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SHARP CONSTANT FOR Lp −L∞ TYPE SOBOLEV’S INEQUALITY

HONGWEI LOU

(Communicated by I. Perić)

Abstract. Sharp constants for Lp−L∞ type Sobolev’s inequalities ‖y‖∞ �C‖�ky‖p and ‖y‖∞ �
C‖∇(�ky)‖p are studied. The problems are solved by using Green’s function and rearrangement
theory.

1. Introduction

Let p > 1 be a real number and m be a positive integer. In this paper, we always

denote by q =
p

p−1
the conjugate number of p . Let W (−1,1;m, p) be the Sobolev

space defined by

W (−1,1;m, p) :=
{

y
∣∣∣y, y(m) ∈ Lp(−1,1), y(2 j)(±1) = 0 (0 � 2 j � m−1)

}
. (1.1)

In [6], Y. Oshime, Y. Kametaka and H. Yamagishi considered the following problem:

PROBLEM (O). Find the best constant C(m, p) such that the following Sobolev’s
inequality holds:

sup
x∈[−1,1]

|y(x)| � C(m, p)
(∫ 1

−1
|y(m)(x)|p dx

) 1
p
, ∀y(·) ∈W (−1,1;m, p). (1.2)

They solved the problem for the even case m = 2k (k = 1,2, . . .) . Y. Oshime
[4] considered high dimensional case for m = 1 and got the corresponding result for
Problem (O). Later, the best constant for the case m = 3 was obtained by Y. Oshime
and K. Watanabe [7]. For m = 1 and high dimensional case, early in 1976, G. Talenti
studied in [8] the best constant for

(∫
Rn

|y(x)|r dx
) 1

r � C
(∫

Rn
|∇y(x)|p dx

) 1
p

(1.3)

with r = np
n−p and 1 < p < n .
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In this paper, we will consider analogue problems in R
n for n � 1 by using

Green’s function and rearrangement theory. Problem (O) will be solved as a part of
our results.

Let Bn be the unit ball in R
n . We consider the following Poisson equation

{−� u(x) = f (x), x ∈ Bn,
u|∂Bn = 0.

(1.4)

For p > 1 and f ∈ Lp(Bn) , the weak solution of (1.4) will be denoted as (−�)−1 f .
For α = (α1,α2, . . . ,αn) with nonnegative integers α1,α2, . . . ,αn , we denote

|α| =
n

∑
k=1

αk, ∂ α =
∂ α1+α2+...+αn

∂xα1
1 ∂xα2

2 . . .∂xαn
n

. (1.5)

Define

W (Bn;m, p) :=
{

y
∣∣∣∂ αy ∈ Lp(Bn),� jy|∂Bn = 0, 0 � |α| � m, 0 � j � m−1

2

}
(1.6)

and

‖y‖m,p =

⎧⎪⎪⎨
⎪⎪⎩

(∫
Bn

|�ky(x)|p dx
) 1

p
, if m = 2k,(∫

Bn

|∇(�ky(x))|p dx
) 1

p
, if m = 2k+1.

(1.7)

We mention that W (Bn;1, p) is just the Sobolev space W 1,p
0 (Bn) .

Fix X ∈ Bn , by Sobolev’s embedding theorem, we can consider the following
problems:

PROBLEM (CX) . Let p > max(1, n
m) . Find the sharp constant CX (m, p,n) such

that the following Lp −L∞ Sobolev’s inequality holds:

|y(X)| � CX(m, p,n)‖y‖m,p, ∀y ∈W (Bn;m, p). (1.8)

PROBLEM (C) . Let p > max(1, n
m ) . Find the sharp constant C(m, p,n) such that

the following Lp−L∞ Sobolev’s inequality holds:

sup
x∈Bn

|y(x)| � C(m, p,n)‖y‖m,p, ∀y ∈W (Bn;m, p). (1.9)

Using Green’s function, we can give a solution for Problem (CX ) . Using Talenti’s
rearrangement theorem, we can easily show that

C(m, p,n) = C0(m, p,n). (1.10)

Then, we can solve Problem (C) completely.
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2. Green’s function and solution to Problem (CX )

It is well known that (−�)−1 f can be expressed by Green’s function

(−�)−1 f =
∫

Bn

G(x,s;n) f (s)ds, x ∈ Bn, (2.1)

where the Green’s function is

G(x,s;n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1−sx−|x−s|
2 , if n = 1,

1
2π ln

|s| |x− s
|s|2 |

|x−s| , if n = 2,

|x−s|2−n−
(
|s| |x− s

|s|2 |
)2−n

(n−2)nωn
, if n � 3,

x,s ∈ Bn (2.2)

and ωn denotes the volume of the unit ball Bn . In (2.2), we naturally read |0|
∣∣∣x− 0

|0|2
∣∣∣=

1.
Let G1(·, ·;n) = G(·, ·;n) . Define

Gj+1(x,s;n) =
∫

Bn

G1(x,τ;n)Gj(τ,s;n)dτ, x,s ∈ Bn, j = 1,2, . . . . (2.3)

We have
Gj(x,s;n) = Gj(s,x;n) > 0, x,s ∈ Bn, j = 1,2, . . . (2.4)

and

Gi+ j(x,s;n) =
∫

Bn

Gi(x,τ;n)Gj(τ,s;n)dτ, x,s ∈ Bn, i, j = 1,2, . . . . (2.5)

For notation simplicity, we set

G0(x,s;n) = δ (x− s), (2.6)

where δ (·) is the Dirac distribution. We give our results for Problem (CX ).

