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SOME GEOMETRIC PROPERTIES OF MUSIELAK-ORLICZ SEQUENCE
SPACES GENERATED BY DE LA VALLEE-POUSSIN MEANS

ATANU MANNA AND P. D. SRIVASTAVA

(Communicated by L. Leindler)

Abstract. Necessary and sufficient conditions for the non-triviality of a Musielak-Orlicz se-
quence space Vp(A) generated by the de la Vallée-Poussin means are obtained. Topological
properties such as completeness, separability, order continuity are characterized for the space
Va(A) . Finally, criteria for the coordinatewise uniformly Kadec-Klee property and the Uniform
Opial property are obtained.

1. Introduction

In metric fixed point theory, geometric properties of Banach spaces such as the
Kadec-Klee property, the Opial property and their several generalizations play funda-
mental role. In particular, the Opial property of a Banach space has a great importance
in the fixed point theory, differential equation and Integral equations. On the other hand
the Kadec-Klee property has several applications in Ergodic theory and many other
branches([19]).

In recent days, the theory of Cesaro-Orlicz sequence spaces and Musielak-Orlicz
sequence spaces have been studied extensively. Some topological properties like non-
triviality, order continuity, separability, completeness and relations between norm and
modular as well as some geometric properties like monotonicity, Kadec-Klee property,
uniform Opial property, rotundity, local rotundity etc. are discussed in ([1], [9], [10],
[13], [15], [23], [24]). The present paper is a continuation of the study of some of
the geometric properties for the newly introduced Musielak-Orlicz sequence spaces
generated by de la Vallée-Poussin means.

Throughout the paper we shall denote N, R and R™ as the set of natural numbers,
of reals, and of nonnegative reals respectively. Let (X,].||) be a Banach space and
being a subspace of 1%, where [° be the space of all real sequences x = (x(i))7 . Let
S(X) and B(X) denotes the unit sphere and closed unit ball respectively. A sequence
(x7) C X is said to be €-separated sequence if separation of sequence (x;) denoted by
sep(x;) = inf{||x; — x| : I # m} > € for some € > 0 [16].

A Banach space X C [ is said to have the Kadec-Klee property, denoted by (H),
if weakly convergent sequence on the unit sphere is strongly convergent, i.e., convergent
in norm ([7]) . A Banach sequence space X is said to possess coordinatewise Kadec-
Klee property, denoted by ( H. )([14]), if x € X and every sequence (x;) C X such that
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lx;]] = |lx|| and x;(i) — x(i) for each i, then |jx; —x|| — 0.

It is well known that X € (H,) implies X € (H), because weak convergence in X im-
plies the coordinatewise convergence. A Banach space X C I° has the coordinatewise
uniformly Kadec-Klee property, denoted by (UKK, )([21]), if for every € > O there
exists a 6 > 0 such that

(x;) C B(X), sep(x;) > €, ||x]] — ||x|| and x;(i) — x(i) for each i implies
x| <1-6.

It is well known that the property (UKK,) implies property (H.).
A Banach space X is said to have the Opial property ([20]) if for every weakly
null sequence (x;) C X and every non zero x € X, we have

liminf||x; || < liminf||x; + x]|.
[—o0 [—o0

A Banach space X is said to have the uniform Opial property ([20]) if for each € > 0
there exists u > 0 such that for any weakly null sequence (x;) in S(X) and x € X with
||lx|| = € the following inequality hold:

1+u< hmmexl +x]|.

In any Banach space X an Opial property is important because it ensures that X has
a weak fixed point property ([4]). Opial in ([26]) has shown that the space L, [0,27]
(p#2,1 < p <o) does not have this property but the Lebesgue sequence space [,,(1 <
p < o) has.

A map @ :R — [0,c0] is said to be an Orlicz function if it is an even, convex, left
continuous on [0,e0), @(0) =0 and @(u) — e as u — oo. A sequence O = (¢,);_,
of Orlicz functions ¢, is called Musielak-Orlicz function ([3]). A Musielak-Orlicz
function @ = (¢,);_, is said to satisfy condition (eo;) if

Pn(u)

U— oo u

=4ooforeachneN.  (co))

For a Musielak-Orlicz function @, the complementary function ¥ = ()5, of @ is
defined in the sense of Young as

