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SOME GEOMETRIC PROPERTIES OF MUSIELAK–ORLICZ SEQUENCE

SPACES GENERATED BY DE LA VALLÉE–POUSSIN MEANS

ATANU MANNA AND P. D. SRIVASTAVA

(Communicated by L. Leindler)

Abstract. Necessary and sufficient conditions for the non-triviality of a Musielak-Orlicz se-
quence space VΦ(λ) generated by the de la Vallée-Poussin means are obtained. Topological
properties such as completeness, separability, order continuity are characterized for the space
VΦ(λ) . Finally, criteria for the coordinatewise uniformly Kadec-Klee property and the Uniform
Opial property are obtained.

1. Introduction

In metric fixed point theory, geometric properties of Banach spaces such as the
Kadec-Klee property, the Opial property and their several generalizations play funda-
mental role. In particular, the Opial property of a Banach space has a great importance
in the fixed point theory, differential equation and Integral equations. On the other hand
the Kadec-Klee property has several applications in Ergodic theory and many other
branches([19]).

In recent days, the theory of Cesàro-Orlicz sequence spaces and Musielak-Orlicz
sequence spaces have been studied extensively. Some topological properties like non-
triviality, order continuity, separability, completeness and relations between norm and
modular as well as some geometric properties like monotonicity, Kadec-Klee property,
uniform Opial property, rotundity, local rotundity etc. are discussed in ([1], [9], [10],
[13], [15], [23], [24]). The present paper is a continuation of the study of some of
the geometric properties for the newly introduced Musielak-Orlicz sequence spaces
generated by de la Vallée-Poussin means.

Throughout the paper we shall denote N , R and R+ as the set of natural numbers,
of reals, and of nonnegative reals respectively. Let (X ,‖.‖) be a Banach space and
being a subspace of l0 , where l0 be the space of all real sequences x = (x(i))∞

i=1 . Let
S(X) and B(X) denotes the unit sphere and closed unit ball respectively. A sequence
(xl) ⊂ X is said to be ε -separated sequence if separation of sequence (xl) denoted by
sep(xl) = inf{‖xl − xm‖ : l �= m} > ε for some ε > 0 [16].

A Banach space X ⊂ l0 is said to have the Kadec-Klee property, denoted by (H) ,
if weakly convergent sequence on the unit sphere is strongly convergent, i.e., convergent
in norm ([7]) . A Banach sequence space X is said to possess coordinatewise Kadec-
Klee property, denoted by (Hc )([14]), if x ∈ X and every sequence (xl) ⊂ X such that
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‖xl‖→ ‖x‖ and xl(i) → x(i) for each i , then ‖xl − x‖→ 0.

It is well known that X ∈ (Hc) implies X ∈ (H) , because weak convergence in X im-
plies the coordinatewise convergence. A Banach space X ⊂ l0 has the coordinatewise
uniformly Kadec-Klee property, denoted by (UKKc )([21]), if for every ε > 0 there
exists a δ > 0 such that

(xl) ⊂ B(X) , sep(xl) � ε , ‖xl‖→ ‖x‖ and xl(i) → x(i) for each i implies
‖x‖ � 1− δ .

It is well known that the property (UKKc) implies property (Hc) .
A Banach space X is said to have the Opial property ([20]) if for every weakly

null sequence (xl) ⊂ X and every non zero x ∈ X , we have

liminf
l→∞

‖xl‖ < liminf
l→∞

‖xl + x‖ .

A Banach space X is said to have the uniform Opial property ([20]) if for each ε > 0
there exists μ > 0 such that for any weakly null sequence (xl) in S(X) and x ∈ X with
‖x‖ � ε the following inequality hold:

1+ μ � liminf
l→∞

‖xl + x‖ .

In any Banach space X an Opial property is important because it ensures that X has
a weak fixed point property ([4]). Opial in ([26]) has shown that the space Lp[0,2π ]
(p �= 2,1 < p < ∞) does not have this property but the Lebesgue sequence space lp(1 <
p < ∞) has.

A map ϕ : R → [0,∞] is said to be an Orlicz function if it is an even, convex, left
continuous on [0,∞) , ϕ(0) = 0 and ϕ(u) → ∞ as u → ∞ . A sequence Φ = (ϕn)∞

n=1
of Orlicz functions ϕn is called Musielak-Orlicz function ([3]). A Musielak-Orlicz
function Φ = (ϕn)∞

n=1 is said to satisfy condition (∞1) if

lim
u→+∞

ϕn(u)
u

= +∞ for each n ∈ N . (∞1)

For a Musielak-Orlicz function Φ , the complementary function Ψ = (ψn)∞
n=1 of Φ is

defined in the sense of Young as

ψn(u) = sup
v�0

{ |u|v−ϕn(v)} for all u ∈ R and n ∈ N .

Given any Musielak-Orlicz function Φ and x = (x(n))∞
n=1 ∈ l0 , a convex modular IΦ :

l0 → [0,∞] is defined by IΦ(x) =
∞

∑
n=1

ϕn

(
|x(n)|

)
and the linear space lΦ = {x ∈ l0 :

IΦ(rx) < ∞ for some r > 0} is called Musielak-Orlicz sequence space. Let us consider
lΦ with two functionals |||x|||LΦ and |||x|||AΦ defined by

|||x|||LΦ = inf
{

r > 0 : IΦ

(
x
r

)
� 1

}
and

|||x|||AΦ = inf
k>0

{1
k

(
1+ IΦ(kx)

)}
= sup

{ ∞

∑
n=1

x(n)y(n) : IΨ(y) � 1
}

.
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These two norms are equivalent. Indeed |||x|||LΦ � |||x|||AΦ � 2|||x|||LΦ (see [3]). These
functionals, i.e., |||x|||LΦ and |||x|||AΦ are known as the Luxemberg norm and the Amemi-
ya norm (Orlicz norm), respectively, and the corresponding Musielak-Orlicz sequence
spaces are denoted by lLΦ and lAΦ respectively. The set of all k > 0 such that |||x|||AΦ =
1
k

(
1+ IΦ(kx)

)
is attained for a fixed x ∈ lAΦ is denoted by K(x) . Moreover, it is well

known that for any x ∈ lAΦ there exists a k > 0 such that |||x|||AΦ = 1
k

(
1 + IΦ(kx)

)

whenever ϕn(u)
u → ∞ as u → ∞ for each n ∈ N . For the details about Musielak-Orlicz

sequence spaces and their geometric properties we refer to ([1]-[3], [18], [24]).
The subspaces

{
x = (x(n))∞

n=1 ∈ l0 : ∀r > 0 ∃nr ∈ N such that
∞

∑
n=nr

ϕn

(
r|x(n)|

)
< ∞

}
,

equipped with the Luxemberg norm and the Amemiya norm induced from lΦ are de-
noted by hL

Φ and hA
Φ are the subspaces of all order continuous elements of lLΦ and lAΦ

respectively.
A Musielak-Orlicz function Φ = (ϕn)∞

n=1 satisfies the δ 0
2 -condition denoted by

Φ ∈ δ 0
2 if there are positive constants a,K , a natural m and a sequence (cn)∞

n=1 of
positive numbers such that (cn)∞

n=m ∈ l1 and the inequality

ϕn(2u) � Kϕn(u)+ cn (1.1)

holds for every n ∈ N and u ∈ R whenever ϕn(u) � a . If a Musielak-Orlicz function
Φ satisfies the δ 0

2 -condition with m = 1, then Φ is said to satisfy the δ2 -condition([2],
[3]).