PROPOSITION 2.1. Let n � 1 , k � 1 , m = 2k , max(1, n
2k ) < p <+∞ and X ∈Bn .

Then the inequality (1.8) holds with

CX(2k, p,n) = ‖Gk(X , ·;n)‖Lq(Bn). (2.7)

Moreover, for y ∈W (Bn;2k, p) , the equality

|y(X)| = CX(2k, p,n)‖y‖2k,p (2.8)

holds if and only if

(−�)ky(x) = αGq−1
k (X ,x;n), x ∈ Bn (2.9)

for some α ∈ R .
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Proof. For y ∈W (Bn;2k, p) , we have

y(x) =
∫

Bn

Gk(x,s;n)(−�)ky(s)ds. (2.10)

If n � 2, it holds that G(x, ·;n) ∈ Lθ (Bn) for any θ > 1. Therefore Gk(x, ·;n) ∈
W 2k−2,θ (Bn) ⊂ Lθ (Bn) . Then Gk(x, ·;n) ∈ Lq(Bn) , Gk(x, ·;n)q−1 ∈ Lp(Bn) .

If n � 3, then G(x, ·;n) ∈ Lθ (Bn) for any 1 < θ < n
n−2 . Thus, Gk(x, ·;n) ∈

W 2k−2,θ (Bn) . Noting that
1
q

>
n−2

n
− 2k−2

n
,

we get that Gk(x, ·;n) ∈ Lq(Bn) by Sobolev’s embedding theorem. Consequently,
Gk(x, ·;n)q−1 ∈ Lp(Bn) .

Thus

y(X) =
∫

Bn

Gk(X ,s;n)(−�)ky(s)ds � ‖Gk(X , ·;n)‖Lq(Bn)‖y‖2k,p (2.11)

and the equality holds if and only if (2.9) holds. �

PROPOSITION 2.2. Let n � 1 , k � 0 , m = 2k+1 , max(1, n
2k+1) < p < +∞ and

X ∈ Bn . Then (1.8) holds with

CX (2k+1, p,n) =
(∫

Bn

∣∣∣∇xZ(x,X)
∣∣∣p

dx
) 1

q
, (2.12)

where Z(·,X) is the weak solution of{
−∇x ·

(∣∣∣∇xZ(x,X)
∣∣∣p−2

∇xZ(x,X)
)

= Gk(x,X ;n), x ∈ Bn,

Z(x,X)|x∈∂Bn = 0.
(2.13)

Moreover, for y ∈W (Bn;2k+1, p) , the equality

|y(X)| = CX(2k+1, p,n)‖y‖2k+1,p (2.14)

holds if and only if
(−�)ky(x) = αZ(x,X), x ∈ Bn (2.15)

for some α ∈ R .

Proof. Let Z(·,X) be the weak solution of (2.13).
If k = 0, then p > n and W 1,p

0 (Bn) is embedded in C(Bn) . Moreover, Z(·,X) is
the unique solution of the following variational problem:

Minimize
1
p

∫
Bn

∣∣∣∇Z(x)
∣∣∣p

dx−Z(X) over W 1,p
0 (Bn) .

If k � 1, then Gk(·,X ;n)∈ Lq(Bn) , Z(·,X) is the unique solution of the following
variational problem:
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Minimize
1
p

∫
Bn

∣∣∣∇Z(x)
∣∣∣p

dx−
∫
Bn

Z(x)Gk(x,X ;n)dx over W 1,p
0 (Bn) .

Thus, ∇Z(·,X) ∈ Lp(Bn) . For y ∈W (Bn;2k+1, p) , there is

y(X) =
∫

Bn

Gk(X ,s;n)(−�s)ky(s)ds

= −
∫

Bn

∇s ·
(∣∣∣∇sZ(s,X)

∣∣∣p−2
∇sZ(s,X)

)
(−�s)ky(s)ds

=
∫

Bn

∣∣∣∇sZ(s,X)
∣∣∣p−2

∇sZ(s,X) ·∇s

(
(−�s)ky(s)

)
ds

�
(∫

Bn

∣∣∣∇sZ(s,X)
∣∣∣p

ds
) 1

q ‖y‖2k+1,p (2.16)

and the equality holds if and only if

∇x

(
(−�x)ky(x)

)
= α∇xZ(x,X), x ∈ Bn (2.17)

for some α ∈ R .
Since Z(·,X),(−�)ky(·) ∈ W 1,p

0 (Bn) , we get (2.15) by (2.17) and Sobolev’s in-
equality.

On the other hand, if (2.15) holds for some α ∈ R , then (2.14) follows from (2.16)
and (2.17). �

When p = 2, using (2.5), we can simplify the above results.