W (1) = sup{ |ulv—@,(v)} forall u€R and n € N.
v=0

Given any Musielak-Orlicz function ® and x = (x(n))_, €1°, a convex modular Iy :
19 — [0,90] is defined by I (x Z On (\x ) and the linear space lp = {x € [*:

Ip(rx) < oo for some r > 0} is called Mu51elak Orlicz sequence space. Let us consider
lp with two functionals |||x|||5 and |||x|||4, defined by

Il =int{r>0:10() <1 }and

Ity = ot {7 (1-+ (k) } = sup { 3wt ) < 1.
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These two norms are equivalent. Indeed |||x|||5 < |||x||[5 < 2||x[|[5 (see [3]). These
functionals, i.e., |||x|||5 and |||x||[4 are known as the Luxemberg norm and the Amemi-
ya norm (Orlicz norm), respectively, and the corresponding Musielak-Orlicz sequence
spaces are denoted by /5 and [4 respectively. The set of all k > 0 such that |||x||[4, =

%(1 + Iq>(kx)> is attained for a fixed x € I is denoted by K(x). Moreover, it is well
known that for any x € I there exists a k > 0 such that ||[x|||3 = %(1 +Iq>(kx)>

whenever ‘P”T(”) — oo as u — oo for each n € N. For the details about Musielak-Orlicz
sequence spaces and their geometric properties we refer to ([1]-[3], [18], [24]).
The subspaces

{x = (x(n))y, € 19: Vr>0 3n, €N such that 2 On (r|x(n)|> < 00},
equipped with the Luxemberg norm and the Amemiya norm induced from I are de-
noted by h% and hf, are the subspaces of all order continuous elements of /5 and 1§
respectively.

A Musielak-Orlicz function ® = (¢,)7_; satisfies the & -condition denoted by
® € &Y if there are positive constants @,K, a natural m and a sequence (c,)>_; of
positive numbers such that (c,);_,, € [; and the inequality

On(2u) < K@y (u) +cn (1.1)

holds for every n € N and u € R whenever ¢, () < a. If a Musielak-Orlicz function
® satisfies the 68 -condition with m = 1, then @ is said to satisfy the &, -condition([2],
[3D.

For any Musielak-Orlicz function @, hg coincides with lg if and only if @ sat-
isfies 58 -condition([2]).

A Musielak-Orlicz function ® = (¢,);>_, satisfies the condition (x) ([1]) if for
any € € (0,1) thereis a § > 0 such that

¢0n(u) < 1—¢implies @,((140)u) < 1 foralln € Nand u > 0. (1.2)

A Musielak-Orlicz function @ is to said to vanishes only at zero which is denoted by
@ >0 if @,(u) >0 forany n € N and u > 0.

Let (E,||.]|g) be a real normed linear subspace of I°. E is said to be a normed
sequence lattice ([0]) if it satisfies the following two conditions:

(i) forany x € E and y € I° such that |y(k)| < |x(k)| for every k € N, then y € E
and ||ylle < |[lx]|z.

(if) there exists a sequence x = (x(k));_, € E such that x(k) >0 forall k € N.

A normed sequence lattice (E,||.|g) with complete norm ||.||g is called Banach
sequence lattice (see [0]).

NOTE. In many literatures a Banach sequence lattice E is also called as Kothe
sequence space ([9], [23]).

A Banach sequence lattice E is said to have the Fatou property if for any x € [°
and sequence (x;) C E; (where E4 = {x € E : x > 0} ) satisfying 0 < x;(i) /" x(i), i.e.,
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x;(7) increases to x(i) as [ — oo for each i € N and sup||x;||g < e, then x € E and
!
l|lx||e = llim lx: ]| (see [23]).

An element x € E is said to be order continuous if for any sequence (x;) C E4
such that |x(i)| > x;(i) \, 0, i.e., x;(i) decreases to zero as [ — oo for each i implies
that ||x;]|g — 0. The set of all order continuous element in E is denoted by E,. A
Banach sequence lattice E is said to be order continuous if E, = E . Itis known that E
is order continuous if and only if [/(0,0,...,x(i+1),x(i+2),...)||[g — 0 as i — oo for
any x € E ([23]).

