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ON THE q–BETA FUNCTION INEQUALITIES

AHMED SALEM

(Communicated by N. Elezović)

Abstract. In this paper, we provide some inequalities for the q -beta function with q > 0 by
means of calculus and q -Čebyšev-Grüss type integral inequalities. When letting q → 1 , some
of our results approach to results obtained by some authors and the others are shown to be new.

1. Introduction

In the recent past, numerous papers were published presenting remarkable inequal-
ities involving the q -gamma function (see [1, 3, 7, 8, 9, 12, 13, 14, 15] and the extensive
list of references given therein). But only few inequalities for the q -beta function and
its relatives have been found by Fitouhi and Brahim [4]). Their results were established
via some q -integral inequalities obtained by Gauchman [6]. It is the aim of this article
to provide to the list of the q -beta-function inequalities. At the first, the monotonic-
ity properties of some functions involving the q -gamma function are used to establish
inequalities for the q -beta function with q > 0. At the last, the results obtained by
Yang [17] on the weighted q -Čebyšev-Grüss type integral inequalities are exploited to
provide some q -beta function inequalities.

2. Basic notations and definitions in q -calculus

For the convenience of the readers, this section is provided as a summary of the
mathematical notations and definitions used in this paper. All of these definitions can
be found in [5, 11].

For all a∈C , the basic number, factorial function and shifted factorial are defined,
respectively, as

[a]q =
1−qa

1−q
, [n]q! = [n]q[n−1]q · · · [1]q, n ∈ N with [0]q! = 1, (2.1)

(a;q)n =
n−1

∏
k=0

(1−aqn), n ∈ N, with (a;q)0 = 1. (2.2)
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When letting n → ∞ , we need the restriction 0 < q < 1.
For an arbitrary function f (x) , the q -derivative is defined as

(Dq f )(t) =
f (t)− f (tq)

(1−q)t
, q �= 1. (2.3)

Clearly, if f (x) is differentiable, then (Dq f )(t) approaches to f ′(t) as q → 1.
The q -Jackson integral in a generic interval [a,b] is defined as

∫ b

a
f (t)dqt =

∫ b

0
f (t)dqt −

∫ a

0
f (t)dqt (2.4)

where ∫ a

0
f (t)dqt = a(1−q)

∞

∑
n=0

qn f (aqn) (2.5)

provided the sum is convergent.
The exponential function ez has different q -analogues, here we recall its q -analo-

gue

Eq(z) =
∞

∑
n=0

q
n(n−1)

2

[n]q!
zn = (−(1−q)z;q)∞ (2.6)

The q -beta function is defined for 0 < q < 1 as

Bq(x,y) =
∫ 1

0
tx−1 (tq;q)∞

(tqy;q)∞
dqt =

Γq(x)Γq(y)
Γq(x+ y)

, x > 0, y �∈ Z
−
0 (2.7)

where Γq is the q -gamma function defined as

Γq(x) = (1−q)1−x
∞

∏
k=0

1−qn+1

1−qn+x , 0 < q < 1, (2.8)

and

Γq(x) = (q−1)1−xq
x(x−1)

2

∞

∏
k=0

1−q−(n+1)

1−q−(n+x) , q > 1. (2.9)

Furthermore, it has the q -integral representation

Γq(x) =
∫ 1

1−q

0
tx−1Eq(−tq)dqt, 0 < q < 1 (2.10)

The logarithmic derivative ψq(x) of the q -gamma function is known as the q -psi or
q -digamma function, that is, it is given by

ψq(x) =
d
dx

(logΓq(x)) =
Γ′

q(x)
Γq(x)

(2.11)

which appeared in the work of Krattenthaler and Srivastava [10] when they studied
the summations for basic hypergeometric series. Some of its properties presented and
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proved in them work, see also [15]. From (2.8), for 0 < q < 1 and for all real variable
x > 0, we get

ψq(x) = − log(1−q)+ logq
∞

∑
k=1

qxk

1−qk , (2.12)

From the previous definitions, for all positive x,y and q � 1, we get

Γq(x) = q
(x−1)(x−2)