COROLLARY 2.3. Let n � 1 , m � 1 , 2m > n, p = 2 and X ∈ Bn . Then (1.8)
holds with

CX (m,2,n) =
√

Gm(X ,X ;n). (2.18)

Moreover, for y ∈W (Bn;m,2) , the equality

|y(X)| = CX (m,2,n)‖y‖m,2 (2.19)

holds if and only if
y(x) = αGm(x,X ;n), x ∈ Bn (2.20)

for some α ∈ R .

3. Rearrangement and solution to Problem (C)

We can use Propositions 2.1–2.2 to calculate CX (m, p,n) easily in a numerical
way. It is also reasonable to guess that

C(m, p,n) ≡ max
X∈Bn

CX(m, p,n) = C0(m, p,n). (3.1)

Though (3.1) can be got easily in some special cases, it is not so easy to get directly from
(2.6) and (2.12) in a general way. For one dimensional case, in [6], the authors proved
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that C(2k, p,1) is attained for symmetric functions. Their proof crucially depends on
that Green’s functions Gk(t,s;1) can be expressed by Bernoulli polynomials. In [7], the
authors proved that C(3, p,1) is also attained for symmetric functions by two methods.
One is based on some kind of symmetrization of functions, and the another is based
on Green’s functions. These results shows that (3.1) holds for n = 1 with m = 1,3 or
m = 2k (k = 1,2, . . .). However, methods used in [6] and [7] seem not easy to extend
to other cases.

Thanks to the rearrangement theory, we can use Talenti’s inequality to get (3.1).
Now, let us recall some basic results in rearrangement theory. For simplicity, we

consider functions in Bn .
Let f be a real valued measurable function in Bn . The distribution function μ f (·)

of f is defined by

μ f (α) = meas
{
x ∈ Bn

∣∣ | f (x)| > α
}

, ∀α � 0. (3.2)

The spherical symmetric rearrangement of f is a spherical non-negative function f ∗
with the same distribution function as f .

It is easy to see that

‖ f‖Lp(Bn) = ‖ f ∗‖Lp(Bn), 1 � p � +∞. (3.3)

There is Hardy-Littlewood’s inequality.

LEMMA 3.1. Let f ∈ Lp(Bn) and g ∈ Lq(Bn) . Then,∫
Bn

f (x)g(x)dx �
∫

Bn

f ∗(x)g∗(x)dx. (3.4)

One can find a proof of the above lemma in [1]. It is also well known that the
following Pólya-Szegö’s inequality holds.

LEMMA 3.2. Let 1 � p � +∞ and f ∈W 1,p
0 (Bn) . Then

‖∇ f ∗‖Lp(Bn) � ‖∇ f‖Lp(Bn). (3.5)

For a proof of Lemma 3.2, see [8] for example, see also [1]. Moreover, we have
the following very important Talenti’s inequality.

LEMMA 3.3. Assume p > 1 . Let f ∈ Lp(Bn) and f ∗ be the spherical symmetric
rearrangement of f . Let u = (−�)−1 f and v = (−�)−1 f ∗ . Then

u∗(x) � v(x), a.e. x ∈ Bn. (3.6)

The above lemma is a special case of Theorem 1 in [9]. According to Talenti [9],
such a result was proved first by R. O’Neil in private communication. In fact, Theorem
1 of [9] contains results more general than Lemma 3.3. Though the result for n = 1
was not stated in [9], it is valid and can be proven easily in a direct way.
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COROLLARY 3.4. Assume p > 1 . Let u0 ∈ Lp(Bn) and v0 ≡ u∗0 be the spherical
symmetric rearrangement of u0 . Let

u j+1 = (−�)−1u j, v j+1 = (−�)−1v j, j = 0,1,2, . . . . (3.7)

Then
u∗k(x) � vk(x), a.e. x ∈ Bn, k = 1,2, . . . . (3.8)

Proof. If k = 1, the result is just what given by Lemma 3.3.
Now, let k � 2. By Lemma 3.3, we have

u∗1(x) � v1(x), a.e. x ∈ Bn. (3.9)

Let
U2 = (−�)−1u∗1. (3.10)

By the weak maximum principle for elliptic equations, we have

U2(x) � v2(x), a.e. x ∈ Bn. (3.11)

Thus, using Lemma 3.3 again, we get

u∗2(x) � U2(x) � v2(x), a.e. x ∈ Bn. (3.12)

Then, by induction, (3.8) follows. �
Now, we turn to solve Problem (C).
By Lemmas 3.1–3.3 and Corollary 3.4, we can easily see that for Problem (C), the

equality in (1.9) holds for some spherical symmetric function. Moreover, we will prove
later that (3.1) holds.

Let us state the following lemma first. For notation simplicity, we denote by
{v > α} the set {x ∈ Bn|v(x) > α} , etc.