For any Musielak-Orlicz function Φ , hΦ coincides with lΦ if and only if Φ sat-
isfies δ 0

2 -condition([2]).
A Musielak-Orlicz function Φ = (ϕn)∞

n=1 satisfies the condition (∗) ([1]) if for
any ε ∈ (0,1) there is a δ > 0 such that

ϕn(u) < 1− ε implies ϕn((1+ δ )u) � 1 for all n ∈ N and u � 0. (1.2)

A Musielak-Orlicz function Φ is to said to vanishes only at zero which is denoted by
Φ > 0 if ϕn(u) > 0 for any n ∈ N and u > 0.

Let (E,‖.‖E) be a real normed linear subspace of l0 . E is said to be a normed
sequence lattice ([6]) if it satisfies the following two conditions:

(i) for any x ∈ E and y ∈ l0 such that |y(k)| � |x(k)| for every k ∈ N , then y ∈ E
and ‖y‖E � ‖x‖E ,

(ii) there exists a sequence x = (x(k))∞
k=1 ∈ E such that x(k) > 0 for all k ∈ N .

A normed sequence lattice (E,‖.‖E) with complete norm ‖.‖E is called Banach
sequence lattice (see [6]).

NOTE. In many literatures a Banach sequence lattice E is also called as Köthe
sequence space ([9], [23]).

A Banach sequence lattice E is said to have the Fatou property if for any x ∈ l0

and sequence (xl)⊂ E+ (where E+ = {x∈ E : x � 0} ) satisfying 0 � xl(i)↗ x(i) , i.e.,
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xl(i) increases to x(i) as l → ∞ for each i ∈ N and sup
l
‖xl‖E < ∞ , then x ∈ E and

‖x‖E = lim
l→∞

‖xl‖E (see [23]).

An element x ∈ E is said to be order continuous if for any sequence (xl) ⊂ E+
such that |x(i)| � xl(i) ↘ 0, i.e., xl(i) decreases to zero as l → ∞ for each i implies
that ‖xl‖E → 0. The set of all order continuous element in E is denoted by Ea . A
Banach sequence lattice E is said to be order continuous if Ea = E . It is known that E
is order continuous if and only if ‖(0,0, . . . ,x(i+1),x(i+2), . . .)‖E → 0 as i → ∞ for
any x ∈ E ([23]).

2. Class VΦ(λ )

Let λ = (λn)∞
n=1 be a non decreasing sequence of natural numbers satisfying λ1 =

1,λn+1−λn � 1, ∀n∈N . For any sequence x = (x(n))∞
n=1 ∈ l0 the de la Vallée-Poussin

means is defined by

tn(x) = 1
λn ∑

k∈In

x(k) ,

where In = [n−λn +1,n],n = 1,2, . . . ([5], [8]).
We introduce the de la Vallée-Poussin means map Vλ on l0 as Vλ : l0 → [0,∞)

such that x →Vλ x , where

Vλ x = (Vλ x(n))∞
n=1 , with Vλ x(n) = 1

λn ∑
k∈In

|x(k)| for each n = 1,2, . . . and x ∈ l0 .

Using this de la Vallée-Poussin means map and a Musielak-Orlicz function Φ = (ϕn)∞
n=1 ,

we define on l0 a functional σΦ(x) by

σΦ(x) = IΦ(Vλ x) =
∞

∑
n=1

ϕn

( 1
λn

∑
k∈In

|x(k)|
)

.

Since Φ is convex, so it is easy to verify that σΦ(x) is a convex modular (for definition
see [3]) on l0 .

We now introduce the space VΦ(λ ) as follows

VΦ(λ ) = {x ∈ l0 : Vλ x ∈ lΦ} = {x ∈ l0 : σΦ(rx) < ∞ for some r > 0} .

Clearly, it is a linear space and also forms a normed linear space under the norms
‖x‖L

Φ = |||Vλ x|||LΦ and ‖x‖A
Φ = |||Vλ x|||AΦ introduced with the help of the norms on

lΦ . We call VΦ(λ ) as the Musielak-Orlicz sequence space generated by de la Vallée-
Poussin means.

Our class VΦ(λ ) includes the following classes as particular cases:
(i) When λn = n , n = 1,2, . . . , the VΦ(λ ) reduces to the Cesàro-Musielak-Orlicz

sequence space cesΦ studied by Wangkeeree ([17]), where

cesΦ =
{

x ∈ l0 :
∞

∑
n=1

ϕn

( r
n

n

∑
k=1

|x(k)|
)

< ∞ for some r > 0
}

,
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(ii) For ϕn = ϕ , ∀n the cesΦ becomes well-known Cesàro-Orlicz sequence space
cesϕ studied recently by Petrot and Suantai [9], Foralewski et al.[13], Cui et al. [23],

(iii) For λn = 1, ∀n the VΦ(λ ) reduces to the Musielak-Orlicz sequence space
lΦ .

More recently, some geometric properties of sequence spaces involving de la
Vallée-Poussin means has been studied by Şimşek et al. [11], [12]. In this paper, we
introduce and study a new sequence space defined with the help of a Musielak-Orlicz
function and de la Vallée-Poussin means. Some basic topological properties like non-
triviality, order continuity, separability, completeness as well as criteria for some ge-
ometric properties like coordinatewise Uniform Kadec-Klee property, Uniform Opial
property with respect to both, the Luxemberg norm and Amemiya norm, are obtained
for this class.

NOTATIONS. For any x∈ l0 and i∈N , we use the following notations throughout
the paper:

x|i = (x(1),x(2),x(3), . . . ,x(i),0,0, . . .) , called the truncation of x at i ,
x|N−i = (0,0,0, . . . ,0,x(i+1),x(i+2), . . .) ,
x|I = {x = (x(i))∞

i=1 ∈ l0 : x(i) �= 0 for all i ∈ I ⊆ N and x(i) = 0 for all i ∈ N \ I}
and

supp x = {i ∈ N : x(i) �= 0} and clA denotes the closure of a set A .
For simplifying notations, we write VL

Φ(λ )= (VΦ(λ ),‖.‖L
Φ) and VA

Φ(λ )= (VΦ(λ ),
‖.‖A

Φ) . If norm is not specified we write simply (VΦ(λ ),‖.‖) , where ‖.‖ may be ‖.‖L
Φ

or ‖.‖A
Φ .

3. Main Results

First, we give the criteria for non-triviality of the space VΦ(λ ) :

PROPOSITION 1. Let Φ = (ϕn)∞
n=1 be a Musielak-Orlicz function such that ϕi(u)

� ϕ j(u) if i � j , i, j ∈ N , u ∈ [0,∞) and a non decreasing sequence λ = (λn)∞
n=1 of

natural numbers tending to ∞ , satisfies λ1 = 1,λn+1 −λn � 1 ∀ n ∈ N , λmn � λmλn

∀ m,n ∈ N . Then the followings are equivalent:
(a) VΦ(λ ) �= {0}
(b) there exists n1 ∈ N such that

∞

∑
n=n1

ϕn

( 1
λn

)
< ∞

(c) ∀r > 0 , ∃nr such that
∞

∑
n=nr

ϕn

( r
λn

)
< ∞ .