2 Γq−1(x). (2.13)

Bq(x,y) = q1−xyBq−1(x,y). (2.14)

ψq(x) =
2x−3

2
logq+ ψq−1(x) (2.15)

3. Inequalities via calculus

In this section, we use the monotonicity properties for some functions related to
the q -gamma function to establish some q -beta function inequalities with q > 0. Now,
we shall prove the following results:

THEOREM 3.1. Let x,y and q be positive real numbers. Then we have

q(1−x)(y−1)H(q−1)

[x]q[y]q
−Bq(x,y) � 0 if (x−1)(y−1) � 0 (3.1)

and
q(1−x)(y−1)H(q−1)

[x]q[y]q
−Bq(x,y) � 0 if (x−1)(y−1) � 0. (3.2)

Furthermore, we have

Bq(x,y) � (�)
qx(1−y)H(q−1)

[x]q
, for all x > 0 and y � (�)1 (3.3)

and

Bq(x,y) � (�)
qy(1−x)H(q−1)

[y]q
, for all y > 0 and x � (�)1 (3.4)

where H(·) denotes the Heaviside step function.

Proof. Let the function of two variables

fq(x,y) = logΓq(x+1)+ logΓq(y+1)− logΓq(x+ y)+ (x−1)(y−1)H(q−1) logq

Partial differentiation with respect to x gives

∂
∂x

fq(x,y) = ψq(x+1)−ψq(x+ y)+ (y−1)H(q−1) logq

which can be represented by (2.12), when 0 < q < 1, as

∂
∂x

fq(x,y) =
∞

∑
k=1

qx(k+1) logq
1−qk

(
1−qk(y−1)

)
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It is obvious that 1−qk(y−1) is greater than zero if y > 1 and less than zero if y < 1 and
so the function x �→ fq(x,y) is increasing on (0,∞) if y < 1 and decreasing on (0,∞) if
y > 1. Since fq(1,y) = 0 for all y > 0, then fq(x,y) � 0 if x,y ∈ (0,1] or x,y ∈ [1,∞)
and fq(x,y) > 0 if x < 1 and y > 1 or x > 1 and y < 1. When q � 1, one can easily
prove that fq(x,y) = fq−1(x,y) and so, we conclude that fq(x,y) � 0 if x,y ∈ (0,1] or
x,y ∈ [1,∞) and fq(x,y) > 0 if x < 1 and y > 1 or x > 1 and y < 1 for all q > 0.
These are equivalent to (3.1) and (3.2). Also, we get

lim
x→0

fq(x,y) = log[y]q +(1− y)H(q−1) logq, y > 0

and from the monotonicity of fq(x,y) , we arrive at (3.3) and since q -beta function is
symmetric for x and y , then we obtain (3.4). �

COROLLARY 3.2. Let x and q be positive real numbers. Then we have

Γq(nx) � q
(x−1)

(
n(n−1)

2 x−n+1
)
H(q−1)[n−1]qx![x]2(n−1)

q Γn
q(x), n ∈ N. (3.5)

Proof. From the inequality (3.1), we have

Γq(x+ y) � q(x−1)(y−1)H(q−1)[x]q[y]qΓq(x)Γq(y), (x−1)(y−1) � 0

When x = y > 0, we get

Γq(2x) � q(x−1)2H(q−1)[x]2qΓ2
q(x), x > 0, (3.6)

Also, we get

Γq(3x) = Γq(2x+ x) � q(x−1)(2x−1)H(q−1)[2x]q[x]qΓq(2x)Γq(x), x > 0

which can be read by using the inequality (3.6) as

Γq(3x) � q(x−1)(3x−2)H(q−1)[2x]q[x]3qΓ3
q(x), x > 0

Iterating this process (n−1) times gives

Γq(nx) � q
(x−1)

(
n(n−1)

2 x−n+1
)
H(q−1)[x]n−1

q Γn
q(x)

n−1

∏
k=1

[kx]q, n ∈ N

which is equivalent to the desired result. �

COROLLARY 3.3. Let x and q be positive real numbers. Then we have

Γq(x) � [2]
x− 1

2
q q−

1
2 (x−1)2H(q−1)