LEMMA 3.5. Let X ∈ Bn , X 	= 0 and v(·) = G(·,X ;n) . Then

v∗(x) < G(x,0;n), a.e. x ∈ Bn. (3.13)

Proof. Denote by μ(·) and ν(·) the distribution functions of v(·) and G(·,0;n)
respectively. When n = 1, we get (3.13) since

v∗(x) = (1−X2)G(x,0;1). (3.14)

Now, let n � 2. We have
sup
x∈Bn

v(x) = +∞. (3.15)

To get (3.13), we need only to prove that

μ(α) < ν(α), ∀α > 0. (3.16)
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It is easy to see that
∇v(x) 	= 0, ∀x 	= X . (3.17)

Consider the level set {v > α} . Then the unit outer normal n to the boundary {v = α}
at a point x is − ∇v(x)

|∇v(x)| . Noting that

−�v(x) = δ (x−X), (3.18)

it is easy to get that∫
{v=α}

|∇v(x)|dσ = −
∫
{v=α}

∂v(x)
∂n

dσ =
∫
{v�α}

δ (x−X)dx = 1. (3.19)

On the other hand, we have from co-area formula (see [1], for example)

μ(α) =
∫
{v�α}

dx =
∫ +∞

α
dτ

∫
{v=τ}

1
|∇v(x)| dσ . (3.20)

Thus

− μ ′(α) =
∫
{v=α}

1
|∇v(x)| dσ . (3.21)

Combing with (3.19), we get

− μ ′(α) �
(∫

{v=α}
dσ

)2
(3.22)

and the equality holds if and only if

|∇v(x)| = C, on {v = α} . (3.23)

By isoperimetric inequality, we have

∫
{v=α}

dσ � nωn

( 1
ωn

∫
{v�α}

dx
) n−1

n
(3.24)

and the equality holds if and only if {v > α} is a ball.
When X 	= 0, for any α > 0, it is easy to verify that neither (3.23) nor (3.24)

holds. Thus,

− μ ′(α) >
(
nω

1
n
n μ(α)

n−1
n

)2
= n2ω

2
n
n μ(α)

2(n−1)
n . (3.25)

Combining with μ(0) = ωn , we get

μ(α) <

{
πe−4πα , if n = 2,

ωn

(
1+n(n−2)αωn

) n
2−n

, if n � 3,
∀α > 0. (3.26)

That is, (3.16) holds since the right hand term in (3.26) is just ν(α) . We get the
proof. �

Similarly but a little more difficult, we have
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LEMMA 3.6. Assume p > n. For Y ∈ Bn , let Z(·,Y ) be the weak solution of{
−∇x ·

(∣∣∣∇xZ(x,Y )
∣∣∣p−2

∇xZ(x,Y )
)

= δ (x−Y), x ∈ Bn,

Z(x,Y )|x∈∂Bn = 0.
(3.27)

Let X ∈ Bn , X 	= 0 and v(·) = Z(·,X) . Then

v∗(x) < Z(x,0), ∀x ∈ Bn. (3.28)

Proof. The proof is based on properties of p -harmonic functions (see [5], for
example).

Choose γ ∈ (0,1− n
p ) . By Sobolev’s embedding theorem, W 1,p

0 (Bn) can be em-

bedded to Cγ(Bn) . Thus,∣∣∣∫
Bn

ϕ(x)δ (x−Y )dx
∣∣∣ = |ϕ(Y )| � ‖ϕ‖C(Bn) � C‖ϕ‖

W1,p
0 (Bn)

, ∀ϕ ∈W 1,p
0 (Bn)

for some constant C > 0. This means that δ (· −Y )∈W−1,q(Bn) . Thus, (3.27) admits a
unique weak solution Z(·,X) ∈W 1,p

0 (Bn) . We have Z(·,X) ∈Cγ(Bn) . Moreover, since
Z(·,X) is p -harmonic in Bn \ {X} , it holds that Z(·,X) ∈ C1,β (Bn \ {X}) for some
β ∈ (0,1) (see [2], for example). By the weak maximum principle, one can easily see
that

Z(x,X) > 0, ∀x ∈ Bn. (3.29)

Further, we can prove that Z(·,X) attains its maximum MX only at the point X . Other-
wise, if Z(·,X) attains its maximum at some point x0 	= X , since Z(·,X) is p-harmonic
in Bn \ {X} , the strong maximum principle implies Z(·,X) ≡ Z(x0,X) in Bn \ {X} .
This leads to a contradiction.

By Sard’s theorem, for almost all (one dimensional) α ∈ (0,MX) , the set {v = α}
contains no critical point of v . Then a similar discussion to the proof of Lemma 3.5
shows that the distribution function μ(·) of v(·) satisfies

− μ ′(α) �
(
nω

1
n
n μ(α)

n−1
n

)q
, a.e. α ∈ (0,MX ) (3.30)

and the equality holds if and only if {v > α} is a ball and

|∇v(x)| = C, on {v = α} . (3.31)

We claim that for any α0 ∈ (0,MX ) ,{
α ∈ (0,α0)

∣∣− μ ′(α) >
(
nω

1
n
n μ(α)

n−1
n

)q
}

has positive measure. (3.32)

Otherwise, suppose that (3.32) fails for some α0 ∈ (0,MX ) . Then, by continuity, for
any α ∈ (0,α0) , {v > α} is a ball and (3.31) holds. Then, using (3.31) and the strong
maximum principle, it must hold that

∇v(x) 	= 0, ∀x ∈ {0 < v < α0} . (3.33)
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Thus v is analytic in {0 < v < α0} (see [5], for example). Furthermore, we can see
that {v = α} is a sphere for any α ∈ (0,α0) .