2. Class Vp(A)

Let A = (A,);_, be a non decreasing sequence of natural numbers satisfying A, =
1, A1 — A, < 1, Vn € N. For any sequence x = (x(n))>_, €1° the de la Vallée-Poussin
means is defined by

tn(x) = 1= 3 x(k),
kel
where I, = [n— A, + 1,n],n=1,2,... ([5], [8]).
We introduce the de la Vallée-Poussin means map Vj on [0 as V; : 10 — [0,)
such that x — V) x, where

Vax = (Vax(n))y_y, with Vyx(n) = £ 3 [x(k)| foreach n=1,2,... and x € %,
kel,

Using this de la Vallée-Poussin means map and a Musielak-Orlicz function ® = (¢,)>_,,
we define on [° a functional 6o (x) by

op(x) =Ilp(Vyx) = Z%( Z‘X )

” kel

Since @ is convex, so it is easy to verify that og(x) is a convex modular (for definition
see [3]) on °.
We now introduce the space Vp(A) as follows

Vo(d)={x€l’:Vix€lp} ={x€l’: 0p(rx) < e for some r > 0}.

Clearly, it is a linear space and also forms a normed linear space under the norms
|x]|l% = [||Vaxl||% and ||x||4 = |||Vax|||4 introduced with the help of the norms on
lp. We call Vp(A) as the Musielak-Orlicz sequence space generated by de la Vallée-
Poussin means.

Our class Vp(A) includes the following classes as particular cases:

(i) When A, =n,n=1,2,..., the V(1) reduces to the Cesaro-Musielak-Orlicz
sequence space cesg studied by Wangkeeree ([17]), where

oo r n
CESq):{xElOI (p(— x(k ><ooforsomer>0},
ng,l . nkgtl‘ (k)|



MUSIELAK-ORLICZ SEQUENCE SPACES GENERATED BY DE LA VALLEE-POUSSIN MEANS 691

(ii) For ¢, = @, Vn the cesq becomes well-known Cesaro-Orlicz sequence space
ces studied recently by Petrot and Suantai [9], Foralewski et al.[13], Cui et al. [23],

(iif) For A, =1, Vn the Vg(A) reduces to the Musielak-Orlicz sequence space
lo.

More recently, some geometric properties of sequence spaces involving de la
Vallée-Poussin means has been studied by Simsek et al. [11], [12]. In this paper, we
introduce and study a new sequence space defined with the help of a Musielak-Orlicz
function and de la Vallée-Poussin means. Some basic topological properties like non-
triviality, order continuity, separability, completeness as well as criteria for some ge-
ometric properties like coordinatewise Uniform Kadec-Klee property, Uniform Opial
property with respect to both, the Luxemberg norm and Amemiya norm, are obtained
for this class.

NOTATIONS. Forany x € [° and i € N, we use the following notations throughout
the paper:

xli = (x(1),x(2),x(3),...,x(i),0,0,...), called the truncation of x at i,

x|n—i = (0,0,0,. 0,x(l—|—1) (z—|—2) ),

xlp={x= (x( ))1:1 €19 :x(i) #0foralli € I C Nandx(i) = 0 forall i € N\ I}
and

supp x ={i € N:x(i) # 0} and clA denotes the closure of a set A.

For simplifying notations, we write V5(1) = (Vo (A), ||.||%) and Va(A) = (Vo (1),
|/[4) - If norm is not specified we write simply (Vo(A),||.||), where ||| may be ||.||5
or [[114.

3. Main Results

First, we give the criteria for non-triviality of the space Vp(A):

PROPOSITION 1. Let ® = (¢,);_, be a Musielak-Orlicz function such that ¢;(u)
> @j(u) if i<j, i,j €N, uecl0,0) and a non decreasing sequence A = (A,)5_, of
natural numbers tending to oo, satisfies Ay = 1,A,01 — A, <1 VneN, Ly > A,
V m,n € N. Then the followings are equivalent:

(@) Vo(4) # {0} )

(b) there exists ny € N such that ), @, <%n> <o

n=n

(¢) Vr>0, 3n, such that n=2nr On (A_r) < oo,

Proof. (a) = (b) Let y = (y(k));z_, be a nonzero element of Vg(4). Since y #
0, so there exists € N such that y(r) # 0. Suppose z = (0,0,...,0,y(¢),0,...) €
Vo(A). In particular, we choose x = (0,0,...,0,1,0,...) € Vo(A), where 1 is at the
¢ -th position. Then we have

o (rx) = i (%) < oo,

n=t
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We consider the following two cases:
(i) If r > 1, then for each n € N, we have %n <+ and by the monotonicity of

D = (¢,);_,, we have (pn( ) < (p,,( ) for each n € N. Therefore

it 1 & r
nz:,(p”(k_) <nz:,(p"<7t_n> <

Hence (b) follows easily from above by choosing 7 = n; .
(ii) If 0 <r <1, then 3m € N such that r > % Hence —— < + forall n e N.