Proof. (a) ⇒ (b) Let y = (y(k))∞
k=1 be a nonzero element of VΦ(λ ) . Since y �=

0, so there exists t ∈ N such that y(t) �= 0. Suppose z = (0,0, . . . ,0,y(t),0, . . .) ∈
VΦ(λ ) . In particular, we choose x = (0,0, . . . ,0,1,0, . . .) ∈ VΦ(λ ) , where 1 is at the
t -th position. Then we have

σΦ(rx) =
∞

∑
n=t

ϕn

( r
λn

)
< ∞ .
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We consider the following two cases:
(i) If r > 1, then for each n ∈ N , we have 1

λn
< r

λn
and by the monotonicity of

Φ = (ϕn)∞
n=1 , we have ϕn

(
1

λn

)
< ϕn

(
r

λn

)
for each n ∈ N . Therefore

∞

∑
n=t

ϕn

( 1
λn

)
<

∞

∑
n=t

ϕn

( r
λn

)
< ∞ .

Hence (b) follows easily from above by choosing t = n1 .
(ii) If 0 < r < 1, then ∃ m∈ N such that r � 1

λm
. Hence 1

λmλn
� r

λn
for all n∈ N .

So
∞

∑
n=t

ϕn

( 1
λmλn

)
�

∞

∑
n=t

ϕn

( r
λn

)
.

Now, since λ = (λn)∞
n=1 is a non decreasing sequence of natural numbers and

Φ = (ϕn)∞
n=1 be a Musielak-Orlicz function such that ϕi(u) � ϕ j(u) if i � j , i, j ∈ N ,

u ∈ [0,∞) , we have

∞

∑
n=mt

ϕn

( 1
λn

)

= ϕmt

( 1
λmt

)
+ ϕmt+1

( 1
λmt+1

)
+ . . .+ ϕmt+(m−1)

( 1
λmt+(m−1)

)

+ ϕmt+m

( 1
λmt+m

)
+ ϕm(t+1)+1

( 1
λm(t+1)+1

)
+ . . .+ ϕm(t+1)+(m−1)

( 1
λm(t+1)+(m−1)

)

+ ϕm(t+2)

( 1
λm(t+2)

)
+ ϕm(t+2)+1

( 1
λm(t+2)+1

)
+ . . .

� ϕmt

( 1
λmt

)
+ ϕmt+1

( 1
λmt

)
+ . . .+ ϕmt+(m−1)

( 1
λmt

)

+ ϕm(t+1)

( 1
λm(t+1)

)
+ ϕm(t+1)+1

( 1
λm(t+1)

)
+ . . .+ ϕm(t+1)+(m−1)

( 1
λm(t+1)

)
+ . . .

� ϕmt

( 1
λmt

)
+ ϕmt

( 1
λmt

)
+ . . .+ ϕmt

( 1
λmt

)

+ ϕm(t+1)

( 1
λm(t+1)

)
+ . . .+ ϕm(t+1)

( 1
λm(t+1)

)
+ . . .

� mϕmt

( 1
λmt

)
+mϕm(t+1)

( 1
λm(t+1)

)
+ . . .

= m
∞

∑
n=t

ϕmn

( 1
λmn

)
� m

∞

∑
n=t

ϕn

( 1
λmn

)
� m

∞

∑
n=t

ϕn

( 1
λmλn

)
� m

∞

∑
n=t

ϕn

( r
λn

)
< ∞,

By choosing mt = n1 , we get (a) ⇒ (b) .

(b) ⇒ (c) Suppose (b) is true. So, there exists n1 such that
∞

∑
n=n1

ϕn

( 1
λn

)
< ∞ .

We consider the following two cases:
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(i) If 0 < r < 1, then for all n , r
λn

< 1
λn

and
∞

∑
n=n1

ϕn

( r
λn

)
<

∞

∑
n=n1

ϕn

( 1
λn

)
< ∞ .

So by choosing nr := n1 , we obtain
∞

∑
n=nr

ϕn

( r
λn

)
< ∞ .

(ii) If r > 1, then we can find an m ∈ N such that r � λm . Defining nr = n1m
and using the same steps as above with the fact that λmn � λmλn , ∀m,n ∈ N , we have

∞

∑
n=nr

ϕn

( r
λn

)
�

∞

∑
n=nr

ϕn

(λm

λn

)
=

∞

∑
n=n1m

ϕn

(λm

λn

)
� m

∞

∑
n=n1

ϕn

( 1
λn

)
< ∞.

Therefore (b) ⇒ (c) .

(c)⇒ (a) Take r = 1. Since (c) holds, there exists n1 ∈N such that
∞

∑
n=n1

ϕn

( 1
λn

)

< ∞ . Let us consider a sequence x = (0,0, . . . ,0,1,0, . . .) , 1 is at the n1 -th term. Then
x ∈ l0 and

σΦ(rx) = σΦ(x) =
∞

∑
n=n1

ϕn

( 1
λn

)
< ∞ ,

which implies that x ∈VΦ(λ ) . �

It is easy to observe that any nontrivial Musielak-Orlicz sequence space VΦ(λ )
generated by de la Vallée-Poussin means belongs to the class of normed sequence
lattice.

LEMMA 1. (Fatou property) Let x = (x(i))∞
i=1 ∈ l0 , (xl)⊂VA

Φ(λ ) , xl = (xl(i))∞
i=1 ,

l ∈ N ( or (xl) ⊂ VL
Φ(λ )) are such that 0 � xl(i) ↗ x(i) as l → ∞ for each i ∈ N

and sup
l
‖xl‖A

Φ < ∞ (or sup
l
‖xl‖L

Φ < ∞), then x ∈ VA
Φ(λ ) (or x ∈ VL

Φ(λ )) and ‖x‖A
Φ =

lim
l→∞

‖xl‖A
Φ (or ‖x‖L

Φ = lim
l→∞

‖xl‖L
Φ ).

Proof. Assume that xl ⊂VA
Φ(λ ) for all l ∈N , sup

l
‖xl‖A

Φ < ∞ and 0 � xl(i)↗ x(i)

as l → ∞ for any x∈ l0 . Let ‖xl‖A
Φ = αl . Since sup

l
αl < ∞ and (αl) is non decreasing,

there exists a finite α such that αl ↗ α = sup
l

αl . By the definition of norm ‖xl‖A
Φ , we

have

αl = ‖xl‖A
Φ = inf

k>0

1
k
{σΦ(kxl)+1}� inf

k>0

1
k
{σΦ(kx)+1} = ‖x‖A

Φ ,

Therefore α = sup
l

αl � ‖x‖A
Φ . We want to prove that ‖x‖A

Φ � α .

From the definition of norm ‖xl‖A
Φ , for every ε > 0, there exists kl > 0 such that

‖xl‖A
Φ + ε > 1

kl
{σΦ(klxl)+1} > 1

kl
⇒ kl > 1

‖xl‖A
Φ+ε � 1

α+ε > 0 for each l .
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Therefore (kl)∞
l=1 is bounded from below. Now we have two cases:

Case (i) : when (kl)∞
l=1 is bounded from above. In this case (kl)∞

l=1 is a bounded
sequence so it will have a convergent subsequence (klm)∞

m=1 (say). So, we may assume
that klm → k , k ∈ (0,∞) . Since xl(i) ↗ x(i) for each i ∈ N , so by the Fatou’s lemma it
follows that

1
k {σΦ(kx)+1}� liminf

m→∞

1
klm

(σΦ(klmxlm)+1) � lim
m→∞

(‖xlm‖A
Φ + ε) = α + ε ,

for some subsequence (xlm)∞
m=1 of (xl)∞

l=1 . Since ε is arbitrary, we obtain ‖x‖A
Φ � α .