[x]q

√√√√Γq2(x)Γq2

(
x+ 1

2

)
Γq2

( 1
2

) (3.7)



ON THE q -BETA FUNCTION INEQUALITIES 643

In particular, when x = 1
2 , we have

Γq

(
1
2

)
� q−

1
8 H(q−1)

[1/2]q
= q−

1
8 H(q−1)(1+

√
q). (3.8)

Proof. Inserting the well-known q -duplication formula

Γq2(x)Γq2

(
x+

1
2

)
= [2]1−2x

q Γq(2x)Γq2

(
1
2

)

into the inequality (3.6) yields (3.7). �

REMARK 3.4. It is worth mentioning that the inequalities (3.1), (3.2) and (3.5)
were obtained by Fitouhi and Brahim [4] when 0 < q < 1 by means of using q -analogue
of the Čebyšev’s integral inequality. Here, we extend their results for all q > 0 and
introduce another proof by using the monotonicity properties for the function fq(x,y) .
Also, we think that the inequalities (3.3) and (3.4) are shown to be new.

THEOREM 3.5. Let 0 < x,y � 1 and q > 0 . Then

q(1−x)(y−1)H(q−1)

[x]q[y]q
−Bq(x,y) � [1− x]q[1− y]qqx+y−(x−1)(y−1)H(q−1)

[x]q[y]q[x+1]q[y+1]q
(3.9)

Proof. Let the function

Fq(x,y) = logΓq(x+ y+1)− logΓq(x+2)− logΓq(y+2)
+ log(1+q)− (x−1)(y−1)H(q−1) logq

When 0 < q < 1, partial differentiation gives

∂
∂x

Fq(x,y) = ψq(x+ y+1)−ψq(x+2)

Since ψq(x) is increasing on (0,∞) , then ∂
∂xFq(x,y) � 0 for all 0 < x,y � 1. It is not

difficult to show that ∂
∂xFq(x,y) = ∂

∂xFq−1(x,y) which yields that ∂
∂xFq(x,y) � 0 for all

q > 0 and 0 < x,y � 1 and so the function x �→ Fq(x,y) is decreasing on (0,1] . Since
Fq(1,y) = 0, then Fq−1(x,y) � 0 for all q > 0 and 0 < x,y � 1 which leads to the
required. �

REMARK 3.6. On letting q → 1, we get

1
xy

−B(x,y) � (1− x)(1− y)
xy(x+1)(y+1)

, 0 < x,y � 1 (3.10)

which is the same result obtained by Alzer [2] for the classical beta function.
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4. Inequalities via q -Čebyšev-Grüss integral inequalities

Yang [17] established weighted q -Čebyšev-Grüss type inequalities by using the
weighted q -integral Montgomery identity. He assumed that ω : [a,b] → [0,∞) satis-
fying

∫ b
a ω(t)dqt = 1 and W (t) =

∫ t
a ω(u)dqu for t ∈ [a,b] , W (t) = 0 for t < a and

W (t) = 1 for t > b . He gave the weighted q -integral Peano kernel Pω(u, t) defined by

Pω(u,t) =

{
W (t), a � t � u

W (t)−1, u � t � b
(4.1)

For some suitable functions ω , f ,g : [a,b] → R , set

T (w, f ,g) =
∫ b

a
ω(t) f (tq)g(tq)dqt −

(∫ b

a
ω(t) f (tq)dqt

)(∫ b

a
ω(t)g(tq)dqt

)
(4.2)

and define ‖ · ‖ as ‖h‖ = supt∈[a,b] |h(t)| for h ∈ [a,b] . He proved five inequalities for
the absolute value of T (ω , f ,g) , we will list his results in the following theorem.