A‘mln
o 1 b r
so S (L)< Sm(L):
Z} A2 Z’: A
Now, since A = (A,);_, is a non decreasing sequence of natural numbers and

® = (¢,);;_, be a Musielak-Orlicz function such that ¢;(u) > @;(u) if i< j, i,j €N,
u € [0,0), we have

% o(z)

n=mt

= QOm <)Ll ) + Omr+1 (;Lmt-&-l ) too Tt O (m—1) (%)

mi+(m—1)

+(pm’+m</lmt+m> + Pu(rs1) 41 <m> +..+ (Pm(t+l)+(m1)<m>
+ O(r12) ﬁ) T Om(r+2)+1 <m) +...
<<pm,<%mt +<pmt+1(7t1 )+ - Pt (m— 1)(7:,”)

) T Pm(r+1)+1 <m> to T P 1)+ (m-1) <%)) +...

By choosing mr = ny, we get (a) = (D).

- 1
(b) = (c) Suppose (b) is true. So, there exists n; such that Y (P"(k_> < oo,
n=nj n
We consider the following two cases:
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s 1
(i)IfO<r<1,thenforalln,lL %nand Eq)n( >< E%(A_)<
n=n; n

So by choosing n, := n;, we obtain Z On <; ) < oo,

(it) If r > 1, then we can find an m € N such that r < 4,,. Defining n, = nym
and using the same steps as above with the fact that A,,;, > Ay, Vm,n € N, we have

En(f)EolE)- £ nE) o In(i)-

n=nim

n=ny

Therefore (b) = (c).
- 1
(¢) = (a) Take r=1. Since (c) holds, there exists n; € N such that Y @, <7L_>
n

n=nj
< oo. Let us consider a sequence x = (0,0,...,0,1,0,...), 1 is at the n; -th term. Then
x €l and

Go(rx) = G (x) = g (%) < oo,

which implies that x € Vgp(1). O

It is easy to observe that any nontrivial Musielak-Orlicz sequence space Vi (A)
generated by de la Vallée-Poussin means belongs to the class of normed sequence
lattice.

LEMMA 1. (Fatou property) Let x = (x(i))72, €1°, (x;) CVa(A), x; = (x(i)7,,
1 €N (or (x;) C V(X)) are such that 0 < x,(i) / x(i) as | — o for each i € N
and sup || x || < o> (or sup|x||% < o), then x € V(L) (or x € VE(X)) and ||x||4 =
1 1

lim [l [, (or [|x][g = lim [[x[|g ).
—>00 [—oo

Proof. Assume that x; C V4 (A) forall [ € N, sup||x1Hq, < oo and 0 < x; (i) " x(i)
as [ — oo forany x € 1°. Let ||x;||4 = o4. Since sup al < e and (0y) is non decreasing,
1

there exists a finite o such that o; /' o = sup ¢y . By the definition of norm ||x; |4, , we
1

have
1 o1
0y = |4 = inf +{o(kxy) + 1} < inf -{Gw(kr) + 1} = [[}3.

Therefore o0 = sup oy < ||x]|4- We want to prove that ||x||3 < o.
From the deﬁmtlon of norm [|x;[|3,, for every € > 0, there exists k; > 0 such that

Hxl||é>—|—£> %{G¢(k1xl)+l}> kl—l=>kl> > 0 foreach /.

—_— = —
[l HA+€ - °‘+£
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Therefore (k;);7, is bounded from below. Now we have two cases:

Case (i): when (k;);>, is bounded from above. In this case (k;);7, is a bounded
sequence so it will have a convergent subsequence (k;, ), (say). So, we may assume
that k;, — k, k € (0,00). Since x;(i) /" x(i) for each i € N, so by the Fatou’s lemma it
follows that

Hoo(kx)+1} < hmlnf%(aq)(klmxlm) +1) < n%iil}o(”xl"’ |4 +&)=a+e,
for some subsequence (x;,)5>_; of (x;)72,. Since € is arbitrary, we obtain [x||§, < c.
Also for some ko > 0, we have 0g(kox) < oo, i.e, x € VA().