Also for some k0 > 0, we have σΦ(k0x) < ∞ , i.e, x ∈VA
Φ(λ ) .

Case (ii) : when (kl)∞
l=1 is not bounded from above, so we assume kl → ∞ as

l → ∞ . For a given ε > 0, we choose L = 1
ε . Then for l � L we have kl � L . Using

the convexity of σΦ , we have

σΦ(Lxl)
L + 1

L = 1
L σΦ( L

kl
klxl)+ 1

kl
+ 1

L − 1
kl

� σΦ(klxl)
kl

+ 1
kl

+ ε − 1
kl

� ‖xl‖A
Φ +2ε − 1

kl
.

Consequently, using Fatou’s lemma ‖x‖A
Φ � 1

L{σΦ(Lx) + 1} � liminf
l→∞

1
L
{σΦ(Lxl) +

1} � lim
l→∞

(‖xl‖A
Φ + 2ε − 1

kl
) = α + 2ε . This implies that ‖x‖A

Φ � α , since ε is arbi-

trary. Thus the proof is completed.
In case of Luxemberg norm ‖.‖L

Φ , the proof runs on the parallel lines as given in
[23]. �

It is known that any normed sequence lattice with the Fatou property is complete
in its norm ([22], p.4). Hence the spaces VA

Φ(λ ) and VL
Φ(λ ) are Banach spaces.

THEOREM 1. Let

hA
Φ(λ ) =

{
x ∈VA

Φ(λ ) : ∀r > 0 ∃nr such that
∞

∑
n=nr

ϕn

( r
λn

∑
k∈In

|x(k)|
)

< ∞
}

and suppose Φ = (ϕn)∞
n=1 , λ = (λn)∞

n=1 satisfies the assumptions in Proposition 1.
Then followings are true:
(i) hA

Φ(λ ) is a closed subspaces of VA
Φ(λ ) ,

(ii) hA
Φ(λ ) = clDΦ , where DΦ = {x ∈VA

Φ(λ ) : x(k) �= 0 for finite k ∈ N} ,
(iii) hA

Φ(λ ) is order continuous,
(iv) hA

Φ(λ ) is a separable subspaces of VA
Φ(λ ) .

Proof. (i) Clearly hA
Φ(λ ) is a subspace of VA

Φ(λ ) . We need to show only that the
closedness of hA

Φ(λ ) . For this, let xi = (xi(k))∞
k=1 ∈ hA

Φ(λ ) , i ∈ N and ‖x− xi‖A
Φ → 0

as i → ∞ and x ∈ VA
Φ(λ ) . We show that x ∈ hA

Φ(λ ) . By the equivalent definition of
norm and modular convergence, we have σΦ(r(x− xi)) → 0 as i → ∞ for all r > 0.
So for all r > 0 there exists J ∈ N such that σΦ(2r(x− xJ)) < 1. Since xJ ∈ hA

Φ(λ )
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so there exists nJ such that
∞

∑
n=nJ

ϕn

(2r
λn

∑
k∈In

|xJ(k)|
)

< ∞ ∀r > 0. We choose nr = nJ ,

then we have

∞

∑
n=nJ

ϕn

( r
λn

∑
k∈In

|x(k)|
)

�
∞

∑
n=nJ

ϕn

( r
2λn

∑
k∈In

(2|x(k)− xJ(k)|)+
r

2λn
∑
k∈In

2|xJ(k)|
)

� 1
2

∞

∑
n=nJ

ϕn

(2r
λn

∑
k∈In

|x(k)− xJ(k)|
)

+
1
2

∞

∑
n=nJ

ϕn

(2r
λn

∑
k∈In

|xJ(k)|
)

� 1
2

σΦ(2r(x− xJ))+
1
2

∞

∑
n=nJ

ϕn

(2r
λn

∑
k∈In

|xJ(k)|
)

< ∞.

Since r is arbitrary, so we have x ∈ hA
Φ(λ ) . This completes the proof.

(ii) We first show the inclusion clDΦ ⊂ hA
Φ(λ ) . If clDΦ = /0 , then the inclu-

sion is true. So, let clDΦ �= /0 . Since hA
Φ(λ ) is a closed linear subspace of VA

Φ(λ ) ,
it is enough to prove that x = et ∈ hA

Φ(λ ) , because any element of the form y =
(y(1),y(2), . . . ,y(k),0,0, . . .) can be written as the linear combination of x = et ,t =
1,2, . . . . Then by Proposition 1, there exists nr such that

∞

∑
n=nr

ϕn

( r
λn

)
< ∞ .

We may assume that nr � t for each r . Hence x ∈ hA
Φ(λ ) .

For reverse inclusion, let x = (x(1),x(2), . . . ,x(p),x(p+1), . . .) ∈ hA
Φ(λ ) . For any

p ∈ N , we denote xp = (x(1),x(2), . . . ,x(p),0,0, . . .) . Then xp ∈ clDΦ . We prove that
for every x ∈ hA

Φ(λ ) , ‖x−xp‖A
Φ → 0 as p → ∞ . Since x ∈ hA

Φ(λ ) , so for a given ε > 0
there exists a p0 , we have

∞

∑
n=p0+1

ϕn

( r
λn

∑
k∈In

|x(k)|
)

<
ε
2

∀r > 0.

Then for any r > 0 and p � p0 , we have

σΦ(r(x− xp)) � σΦ(r(x− xp0)) = σΦ(r(0,0, . . . ,0,x(p0 +1),x(p0 +2), . . .))

=
∞

∑
n=p0+1

ϕn

( r
λn

∑
k∈In

|x(k)|
)

<
ε
2
,

i.e., ‖x− xp‖A
Φ → 0 as p → ∞ and so x ∈ clDΦ . Hence the result (ii) is proved.

(iii) Let x ∈ hA
Φ(λ ) , we show that x is an order continuous element. Let xl(i) ↘ 0

for each i and xl(i) � |x(i)| for all l ∈ N . Since x ∈ hA
Φ(λ ) , so for any r > 0, ε > 0

there exists nr ∈ N such that

∞

∑
n=nr

ϕn

( r
λn

∑
k∈In

|x(k)|
)

<
ε
2

.

We denote for every n ∈ N ,
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β (n) = ϕn

(
r

λn ∑
k∈In

|x(k)|
)

and βl(n) = ϕn

(
r

λn ∑
k∈In

|xl(k)|
)

.

Since xl(i) ↘ 0 for each i , so βl(n) → 0 as l → ∞ for each n ∈ N . Hence there is a

lε ∈ N such that
nr−1

∑
n=1

βl(n) <
ε
2

for all l � lε . Also since
∞

∑
n=nr

βl(n) �
∞

∑
n=nr

β (n) <
ε
2

for all n � nr and l ∈ N . Therefore for arbitrary r > 0, we have σΦ(rxl) < ε for all
l � lε . This means that ‖xl‖A

Φ → 0 as l → ∞ . So x is an order continuous element.
Now let x ∈VA

Φ(λ ) be an order continuous element. Then by definition

‖(0,0, . . . ,x(i+1),x(i+2), . . .)‖A
Φ → 0 as i → ∞ .