THEOREM 4.1. ([17]) Let f ,g : [a,b] → R and ω : [a,b] → [0,∞) satisfying∫ b
a ω(t)dqt = 1 , then, for 0 < q < 1 , we have

|T (w, f ,g)| � ‖Dq f‖‖Dqg‖
∫ b

a
ω(u)H2(uq)dqu (4.3)

|T (w, f ,g)| � 1
2

∫ b

a
ω(u)[|g(uq)|‖Dq f‖+ | f (uq)|‖Dqg‖]H(uq)dqu (4.4)

|T (w, f ,g)| � 1
2
[‖ f (tq)|‖Dqg‖+‖g(tq)|‖Dq f‖]

∫ b

a
ω(u)H(uq)dqu (4.5)

|T (w, f ,g)| � ‖g(tq)|‖Dq f‖
∫ b

a
ω(u)H(uq)dqu (4.6)

|T (w, f ,g)| � ‖ f (tq)|‖Dqg‖
∫ b

a
ω(u)H(uq)dqu (4.7)

where

H(u) =
∫ b

a
|Pω(t,u)|dqt, u ∈ [a,b]. (4.8)

In this section we exploit the results from (4.3) to (4.7) to establish inequalities for
the q -beta function. On letting q→ 1, our results give new inequalities for the classical
beta function. In order to do this, we assume that ω(t) = 1 which yields

∫ 1
0 ω(t)dqt = 1

and W (t) =
∫ t
0 ω(u)dqu = t ∈ [0,1] , leading to

Pω(u,t) =

{
t, 0 � t � u

t−1, u � t � 1
(4.9)
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and

H(u) =
∫ 1

0
|Pω(u,t)|dqt =

∫ u

0
tdqt +

∫ 1

u
(1− t)dqt =

2u2− (1+q)u+q
1+q

(4.10)

From the previous assumption, we can compute the values of the q -integrals

α(q) =:
∫ 1

0
ω(u)H(uq)dqu =

2q2

(1+q)(1+q+q2)
(4.11)

and

β (q) =:
∫ 1

0
ω(u)H2(uq)dqu

=
q3

(1+q)2

(
4q

1+q+q2+q3 +q4 −
4

1+q2 +
5

1+q+q2

)
. (4.12)

THEOREM 4.2. Let x,y � 2 and q > 0 . Then, we have

q(1−x)(y−1)H(q−1)

[x]q[y]q
−Bq(x,y) � q̂x−1+(xy−1)H(q−1)[x−1]q̂[y−1]q̂β (q̂) (4.13)

q(1−x)(y−1)H(q−1)

[x]q[y]q
−Bq(x,y) � 1

2
q(1−xy)H(q−1)hq̂(x,y) (4.14)

q(1−x)(y−1)H(q−1)

[x]q[y]q
−Bq(x,y) � q(1−xy)H(q−1)

2

(
q̂x−1[x−1]q̂ +[y−1]q̂

)
α(q̂) (4.15)

q(1−x)(y−1)H(q−1)

[x]q[y]q
−Bq(x,y) � q̂x−1+(xy−1)H(q−1)[x−1]q̂α(q̂) (4.16)

q(1−x)(y−1)H(q−1)

[x]q[y]q
−Bq(x,y) � q(1−xy)H(q−1)[y−1]q̂α(q̂) (4.17)

where α(q) and β (q) are defined as in (4.11) and (4.12), respectively, q̂ = q if 0 <
q � 1 and q̂ = q−1 if q � 1 and hq(x,y) is defined as

hq(x,y) =
q2−x[x−1]q
(1+q)[y]q

(
2q(1+q)

[y+1]q[y+2]q
− 1+q

[y+1]q
+1

)

+
q[y−1]q

1+q

(
2q

[x+2]q
− (1+q)

[x+1]q
+

1
[x]q

)
. (4.18)

Proof. Assume the functions

f (t) = q1−xtx−1 and g(t) =
(t;q)∞

(tqy−1;q)∞
, t ∈ [0,1], x,y � 1 (4.19)

On q -differentiating give

(Dq f )(t) = q1−x[x−1]qtx−2 and (Dqg)(t) = −[y−1]q
(tq;q)∞

(tqy−1;q)∞
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It is obvious that the function t �→ tx−δ ,δ = 1,2 is increasing on [0,1] if x � δ and
decreasing on [0,1] if x � δ which reveals that ‖ f (tq)‖= 1 if x � 1 and ‖ f (tq)‖= ∞
if x � 1 and ‖Dq f‖ = q1−x[x−1]q if x � 2 and ‖Dq f‖ = ∞ if x � 2.

