0).

This together with (10) shows that

max{EK |X |p, EK |AX |p} �
( 1

8R2

)p
E|X |p.

Finally, using Proposition 1(3), we can obtain the desired result. �
For t � 0, define G : [0,∞) → [0,∞) by

G(t) =

{
ap,λ (1+(1−λ )t p)

1
λ−1
+ if λ 	= 1

ap,1e−t p if λ = 1,
(11)

then the generalized Gaussian – bG( m
ρK(x) ) , whose contour body is K , is defined in R

n .
We are now ready to compute the radial p -th moment of the generalized Gaussian

– bG
(

m
ρK(x)

)
whose contour body is K .

PROPOSITION 4. For each p ∈ (0,∞) and λ ∈ ( n
n+p ,∞) , if K is a star body in

R
n and bG( m

ρK(x) ) is a probability density of a random vector X in R
n , then

EK |X |p =
1

mp

n
pλ −n(1−λ )

,

with some m,b > 0.

Proof. Using Fubini’s theorem, we can deduce that∫
Rn

ρK(x)−pbG
( m

ρK(x)

)
dx = b

∫
Sn−1

∫ ∞

0
ρK(ru)−pG

( m
ρK(ru)

)
rn−1drdu

= bm−n−p
∫

Sn−1
ρK(u)ndu

∫ ∞

0
G(s)sn+p−1ds

= nbV(K)m−n−p
∫ ∞

0
G(s)sn+p−1ds.
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We will divide n
n+p < λ < ∞ into three subcases, and prove the result case and case.

(a) case λ < 1.
Using the definition of Beta function and the change of variable, we can infer that∫ ∞

0
G(s)sn+p−1ds = a

∫ ∞

0
(1+(1−λ )sp)

1
λ−1 sn+p−1ds

=
a
p

( 1
1−λ

) n+p
p

∫ 1

0
x

1
1−λ − n

p−2(1− x)
n
p dx

=
a
p

( 1
1−λ

) n+p
p

B
( λ

1−λ
− n

p
,

n
p

+1
)
.

(b) case λ = 1.
From the definition of Gama function and the change of variable, we obtain∫ ∞

0
G(s)sn+p−1ds = a

∫ ∞

0
e−sp

sn+p−1ds =
a
p

Γ
(n

p
+1

)
.

(c) case λ > 1.
Observing the definition of Beta function and the change of variable, we get∫ ∞

0
G(s)sn+p−1ds = a

∫ ∞

0
(1+(1−λ )sp)

1
λ−1
+ sn+p−1ds

= a
∫ ( 1

λ−1 )
1
p

0
(1+(1−λ )sp)

1
λ−1 sn+p−1ds

=
a
p

( 1
λ −1

) n+p
p

B
( λ

λ −1
,
n
p

+1
)
.

Applying the three cases: (a), (b) and (c), we can deduce that∫
Rn

ρK(x)−pbG
( m

ρK(x)

)
dx =

b
mn+p

naV(K)
p

a1, (12)

where a = ap,λ ,

a1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( 1
1−λ )

n+p
p B( λ

1−λ − n
p , n

p +1), if λ < 1,

Γ( n
p +1), if λ = 1,

( 1
λ−1)

n+p
p B( λ

λ−1 , n
p +1), if λ > 1.

Similarly, we can conclude that

1 =
∫

Rn
bG

( m
ρK(x)

)
dx =

b
mn

naV(K)
p

a2, (13)

where

a2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( 1
1−λ )

n
p B( λ

1−λ − n
p , n

p), if λ < 1,

Γ( n
p ), if λ = 1,

( 1
λ−1)

n
p B( λ

λ−1 , n
p), if λ > 1.
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Thus, this together with (10) and (12) gives the desired result. �

REMARK 2. (1). Proposition 4 compute the information measure: the radial p -th

moment of the generalized Gaussian – bG
(

m
ρK(x)

)
whose contour body is K .

(2). (13) shows that the solution of m,b is not unique. Moreover, from the above

Proposition 4, we can learn that the radial p -th moment of bG
(

m
ρK(x)

)
is determined

only by m .
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