This means that x ∈ cl{x ∈VA
Φ(λ ) : x(k) �= 0 for finite k ∈ N} = hA

Φ(λ ) .
(iv) Define a countable set SΦ = cl{x ∈ VA

Φ(λ ) : x(k) �= 0 for finite k ∈ N and
x(k) ∈ Q} . It is easy to show that SΦ is separable. We show that clDΦ = SΦ . The
inclusion SΦ ⊂ clDΦ is obvious. We show only the inclusion clDΦ ⊂ SΦ . Let x =
(x(1),x(2), . . . ,x(p),0,0, . . .) ∈ clDΦ and x j = (x j(1),x j(2), . . . ,x j(p),0,0, . . .) ∈ SΦ
is such that x j(k) → x(k) as j → ∞ for each k ∈ N . We prove that for each x ∈ clDΦ
there exists x j ∈ SΦ such that ‖x j − x‖A

Φ → 0 as j → ∞ . We choose for any r > 0,
ε ∈ (0,M) , where M > 0, a constant. Then for any r > 0 there exists a j0 ∈ N such
that

r ∑
k∈In

|x(k)− x j(k)| < ε
M

for j � j0 and n = 1,2, . . . , p .

By the condition (b) of Proposition 1, we have there exists a constant M > 0 such that
∞

∑
n=1

ϕn

( 1
λn

)
� M . Therefore for j � j0 and convexity of Φ = (ϕn)∞

n=1 , we have

σΦ(r(x− x j)) =
p

∑
n=1

ϕn

( r
λn

∑
k∈In

|x(k)− x j(k)|
)

+
∞

∑
n=p+1

ϕn

( r
λn

p

∑
k=n−λn+1

|x(k)− x j(k)|
)

�
p

∑
n=1

ϕn

( r
λn

∑
k∈In

|x(k)− x j(k)|
)

+
∞

∑
n=p+1

ϕn

( r
λn

p

∑
k=p−λp+1

|x(k)− x j(k)|
)

<
ε
M

∞

∑
n=1

ϕn

( 1
λn

)
� ε.

Since r is arbitrary, so we have ‖x j − x‖A
Φ → 0 as j → ∞ . Hence clDΦ = SΦ . Since

SΦ is separable and hA
Φ(λ ) = clDΦ = SΦ , so hA

Φ(λ ) is separable. �

REMARK 1. Since the Luxemberg norm ‖.‖L
Φ and the Amemiya norm ‖.‖A

Φ are
equivalent, so all the results of Theorem 1 are also true for the space hL

Φ(λ ) .

THEOREM 2. Let Φ = (ϕn)∞
n=1 be a Musielak-Orlicz function satisfying the δ2 -

condition. Then hΦ(λ ) = VΦ(λ ) .
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Proof. We need to show here only the inclusion VΦ(λ ) ⊂ hΦ(λ ) . Let x ∈VΦ(λ ) .

Then for some t > 0, σΦ(tx) < ∞ , i.e.,
∞

∑
n=1

ϕn

( t
λn

∑
k∈In

|x(k)|
)

< ∞ . We show that for

any r > 0 there exists a nr ∈ N such that
∞

∑
n=nr

ϕn

( r
λn

∑
k∈In

|x(k)|
)

< ∞ . If r ∈ [0,t]

then it is easily follows because
∞

∑
n=nr

ϕn

( r
λn

∑
k∈In

|x(k)|
)

�
∞

∑
n=nr

ϕn

( t
λn

∑
k∈In

|x(k)|
)

< ∞ .

Now, we fix t and choose r > t . Since x ∈VΦ(λ ) , i.e., for some t > 0, σΦ(tx) < ∞ , so

there exists nr and a constant a such that
∞

∑
n=nr

ϕn

( t
λn

∑
k∈In

|x(k)|
)

<
a
2

. Therefore for

each n � nr , we have ϕn

(
t

λn ∑
k∈In

|x(k)|
)

<
a
2

. Choose a sequence (cn)∞
n=1 of positive

real numbers such that
∞

∑
n=1

cn < ∞ . So for a given ε > 0, there exists a nr such that

∞

∑
n=nr

cn <
ε
2

. Let u = t
λn ∑

k∈In

|x(k)| , K > 0 be a constant and a is chosen above. Since

r > t so there is a l ∈ N such that r � 2lt . Now applying δ2 -condition for all n � nr ,
we have

ϕn

( r
λn

∑
k∈In

|x(k)|
)

� ϕn

(2lt
λn

∑
k∈In

|x(k)|
)

+ cn � Klϕn

( t
λn

∑
k∈In

|x(k)|
)

+
( l−1

∑
i=0

Ki
)
cn

Taking summation both sides over n � nr , we obtain

∞

∑
n=nr

ϕn

( r
λn

∑
k∈In

|x(k)|
)

� Kl
∞

∑
n=nr

ϕn

( t
λn

∑
k∈In

|x(k)|
)

+
( l−1

∑
i=0

Ki
) ∞

∑
n=nr

cn < ∞ .

Hence x ∈ hΦ(λ ) . �

COROLLARY 1. Let Φ ∈ δ2 , i.e., (1.1) holds. Then
(i) VΦ(λ ) is separable,
(ii) VΦ(λ ) is order continuous.

We will assume in the rest of the paper that Φ = (ϕn)∞
n=1 is a Musielak-Orlicz

function with all ϕn being finitely valued. The following known Lemmas are useful in
the sequel:

LEMMA 2. Let x ∈ hL
Φ(λ ) be an arbitrary element. Then ‖x‖L

Φ = 1 if and only if
σΦ(x) = 1 .

Proof. The proof will run on the parallel lines of the proof of Lemma 2.1 in
[23]. �

LEMMA 3. Suppose Φ ∈ δ2 and Φ > 0 . Then for any (xl) ⊂VL
Φ(λ ) , ‖xl‖L

Φ → 0
(‖xl‖A

Φ → 0) if and only if σΦ(xl) → 0 .
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Proof. For the proof this lemma see [1], [14]. �

LEMMA 4. If Φ ∈ δ2 , i.e., (1.1) holds, then for any x ∈VL
Φ(λ ) ,

‖x‖L
Φ = 1 if and only if σΦ(x) = 1 .

Proof. Since Φ ∈ δ2 implies VL
Φ(λ ) = hL

Φ(λ ) . The proof will be follows from
Lemma 2. �

LEMMA 5. Let Φ ∈ δ2 , i.e., (1.1) holds and satisfy the condition (∗) , i.e., (1.2)
holds. Then for any x ∈VL

Φ(λ ) and every ε ∈ (0,1) there exists δ (ε) ∈ (0,1) such that
σΦ(x) � 1− ε implies ‖x‖L

Φ � 1− δ .

Proof. The proof of this lemma will be given in a similar way as the proof of
Lemma 9 in [1]. �

LEMMA 6. [1] Let (X ,‖.‖) be a normed space. If f : X → R is a convex function
in the set K(0,1) = {x ∈ X : ‖x‖ � 1} and | f (x)| � M for all x ∈ K(0,1) and some
M > 0 . Then f is almost uniformly continuous in K(0,1); i.e., for all d ∈ (0,1) and
ε > 0 there exists a δ > 0 such that ‖y‖� d and ‖x−y‖< δ implies | f (x)− f (y)|< ε
for all x,y ∈ K(0,1) .