Now, we want to prove that balls {v > α}{0<α<α0} are concentric. To this aim,
let α ∈ (0,α0) and choose two points x0,s0 on the sphere {v = α} . Consider

dx(t)
dt

= − ∇v(x(t))
|∇v(x(t))|2 , x(0) = x0 (3.34)

and
ds(t)
dt

= − ∇v(s(t))
|∇v(s(t))|2 , s(0) = s0. (3.35)

Then x(·) and s(·) are well defined on [0,a) for some a > 0. Moreover, we have

dv(x(t))
dt

=
dv(s(t))

dt
= −1. (3.36)

Therefore,
v(x(t)) = v(s(t)), ∀t ∈ [0,a) (3.37)

and consequently, by (3.31),

|∇v(x(t))| = |∇v(s(t))|, ∀t ∈ [0,a). (3.38)

Let P(t) be the center of {v > v(x(t))} . By (3.37) and the fact of {v = α} being a
sphere, we have

|x(t)−P(t)|2 = |s(t)−P(t)|2, (3.39)

Then, it follows from (3.33) and (3.38) that there is an �(t) > 0 such that

|x(t)−P(t)|= �(t)|∇v(x(t))|, |s(t)−P(t)|= �(t)|∇v(s(t))|, ∀t ∈ [0,a). (3.40)

One can see that ∇v(x(t)) is perpendicular to the tangent plane to the surface
{v = v(x(t))} . Thus, ∇v(x(t)) is an inner normal to {v = v(x(t))} at x(t) . Similarly,
∇v(s(t)) is an inner normal to {v = v(x(t))} at s(t) . Combining this fact with (3.40),
we have

x(t)−P(t) = −�(t)∇v(x(t)), s(t)−P(t) = −�(t)∇v(s(t)), ∀t ∈ [0,a). (3.41)

Thus

P(t) = x(t)+
|x(t)− s(t)|

|∇v(x(t))−∇v(s(t))|∇v(x(t)), ∀t ∈ [0,a). (3.42)

Therefore, P(t) is continuous on [0,a) and continuously differentiable on (0,a) . By
(3.34), (3.35) and (3.39), we have〈

x(t)−P(t),− ∇v(x(t))
|∇v(x(t))|2 −P′(t)

〉

=
〈

s(t)−P(t),− ∇v(s(t))
|∇v(s(t))|2 −P′(t)

〉
, t ∈ (0,a). (3.43)
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On the other hand, 〈
x(t)−P(t),− ∇v(x(t))

|∇v(x(t))|2
〉

= �(t)

=
〈

s(t)−P(t),− ∇v(s(t))
|∇v(s(t))|2

〉
, t ∈ (0,a). (3.44)

We get 〈
P′(t),x(t)− s(t)

〉
= 0, t ∈ (0,a). (3.45)

When s0 runs over {v = α} , s(t) runs over {v = v(x(t))} . Thus,〈
P′(t),x(t)− z

〉
= 0, ∀z ∈ {v = v(x(t))} , t ∈ (0,a). (3.46)

Therefore
P′(t) = 0, ∀t ∈ (0,a). (3.47)

This means that the balls {v > η} are concentric for η ∈ (v(x(a)),α) . Consequently,
we get that all balls {v > α} (0 < α < α0) are concentric. Moreover, since {v > 0} =
Bn and v is continuous near ∂Bn , we see that the common center of {v > α} should
be the original point. Thus,

v(x) = CZ(x,0), ∀x ∈ {v = α0} (3.48)

for some constant C . By (3.27), for ϕ(x) = v(x),CZ(x,0) , it holds that

{
−∇x ·

(∣∣∣∇ϕ(x)
∣∣∣p−2

∇ϕ(x)
)

= 0, in {0 < v < α0} ,

ϕ(x)|x∈{v=0} = 0, ϕ(x)|x∈{v=α0} = α0.
(3.49)

Therefore,
v(x) = CZ(x,0), ∀x ∈ {0 � v � α0} . (3.50)

We claim that
v(x) = CZ(x,0), ∀x 	= X . (3.51)

Otherwise, let α1 ∈ [α0,MX ) be the biggest α such that

v(x) = CZ(x,0), ∀x ∈ {v = α} . (3.52)

Then
∇v(x) 	= 0, ∀x ∈ {v = α1} (3.53)

and consequently v is analytic in a neighborhood Ω of {v = α1} . This implies

v(x) = CZ(x,0), ∀x ∈ Ω. (3.54)

Contradicts to that α1 is the biggest α satisfying (3.52). Therefore (3.51) holds. We
get a contradiction since we assume X 	= 0.
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Thus, (3.32) holds. Let ν be the distribution function of Z(·,0) . Then, ν satisfies

−ν ′(α) =
(
Nω

1
N
n λ (α)

n−1
N

)q
, ν(0) = ωn. (3.55)

Combining (3.32) with ν(0) = ωn , we have

λ (α) < ν(α), ∀α ∈ (0,MX ]. (3.56)

This implies (3.28). �
Now, we can get a solution to Problem (C).