To determine ‖g(tq)‖ and ‖Dqg‖ , we have

logλy(t) =
∞

∑
n=0

{
log(1− tqn+1)− log(1− tqn+y)

}
where λy(t) = (tq;q)∞/(tqy−1;q)∞ . Differentiation gives

λ ′
y(t) = λy(t)

∞

∑
n=0

−qn+1(1−qy−2)
(1− tqn+1)(1− tqn+y)

{
� 0, y � 2

� 0, 1 � y � 2

which means that λy(t) is decreasing on [0,1] if y � 2 and increasing on [0,1] if
1 � y � 2. Since λy(0) = 1 and λy(1) = (1−q)y−2Γq(y−1) , then we have

‖g(tq)‖= sup
t∈[0,1]

λy+1(t) =

{
1, y � 1

(1−q)y−1Γq(y−1), 0 < y � 1
(4.20)

and

‖Dqg‖ = [y−1] sup
t∈[0,1]

λy(t) =

{
[y−1]q, y � 2

(1−q)y−2Γq(y), 1 � y � 2
(4.21)

By virtue of (4.10), we can compute∫ 1

0
ω(u)[|g(uq)|‖Dq f‖+ | f (uq)|‖Dqg‖]H(uq)dqu

=
q2−x[x−1]q

1+q

∫ 1

0
(2qu2− (1+q)u+1)

(uq;q)∞

(uqy;q)∞
dqu

+
q[y−1]q

1+q

∫ 1

0
(2qu2− (1+q)u+1)ux−1dqu

=
q2−x[x−1]q

1+q
(2qBq(3,y)− (1+q)Bq(2,y)+Bq(1,y))

+
q[y−1]q

1+q

(
2q

[x+2]q
− (1+q)

[x+1]q
+

1
[x]q

)

=
q2−x[x−1]q
(1+q)[y]q

(
2q(1+q)

[y+1]q[y+2]q
− 1+q

[y+1]q
+1

)

+
q[y−1]q

1+q

(
2q

[x+2]q
− (1+q)

[x+1]q
+

1
[x]q

)

which is equivalent to hq(x,y) defined as in (4.18). From the assumptions (4.2) and
(4.19) and the definition of q -beta function (2.7), we get

T (ω , f ,g) = Bq(x,y)− 1
[x]q[y]q
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Notice that T (ω , f ,g) � 0 by Theorem 3.1. and so we have to take

|T (ω , f ,g)| = 1
[x]q[y]q

−Bq(x,y). (4.22)

Inserting the previous results into Theorem 4.1 gives the proof when 0 < q < 1. We
note that if Bq(x,y) � 1/([x]q[y]q)−a(q) (say) when 0 < q < 1, by (2.14) when q � 1,
we get

Bq(x,y) = q1−xyBq−1(x,y) � q1−xy

(
1

[x]q−1 [y]q−1
−a(q−1)

)

which gives the proofs when q � 1. This ends the proof. �

It is not difficult to see that α(1) = 1/3, β (1) = 7/60 and

lim
q→1

hq(x,y) =
(x−1)(y2 + y+2)
2y(y+1)(y+2)

+
(y−1)(x2 + x+2)
2x(x+1)(x+2)

which can be used to establish some inequalities for the classical beta function. For this
proposal, we introduce the following theorem.

THEOREM 4.3. Let x,y � 2 . Then, we have

1
xy

−B(x,y) � 7
60

(x−1)(y−1) (4.23)

1
xy

−B(x,y) � (x−1)(y2 + y+2)
4y(y+1)(y+2)

+
(y−1)(x2 + x+2)
4x(x+1)(x+2)

(4.24)

1
xy

−B(x,y) � 1
6

(x+ y−2) (4.25)

1
xy

−B(x,y) � 1
3

(x−1) (4.26)

1
xy

−B(x,y) � 1
3

(y−1). (4.27)

The results from (4.23) to (4.27) for beta function are shown to be new.
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