LEMMA 7. Let Φ ∈ δ2 , i.e., (1.1) holds, Φ > 0 and satisfies the condition (∗) ,
i.e., (1.2) holds. Then for each d ∈ (0,1) and ε > 0 there exists δ = δ (d,ε) > 0 such
that σΦ(x) � d , σΦ(y) � δ imply

|σΦ(x+ y)−σΦ(x)| < ε for any x,y ∈VL
Φ(λ ). (3.1)

Proof. Since Φ ∈ δ2 and satisfies condition (∗) , so by Lemma 5, there exists
d1 ∈ (0,1) such that ‖x‖L

Φ � d1 . Also, by Lemma 3, we find a δ > 0 such that for
every δ1 > 0, σΦ(y) � δ implies ‖y‖L

Φ � δ1 for any y ∈ VL
Φ(λ ) . So, if σΦ(x) �

d and σΦ(y) � δ then ‖x‖L
Φ � d1 and ‖y‖L

Φ � δ1 . Hence, by Lemma 6, we have
|σΦ(x+ y)−σΦ(x)| < ε because the functional σΦ satisfies all the assumptions of f
defined in Lemma 6. �

LEMMA 8. Let Φ ∈ δ2 , i.e., (1.1) holds and satisfies the condition (∗) , i.e., (1.2)
holds and Φ > 0 . Then for any x ∈ VL

Φ(λ ) and any ε > 0 there exists δ = δ (ε) > 0
such that σΦ(x) � 1+ ε implies ‖x‖L

Φ � 1+ δ .

Proof. The proof of this lemma goes on the parallel lines of the proof of the
Lemma 4 in [24]. �

It is to be noted that, for a fixed x∈VA
Φ(λ ) the set K(x) defined earlier (see Section

1) will be of the form K(x) =
{

k > 0 : ‖x‖A
Φ = 1

k (1+ σΦ(kx))
}

.
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LEMMA 9. Let x ∈ VA
Φ(λ ) be given and x �= 0 . If K(x) = /0 , then ‖x‖A

Φ =
∞

∑
n=1

αnVλ x(n) , where αn = lim
u→∞

ϕn(u)
u

and Vλ x(n) = 1
λn ∑

i∈In

|x(i)| , n ∈ N .

Proof. Let f (k) = 1
k (1+ σΦ(kx)) , where

σΦ(x) =
∞

∑
n=1

ϕn

( 1
λn

∑
i∈In

|x(i)|
)

=
∞

∑
n=1

ϕn

(
Vλ x(n)

)
.

Since f (k) is continuous and K(x) = /0 , so we have ‖x‖A
Φ = lim

k→∞
f (k) = lim

k→∞

σΦ(kx)
k

.

Then αn = lim
u→∞

ϕn(u)
u

is finite for all n ∈ supp x . If not, there exists a n0 ∈ supp x

such that ‖x‖A
Φ = lim

k→∞

σΦ(kx)
k

� lim
k→∞

ϕn0(kVλ x(n0))
kVλ x(n0)

Vλ x(n0) = ∞ . So we have

‖x‖A
Φ = lim

k→∞

σΦ(kx)
k

= lim
k→∞

∞

∑
n=1

ϕn(kVλ x(n))
kVλ x(n)

Vλx(n) =
∞

∑
n=1

αnVλx(n) . �

LEMMA 10. Let x ∈ VA
Φ(λ ) be given and x �= 0 . If Φ = (ϕn)∞

n=1 is a Musielak-
Orlicz function satisfying condition (∞1) , then K(x) �= /0 .

Proof. Suppose in contrary that K(x) = /0 , then by the Lemma 9, we obtain

lim
u→∞

ϕn(u)
u

< ∞ for each n ∈ supp x , a contradiction to the assumption that Φ sat-

isfying condition (∞1) . �

THEOREM 3. Let Φ = (ϕn)∞
n=1 be a Musielak-Orlicz function satisfying condition

(∗) , i.e., (1.2) holds, Φ ∈ δ2 , i.e., (1.1) holds and Φ > 0 . Then the space VL
Φ(λ ) has

the UKKc -property.

Proof. Since Φ ∈ δ2 and Φ > 0, so for a given ε > 0, by Lemma 3, there exists
a η > 0 such that

‖x‖L
Φ � ε

4
⇒ σΦ(x) � η . (3.2)

Now with this η > 0 , from Lemma 5, we can find a δ1 ∈ (0,1) such that

‖x‖L
Φ > 1− δ1 ⇒ σΦ(x) > 1−η . (3.3)

Suppose (xl) ⊂ B(VL
Φ(λ )) , ‖xl‖L

Φ →‖x‖L
Φ , xl(i) → x(i) for all i ∈ N and sep(xl) � ε .

We will show that there exists a δ > 0 such that ‖x‖L
Φ � 1− δ . If possible, suppose

that ‖x‖L
Φ > 1− δ . Then we can select a finite set I = {1,2, . . . ,N − 1} on which

‖x|I‖L
Φ > 1−δ . Since xl(i) → x(i) for each i ∈ N , so we get that xl → x uniformly on

I . Consequently, since ‖xl‖L
Φ →‖x‖L

Φ , there exists lN ∈ N such that

‖xl|I‖L
Φ > 1− δ and ‖(xl − xm)|I‖L

Φ � ε
2 for all l,m � lN .
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Keeping in mind (3.3) , the first inequality implies that σΦ(xl|I) > 1−η for l � lN .
Since sep(xl) � ε , i.e., ‖xl − xm‖L

Φ � ε , so the second inequality implies that ‖(xl −
xm)|N−I‖L

Φ � ε
2 for l,m � lN , l �= m . Hence for N ∈ N there exists a lN such that

‖xlN |N−I‖L
Φ � ε

4 . Without loss of generality, we may assume that ‖xl|N−I‖L
Φ � ε

4 for all
l,N ∈ N . Therefore, by (3.2) , we have σΦ(xl|N−I) � η .

By convexity of ϕn for each n ∈ N , we have for any α ∈ [0,1] and u ∈ R that
ϕn(αu) = ϕn(αu+(1−α)0) � αϕn(u) . Therefore, if 0 � u < v < ∞ , then ϕn(u) =
ϕn( u

v v) � u
v ϕn(v) , which means that ϕn(u)

u � ϕn(v)
v for each n ∈ N . Assuming now that

0 � u,v < ∞ , u+ v > 0, we get

ϕn(u+ v) = uϕn(u+v)
u+v + vϕn(u+v)

u+v � uϕn(u)
u + vϕn(v)

v = ϕn(u)+ ϕn(v)

for each n ∈ N . Using this fact, we obtain σΦ(xl|I)+ σΦ(xl|N−I) � σΦ(xl) � 1. This
implies that σΦ(xl |N−I) � 1−σΦ(xl|I) < 1− (1−η) = η , i.e., σΦ(xl|N−I) < η . This
contradicts to the fact that σΦ(xl |N−I) � η . This finishes the proof. �

THEOREM 4. The space VA
Φ(λ ) has the UKKc -property whenever Φ satisfies

condition (∞1) , Φ ∈ δ2 , i.e., (1.1) holds and Φ > 0 .