THEOREM 3.7. Let n � 1 , m = 1 , n < p < +∞ . Then (1.9) holds with

C(1, p,n) = (nωn)
− 1

p

[
(p−n)(q−1)

]− 1
q
. (3.57)

Moreover, for y ∈W (Bn;1, p) , the equality

max
x∈Bn

|y(x)| = C(1, p,n)‖y‖1,p (3.58)

holds if and only if

y(x) = α
(
1−|x|(p−n)(q−1)

)
, x ∈ Bn (3.59)

for some α ∈ R .

Proof. By Proposition 2.2, we know that

CX (1, p,n) =
(∫

Bn

∣∣∣∇xZ(x,X)
∣∣∣p

dx
) 1

q ≡ ‖∇Z(·,X)‖q−1
Lp(Bn)

, (3.60)

where Z(·,X) is the weak solution of{
−∇x ·

(∣∣∣∇xZ(x,X)
∣∣∣p−2

∇xZ(x,X)
)

= δ (x−X), x ∈ Bn,

Z(x,X)|x∈∂Bn = 0.
(3.61)

By Lemma 3.6, if X 	= 0, v(·) = Z(·,X) satisfies

v∗(x) < Z(x,0), ∀x ∈ Bn. (3.62)

This implies
v∗(X) < Z(X ,0). (3.63)

On the other hand, by Lemma 3.2,

‖∇v∗‖Lp(Bn) � ‖∇v‖Lp(Bn). (3.64)
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Thus

CX(1, p,n) =
v(X)

‖∇v‖Lp(Bn)
<

v∗(0)
‖∇v∗‖Lp(Bn)

� C0(1, p,n). (3.65)

Therefore
C(1, p,n) = C0(1, p,n) (3.66)

and the equality (3.58) holds if and only if

y(x) = αZ(x,0), x ∈ Bn (3.67)

for some α ∈ R . Finally, we get the proof by a direct calculation:

Z(x,0) =
p−1

(n− p)
(
nωn

)q−1

(
1−|x|(p−n)(q−1)

)
, x ∈ Bn. � (3.68)

THEOREM 3.8. Let n � 1 , k � 1 , m = 2k and max(1, n
2k ) < p < +∞ . Then (1.9)

holds with
C(2k, p,n) = ‖Gk(·,0;n)‖Lq(Bn). (3.69)

Moreover, for y ∈W (Bn;2k, p) , the equality

max
x∈Bn

|y(x)| = C(2k, p,n)‖y‖2k,p (3.70)

holds if and only if

(−�)ky(x) = αGq−1
k (x,0;n), x ∈ Bn (3.71)

for some α ∈ R .

Proof. Let X ∈ Bn , X 	= 0 and

u(x) = Gk(x,X ;n), v(x) = G(x,X ;n) x ∈ Bn. (3.72)

By Lemma 3.5, we have

v∗(x) < G(x,0;n), x ∈ Bn. (3.73)

Generally, we can prove that

u∗(x) < Gk(x,0;n), x ∈ Bn. (3.74)

In fact, if k = 1, then (3.74) is just (3.73). If k � 2, by Corollary 3.4,

u∗(x) �
∫

Bn

Gk−1(x,s;n)v∗(s)ds

<

∫
Bn

Gk−1(x,s;n)G(s,0;n)ds = Gk(x,0;n), x ∈ Bn. (3.75)

Therefore, by Proposition 2.1,

CX (2k, p,n) = ‖u‖Lq(Bn) = ‖u∗‖Lq(Bn) < ‖Gk(·,0;n)‖Lq(Bn) = C0(2k, p,n). (3.76)

And (3.69)–(3.71) follows immediately from Proposition 2.1. �
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THEOREM 3.9. Let n � 1 , k � 1 , m = 2k+1 and max(1, n
2k+1) < p < +∞ . Then

(1.9) holds with

C(2k+1, p,n) =
(∫

Bn

∣∣∣∇Y (x)
∣∣∣p

dx
) 1

q
, (3.77)

where Y (·) is the weak solution of

{
−∇ ·

(∣∣∣∇Y (x)
∣∣∣p−2

∇Y (x)
)

= Gk(x,0;n), x ∈ Bn,

Y (x)|∂Bn = 0.
(3.78)

Moreover, for y ∈W (Bn;2k+1, p) , the equality

max
x∈Bn

|y(x)| = C(2k+1, p,n)‖y‖2k+1,p (3.79)

holds if and only if
(−�)ky(x) = αY (x), x ∈ Bn (3.80)

for some α ∈ R .

Proof. Let X ∈ Bn , X 	= 0 and Z(·,X) be defined by (2.13). Let

v(x) = Z(x,X), ŷ(x) = [(−�)−1]k−1v(x), y(x) = [(−�)−1]kv(x), x ∈ Bn. (3.81)

By Corollary 3.4,

ŷ∗(x) �
∫

Bn

Gk−1(x,s;n)v∗(s)ds, x ∈ Bn. (3.82)

Thus, by Lemmas 3.1 and 3.5,

y(x) =
∫

Bn

G(x,s;n)ŷ(s)ds <

∫
Bn

G(0,s;n)ŷ∗(s)ds

�
∫

Bn

ds
∫

Bn

G(0,s;n)Gk−1(s,τ;n)v∗(s)dτ

=
∫

Bn

Gk(0,s;n)v∗(s)ds, x ∈ Bn. (3.83)