Proof. For a given ε > 0, let (xl) ⊂ B(VA
Φ(λ )) , ‖xl‖A

Φ → ‖x‖A
Φ , xl(i) → x(i) for

each i∈ N and sep(xl) � ε . We shall prove that ‖x‖A
Φ � 1−δ . It is trivial when x = 0.

So, we assume that x �= 0. Then by Lemma 10, we have K(x) �= /0 , i.e., for each x ∈
VA

Φ(λ ) there exists a kl ∈ R+ such that ‖x‖A
Φ = 1

kl

(
1+σΦ(klx)

)
. Since xl → x weakly

implies xl(i) → x(i) for each i ∈ N , so we can select a finite set I = {1,2,3, . . . ,N−1}
on which xl → x uniformly. So, there exists lN ∈ N such that

‖(xl − xm)|I‖A
Φ � ε

2
for all l,m � lN . (3.4)

Since sep(xl) � ε , so we have by definition that ‖xl − xm‖A
Φ � ε for l �= m . This

inequality together with (3.4) implies that ‖(xl − xm)|N−I‖A
Φ � ε

2 for l �= m and l,m �
lN . Hence for each N ∈ N there exists a lN such that ‖xlN |N−I‖A

Φ � ε
4 . Without loss of

generality, we may assume that ‖xl|N−I‖A
Φ � ε

4 for all l,N ∈ N . Therefore, by Lemma
3, there exists δ1 ∈ (0,ε) such that σΦ(xl|N−I) � δ1 .

Since VA
Φ(λ ) is order continuous, i.e., ‖x−x|I‖A

Φ → 0 for sufficiently large N and

hence there exists a δ1
4 > 0 such that ‖x|I‖A

Φ > ‖x‖A
Φ − δ1

4 . Also, since xl(i) → x(i) for
each i and ‖xl‖A

Φ →‖x‖A
Φ , so there exists N0 ∈ N such that

‖xl|I‖A
Φ > ‖x‖A

Φ − δ1
4 for l > N0 .

Since ‖xl‖A
Φ � 1 implies kl � 1 for all l ∈ N , so for each n ∈ N the convexity of ϕn

and the inequality ϕn(u+ v) � ϕn(u)+ ϕn(v) for all u,v ∈ R+ implies that

1 � ‖xl‖A
Φ

=
1
kl

(
1+

N−1

∑
n=1

ϕn

( kl

λn
∑
j∈In

|xl( j)|
)

+
∞

∑
n=N

ϕn

( kl

λn
∑
j∈In

|xl( j)|
))
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=
1
kl

(
1+

N−1

∑
n=1

ϕn

( kl

λn
∑
j∈In

|xl( j)|
))

+
1
kl

( ∞

∑
n=N

ϕn

( kl

λn

N−1

∑
j=n−λn+1

|xl( j)|+ kl

λn

n

∑
j=N

|xl( j)|
))

� 1
kl

(
1+

N−1

∑
n=1

ϕn

( kl

λn
∑
j∈In

|xl( j)|
))

+
1
kl

∞

∑
n=N

ϕn

( kl

λn

N−1

∑
j=n−λn+1

|xl( j)|
)

+
1
kl

∞

∑
n=N

ϕn

( kl

λn

n

∑
j=N

|xl( j)|
)

=
1
kl

(
1+ σΦ

(
klxl |I

))
+

1
kl

∞

∑
n=N

ϕn

( kl

λn

n

∑
j=N

|xl( j)|
)

� 1
kl

(
1+ σΦ

(
klxl |I

))
+

∞

∑
n=N

ϕn

( 1
λn

n

∑
j=N

|xl( j)|
)

[∵ kl � 1.]

� ‖xl|I‖A
Φ + σΦ

(
xl|N−I

) [
∵

∞

∑
n=N

ϕn

( 1
λn

n

∑
j=N

|xl( j)|
)

�
∞

∑
n=N

ϕn

( 1
λn

n

∑
j=n−λn+1

|xl( j)|
)]

> ‖x‖A
Φ− δ1

4
+ δ1 = ‖x‖A

Φ +
3δ1

4
for l > N0.

Therefore ‖x‖A
Φ � 1− 3δ1

4 , which means that the space VA
Φ(λ ) has the coordinatewise

Uniform Kadec-Klee property. �

THEOREM 5. Let Φ = (ϕn)∞
n=1 > 0 be a Musielak-Orlicz function satisfying con-

dition (∗) , i.e., (1.2) holds and δ2 , i.e., (1.1) holds. Then VL
Φ(λ ) has the uniform

Opial property.

Proof. Let ε > 0 be any number and (xl) ⊂ S(VL
Φ(λ )) be any weakly null se-

quence. We show that for any ε > 0 there is a μ > 0 such that

liminf
l→∞

‖xl + x‖L
Φ � 1+ μ ,

for each x ∈ VL
Φ(λ ) satisfying ‖x‖L

Φ � ε . Since Φ ∈ δ2 and Φ > 0, so by Lemma 3,
for each ε > 0 there is a number δ ∈ (0,1) such that for each x ∈ VL

Φ(λ ) , we have
σΦ(x) � δ . Since Φ ∈ δ2 , Φ > 0 and Φ satisfies the condition (∗) , so by Lemma 7
for any ε > 0, there exists δ1 ∈ (0,δ ) such that σΦ(u) � 1, σΦ(v) � δ1 imply

|σΦ(u+ v)−σΦ(u)| < δ
8

for any u,v ∈VL
Φ(λ ). (3.5)

Since σΦ(x) < ∞ , so there is a number n0 ∈ N such that

∞

∑
n=n0+1

ϕn

( 1
λn

∑
j∈In

|x( j)|
)

� δ1

8
. (3.6)
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From (3.6) it follows that

δ �
n0

∑
n=1

ϕn

( 1
λn

∑
j∈In

|x( j)|
)

+
∞

∑
n=n0+1

ϕn

( 1
λn

∑
j∈In

|x( j)|
)

�
n0

∑
n=1

ϕn

( 1
λn

∑
j∈In

|x( j)|
)

+
δ1

8
,

which implies
n0

∑
n=1

ϕn

( 1
λn

∑
j∈In

|x( j)|
)

� δ − δ1

8
> δ − δ

8
=

7δ
8

. Since xl → 0 weakly,

i.e., xl(i) → 0 for each i , so there exists a l0 such that for all l � l0 , the last inequality
yields

n0

∑
n=1

ϕn

( 1
λn

∑
j∈In

|xl( j)+ x( j)|
)

� 7δ
8

. (3.7)

Again, by the fact that xl → 0 weakly, we can choose an n0 such that σΦ(xl|n0) → 0
as l → ∞ . So there exists a l1 > l0 such that σΦ(xl|n0) � δ1 for all l � l1 . Since
(xl) ⊂ S(VL

Φ(λ )) , i.e., ‖xl‖L
Φ = 1, so by Lemma 4, we have σΦ(xl) = 1. This implies

that there exists n0 such that σΦ(xl |N−n0) � 1. Now choose u = xl|N−n0 and v = xl|n0 .
Then u,v ∈VL

Φ(λ ) , σΦ(u) � 1, σΦ(v) � δ1 . So from (3.5) , for all l � l1 , we have
∣∣σΦ(xl|N−n0 + xl|n0

)−σΦ
(
xl|N−n0

)∣∣ < δ
8 ,

which implies that σΦ(xl)− δ
8 < σΦ

(
xl|N−n0

)
for all l � l1 , i.e.,

∞

∑
n=n0+1

ϕn

( 1
λn

∑
j∈In

|xl( j)|
)

> 1− δ
8 for all l � l1 . Again, since σΦ

(
xl|N−n0

)
� 1 and σΦ

(
x|N−n0

)
� δ1

8 < δ1 , so
from the equations (3.5) and (3.7) , we obtain

σΦ(xl + x) =
n0

∑
n=1

ϕn

( 1
λn

∑
j∈In

|xl( j)+ x( j)|
)

+
∞

∑
n=n0+1

ϕn

( 1
λn

∑
j∈In

|xl( j)+ x( j)|
)

>
n0

∑
n=1

ϕn

( 1
λn

∑
j∈In

|xl( j)+ x( j)|
)

+
∞

∑
n=n0+1

ϕn

( 1
λn

∑
j∈In

|xl( j)|
)
− δ

8

>
7δ
8

+(1− δ
8

)− δ
8

= 1+
5δ
8

.