Therefore, by Lemma 3.2,

CX(2k+1, p,n) =
y(X)

‖∇v‖Lp(Bn)

<

∫
Bn

Gk(0,s;n)v∗(s)ds

‖∇v∗‖Lp(Bn)
� C0(2k+1, p,n). (3.84)

The remains follows easily from Proposition 2.2. �
When p = 2, we can simplify the above results.
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COROLLARY 3.10. Let n � 1 , m � 1 , 2m > n and p = 2 . Then (1.9) holds with

C(m,2,n) =
√

Gm(0,0;n). (3.85)

Moreover, for y ∈W (Bn;m,2) , the equality

max
x∈Bn

|y(x)| = C(m,2,n)‖y‖m,2 (3.86)

holds if and only if
y(x) = αGm(x,0;n), x ∈ Bn (3.87)

for some α ∈ R .

4. Further discussions

In this section, we give some discussions on the calculation of Gk(x,s;n) .
Since Gk(·,0;n) is spherical symmetric, we have

Gk(x,0;n) = gk(|x|;n), ∀x ∈ Bn,k � 1, (4.1)

where

g1(r;n) =

⎧⎪⎪⎨
⎪⎪⎩

1−r
2 , if n = 1,

1
2π ln 1

r , if n = 2,

1
(n−2)nωn

(
r2−n−1

)
, if n � 3,

r ∈ (0,1], (4.2)

gk+1(r;n) =
∫ 1

0
h(r,s)gk(s;n)ds, r ∈ (0,1], k = 1,2, . . . , (4.3)

h(r,s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1−max(r,s)
2 , if n = 1,

s ln 1
max(r,s) , if n = 2,

1
n−2 sn−1

((
max(r,s)

)2−n−1
)
, if n � 3,

r,s ∈ (0,1]. (4.4)

If we set

F(x,s,λ ;n) =
∞

∑
k=1

(−1)k−1Gk(x,s;n)λ 2(k−1), x,s ∈ Bn, λ � 0, (4.5)

then for λ small enough, F(x,s,λ ;n) is well defined and

−�xF(x,s,λ ;n) = δ (x− s)−λ 2F(x,s,λ ;n), x,s ∈ Bn, λ � 0. (4.6)

For n = 1, we can get easily from (4.6) that

F(x,s,λ ;1) =
shλ (x+1)

λ sh2λ

∫ 1

−1
shλ (x− t) ·δ (t− s)dt− 1

λ

∫ x

−1
shλ (x− t) ·δ (t− s)dt
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=

⎧⎨
⎩

shλ (x+1)
λ sh2λ shλ (1− s)− shλ (x−s)

λ , if x > s,

shλ (x+1)
λ sh2λ shλ (1− s), if x � s,

=

⎧⎨
⎩

shλ (s+1)
λ sh2λ shλ (1− x), if x > s,

shλ (x+1)
λ sh2λ shλ (1− s), if x � s.

(4.7)

Let bk be the Bernoulli numbers and Bk(x) be the Bernoulli polynomials, that is

text

et −1
=

∞

∑
k=0

Bj(x)
tk

k!
(4.8)

and bk = Bk(0) . The following is a table of Bernoulli numbers and Bernoulli polyno-
mials.

k bk Bk(x)

0 1 1

1 − 1
2 x− 1

2

2 1
6 −x+ x2 + 1

6

3 0 1
2x− 3

2x2 + x3

4 − 1
30 x2 −2x3 + x4− 1

30

5 0 − 1
6x+ 5

3x3− 5
2x4 + x5

6 1
42 − 1

2x2 + 5
2x4 −3x5 + x6 + 1

42

7 0 1
6x− 7

6x3 + 7
2x5 − 7

2x6 + x7

8 − 1
30

2
3x2 − 7

3x4 + 14
3 x6 −4x7 + x8− 1

30

9 0 − 3
10x+2x3− 21

5 x5 +6x7− 9
2x8 + x9

10 5
66 − 3

2x2 +5x4−7x6 + 15
2 x8 −5x9 + x10 + 5

66

. . . . . . . . . . . .

We have

shλ (x+1)
λ sh2λ

shλ (1− s)

=
1

8λ 2

[(4λeλ (s−x)

e4λ −1
+

−4λe−λ (s−x)

e−4λ −1

)
−

(4λeλ (s+x+2)

e4λ −1
+

−4λe−λ (s+x+2)

e−4λ −1

)]

=
1

4λ 2

[ ∞

∑
k=0

B2k

( s− x
4

)(4λ )2k

(2k)!
−

∞

∑
k=0

B2k

(s+ x+2
4

) (4λ )2k

(2k)!

]

=
∞

∑
k=1

42k−1λ 2(k−1)

(2k)!

(
B2k

(s− x
4

)
−B2k

( s+ x+2
4

))
. (4.9)
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Therefore,

Gk(x,s;1) =
(−1)k42k−1

(2k)!

[
B2k

(s+ x+2
4

)
−B2k

( |s− x|
4

)]
, k = 1,2, . . . . (4.10)

We can find the above equality in Theorem 3.1 of [3]. It is interesting and easy to prove
by (4.8) that Bk(x) satisfies the following equalities:

Bk(1− x) = (−1)kBk(x), k = 0,1,2, . . . , (4.11)

Bk

(1
2
− x

)
=

1
2k−1 Bk(−2x)−Bk(−x)

= (−1)k
( 1

2k−1 Bk(2x)−Bk(x)
)
, k = 0,1,2, . . . , (4.12)

Bk(−x) = (−1)kBk(x)+ (−1)kkxk−1, k = 1,2, . . . . (4.13)∫ x

0
Bk(s)ds =

Bk+1(x)−bk+1

k+1
, k = 0,1,2, . . . . (4.14)

Therefore

Gk(x,0;1) =
(−1)k42k−1

(2k)!

[
B2k

(x+2
4

)
−B2k

( |x|
4

)]

=
(−1)k22k−1

(2k)!

[
B2k

( |x|
2

)
−4kB2k

( |x|
4

)]
, k = 1,2, . . . , (4.15)

Gk(0,0;1) =
(−1)k−122k−1(4k −1)b2k

(2k)!
, k = 1,2, . . . , (4.16)

∫ x

0
Gk(s,0;1)ds =

(−1)k22k

(2k+1)!

[
B2k+1

( |x|
2

)
−22k+1B2k+1

( |x|
4

)
+(22k+1−1)b2k+1

]
sgnx,

k = 1,2, . . . . (4.17)

Using the above results, we have

CX (2k, p,1) =
42k−1

(2k)!

[∫ 1

−1

∣∣∣B2k

(x+X +2
4

)
−B2k

( |x−X |
4

)∣∣∣q dx
] 1

q
, (4.18)

CX (m,2,1) = 22m−1

√
1

(2m)!

[
B2m

(X +1
2

)
−b2m

]
(4.19)

= 22m−1

√
1

(2m)!

[ 1
22m−1 B2m(X)−B2m

(X
2

)
−b2m

]
. (4.20)

Concerning Problem (O), we have

COROLLARY 4.1. Let k � 1 , m = 2k and 1 < p < +∞ . Then

max
x∈(−1,1)

|y(x)| � C
(∫ 1

−1
|y(2k)(x)|p dx

) 1
p
, ∀y(·) ∈W (−1,1;2k, p) (4.21)
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with

C =
42k−1

(2k)!

[
2

∫ 1

0

∣∣∣B2k

(x+2
4

)
−B2k

( x
4

)∣∣∣q dx
] 1

q
(4.22)

=
22k−1

(2k)!

[
2

∫ 1

0

∣∣∣B2k

( x
2

)
−4kB2k

( x
4

)∣∣∣q dx
] 1

q
(4.23)

and the equality holds if and only if

y(2k)(x) = α
[
B2k

( |x|
2

)
−4kB2k

( |x|
4

)]q−1
, x ∈ (−1,1) (4.24)

for some α ∈ R .

COROLLARY 4.2. Let k � 1 , m = 2k+1 and 1 < p < +∞ . Then

max
x∈(−1,1)

|y(x)| � C
(∫ 1

−1
|y(2k+1)(x)|p dx

) 1
p
, ∀y(·) ∈W (−1,1;2k+1, p) (4.25)

with

C =
22k

(2k+1)!

(
2

∫ 1

0

∣∣∣B2k+1

( x
2

)
−22k+1B2k+1

( x
4

)
+(22k+1−1)b2k+1

∣∣∣q dx
) 1

q
(4.26)

and the equality holds if and only if

y(2k)(x) = α
{

(−1)k
[
B2k+1

( |x|
2

)
−22k+1B2k+1

( |x|
4

)
+(22k+1−1)b2k+1

]}q−1
sgnx,

x ∈ (−1,1)

for some α ∈ R .

COROLLARY 4.3. Let m � 1 . Then for any y ∈W (−1,1;m,2) ,

max
x∈(−1,1)

|y(x)| �
√

(−1)m−122m−1(4m −1)b2m

(2m)!

(∫ 1

−1
|y(m)(x)|2 dx

) 1
2
. (4.27)

The equality holds if and only if

y(x) = α
[
B2m

( |x|
2

)
−4mB2m

( |x|
4

)]
, x ∈ (−1,1) (4.28)

for some α ∈ R .



SHARP CONSTANT FOR Lp −L∞ TYPE SOBOLEV’S INEQUALITY 685

RE F ER EN C ES

[1] A. BURCHARD, A short course on rearrangement inequalities, Notes to the Course: MAT, 495 (2009),
391–400.

[2] E. DIBENEDETTO, C1,α local regularity of weak solutions of degenerate elliptic equations, Nonlinear
Analysis, T.M.A., 7 (1983), 827–850.

[3] Y. KAMETAKA, H. YAMAGISHI, K. WATANABE, A. NAGAI AND K. TAKEMURA, Riemann zeta
function, Bernoulli polynomials and the best constant of Sobolev inequality, Scientiae Mathematicae
Japonicae, 65, 3 (2007), 333–360.

[4] Y. OSHIME, On the best constant for Lp Sobolev inequality, Sci. Math. Jpn. 68 (2008), 333–344.
[5] P. LINDQVIST,Notes on the p-Laplace equation, University of Jyväskylä, Department of Mathematics
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