Since Φ ∈ δ2 and satisfying the condition (∗) and Φ > 0, so by Lemma 8, there is a
μ > 0 depending only on δ such that ‖xl + x‖L

Φ > 1+ μ . Hence liminf
l→∞

‖xl + x‖L
Φ �

1+ μ . This completes the proof. �

COROLLARY 2. (i) If Φ satisfies condition-δ2 and (∗) then lLΦ [24] has the
uniform Opial property.

(ii) Suppose λn = n, n = 1,2, . . . and ϕn(u) = |u|pn for all u ∈ R , 1 < pn < ∞
∀n. Then it is easy to verify that Φ ∈ δ2 if and only if limsup

n→∞
pn < ∞ . Therefore cesL

(p)

[10] has the uniform Opial property.
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(iii) If ϕn = ϕ ∀n and Φ ∈ δ2 , then Cesàro-Orlicz sequence spaces cesL
ϕ [9] has

the uniform Opial property.

THEOREM 6. Let Φ > 0 be a Musielak-Orlicz function satisfying conditions (∞1)
and δ2 , i.e., (1.1) . Then VA

Φ(λ ) has the uniform Opial property.

Proof. Take any ε > 0 and x ∈ VA
Φ(λ ) with ‖x‖A

Φ � ε . Let (xl) ⊂ S(VA
Φ(λ )) be

any weakly null sequence. We will show that for every ε > 0 there is a μ > 0 such that

liminf
l→∞

‖xl + x‖A
Φ � 1+ μ ,

for each x ∈ VA
Φ(λ ) . Since Φ ∈ δ2 and Φ > 0 by Lemma 3, there is a δ ∈ (0, 4

5 )
independent of x such that σΦ( x

2) � δ . Since Φ ∈ δ2 implies VA
Φ(λ ) = hA

Φ(λ ) , which
is order continuous by Theorem 1. Hence x is an order continuous element. So, there
exists a natural number n0 ∈ N such that

∥∥x− x|n0

∥∥A
Φ =

∥∥x|N−n0

∥∥A
Φ < δ

8 and
∞

∑
n=n0+1

ϕn

( 1
λn

∑
j∈In

|x( j)|
2

)
<

δ
8

.

Since σΦ( x
2 ) � δ , it follows that

δ �
n0

∑
n=1

ϕn

( 1
λn

∑
j∈In

|x( j)|
2

)
+

∞

∑
n=n0+1

ϕn

( 1
λn

∑
j∈In

|x( j)|
2

)

<
n0

∑
n=1

ϕn

( 1
λn

∑
j∈In

|x( j)|
2

)
+

δ
8

.

This gives
n0

∑
n=1

ϕn

( 1
λn

∑
j∈In

|x( j)|
2

)
>

7δ
8

. Since xl → 0 weakly implies that xl(i) → 0

as l → ∞ for each i , so we have σΦ(xl |n0) → 0 as l → ∞ . Hence, by Lemma 3, there
exists a natural number l0 such that

∥∥xl|n0

∥∥A
Φ <

δ
8

for all l > l0 which implies
∥∥xl |N−n0

∥∥A
Φ > 1− δ

8
, since ‖xl‖A

Φ = 1.

(3.8)
Now for all l � l0 , we have

‖xl + x‖A
Φ =

∥∥(xl + x)|n0 +(xl + x)|N−n0

∥∥A
Φ �

∥∥(xl + x)|n0 + xl|N−n0

∥∥A
Φ − δ

8

�
∥∥x|n0 + xl|N−n0

∥∥A
Φ − δ

8
− δ

8
=

∥∥x|n0 + xl|N−n0

∥∥A
Φ − δ

4
.

Since Φ satisfying condition (∞1) , so by Lemma 10, there exists kl > 0 such that for
l � l0 , we have

∥∥x|n0 + xl|N−n0

∥∥A
Φ = 1

kl

(
1+ σΦ

(
kl

(
x|n0 + xl|N−n0

))
.
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Now using the fact that σΦ(u+v) � σΦ(u)+σΦ(v) , whenever supp(u)∩supp(v)= /0 ,
then we have

‖xl + x‖A
Φ � 1

kl
+

1
kl

σΦ

(
klx|n0

)
+

1
kl

σΦ

(
klxl |N−n0

)
− δ

4

�
∥∥xl |N−n0

∥∥A
Φ +

1
kl

σΦ

(
klx|n0

)
− δ

4
.

Without loss of generality, we may assume that kl � 1
2 for all l because if kl < 1

2 then

we have ‖xl +x‖A
Φ > 2− δ

4 > 1+δ . Using the convexity of Φ , we have σΦ

(
klx|n0

)
�

2klσΦ

(
1
2x|n0

)
. Therefore (3.8) implies that

‖xl + x‖A
Φ �

∥∥xl|N−n0

∥∥A
Φ +2σΦ

(1
2
x|n0

)
− δ

4

>
∥∥xl|N−n0

∥∥A
Φ +2

n0

∑
n=1

ϕn

( 1
λn

∑
j∈In

|x( j)|
2

)
− δ

4

� 1− δ
8

+2.
7δ
8

− δ
4

= 1+
11δ
8

,

which implies that liminf
l→∞

‖xl +x‖A
Φ � 1+μ , where μ depends upon δ . This completes

the proof. �

COROLLARY 3. (i) Let λn = n, n = 1,2, . . . and ϕn(u) = |u|pn for all u ∈ R ,
1 < pn < ∞ ∀n. Then it is easy to verify that Φ ∈ δ2 if and only if limsup

n→∞
pn < ∞ .

Therefore cesA(p) [10] has the uniform Opial property.

(ii) Suppose ϕn = ϕ and λn = 1 for all n ∈ N and Φ ∈ δ2 . Then lAϕ [25] has the
uniform Opial property.

(iii) If ϕn = ϕ ∀n, λn = n, n = 1,2, . . . and Φ ∈ δ2 , then the Cesàro-Orlicz
sequence spaces cesA

ϕ [9] has the uniform Opial property.
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sequence spaces, J. Math. Anal. Appl., 345, 1 (2008), 410–419.

[16] R. HUFF, Banach spaces which are nearly uniformly convex, Rockey Mountain J. Math., 10, (1980),
743–749.

[17] R. WANGKEEREE, On property (k -NUC) in Cesàro-Musielak-Orlicz sequence spaces, Thai Journal
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