Case (ii): when (k;);>, is not bounded from above, so we assume k; — oo as
I — oo. For a given € > 0, we choose L = =. Then for / > L we have k; > L. Using
the convexity of o, we have

Oo(lx) 1 _ 1 L 1.1 1 ook 1 1 A 1
T +L—LG<1>(k,klxl)+k,+L TSt te klng;qu—Zs T

Consequently, using Fatou’s lemma [|x[|3, < {00 (Lx) 4+ 1} < hmmf {G(D(LX[)

1
1} < hm(||x1Hq, +2¢e— k—) = o+ 2¢. This implies that ||x||4, < o, since € is arbi-

1
trary. Thus the proof is completed.

In case of Luxemberg norm |.||%, the proof runs on the parallel lines as given in
[23]. O

It is known that any normed sequence lattice with the Fatou property is complete
in its norm ([22], p.4). Hence the spaces Vg () and V5(2) are Banach spaces.

THEOREM 1. Let

h‘%(l):{er{g(l):Vr>03nr such that i (pn( Y [x(k ) <°°}

n=nr }’1 kel

and suppose ® = (¢,)7_|, A = (A,);7_, satisfies the assumptions in Proposition 1.
Then followings are true:
(i) h4(R) is a closed subspaces of Vi (M),
(ii) h3(A) = clDg, where Do = {x € V() : x(k) # O for finite k € N},
(iii) h3(A) is order continuous,
(iv) h(A) is a separable subspaces of V().

Proof. (i) Clearly h4,(A) is a subspace of V4(). We need to show only that the
closedness of 74,(2). For this, let x; = (x;(k))7_, € h3(A), i € N and [|x —x;[4 — 0
as i — oo and x € V4(A). We show that x € h4,(A). By the equivalent definition of
norm and modular convergence, we have g (r(x —x;)) — 0 as i — oo for all r > 0.
So for all r > 0 there exists J € N such that 6¢(2r(x —x)) < 1. Since x; € hj(1)
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so there exists n; such that 2 (p,,( 2 |x; (k ) < oo Vr>0. We choose n, =ny,
n=ny " kel
then we have

S ou(£ S hWl) < 3 o5 T ChEH )+ 51 3 2u®))

n=ny n kel, n=nj n kel, " kel,
<3 Y o3 T -um)+5 Y ol ¥ u®))
n ny " kel, n ny n kel,
l
< 3 oo(2r(x—xy))+ = Z < Z | (k) )

n ny ” kel

Since r is arbitrary, so we have x € i4,(1). This completes the proof.

(ii) We first show the inclusion c/Dg C h4(A). If clDg = 0, then the inclu-
sion is true. So, let ¢/Dg # 0. Since K4 (A) is a closed linear subspace of V4 (1),
it is enough to prove that x = ¢, € hj(A), because any element of the form y =
(y(1),»(2),...,y(k),0,0, ...) can be written as the linear combination of x = ¢;,7 =
1,2,.... Then by Proposition 1, there exists n, such that

Toli)-

We may assume that n, >t for each r. Hence x € hj(A).

For reverse inclusion, let x = (x(1),x(2),...,x(p),x(p+1),...) € k(). For any
p €N, we denote x” = (x(1),x(2),...,x(p),0,0,...). Then x” € cIDg. We prove that
for every x € h (1), ||x—xP|4 — 0 as p — . Since x € h4,(A), so for a given € >0
there exists a pg, we have

i (p,,( E\x )<§Vr>0.

n=po+1 n kel,

Then for any r > 0 and p > pg, we have
G‘D(r('x—xp)) < G(D(r(x_xpo)) = G(I)(V(0,0,... ,O,X(p0+ 1),)C(p0—|—2),. . ))

i qon( D Ix(k )<

n=po+1 n kel,

N M

ie., [|x—xP||4 — 0 as p — oo and so x € c/Dg . Hence the result (i) is proved.

(iii) Let x € h4,(A), we show that x is an order continuous element. Let x;(i) \, 0
for each i and x;(i) < |x(i)| for all / € N. Since x € h4,(1), so forany r >0, £ >0
there exists n, € N such that

3 o5 Zhiwl) <5

We denote for every n € N,
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= (P"</1Ln Y \x(k)o and fB;(n) = %(fnkz;, \xl(k)o.

kel

Since x;(i) \, 0 for each i, so ﬁl( ) — 0 as [ — oo for each n € N. Hence there is a
ny—1

le € N such that Z Bi(n) <3 £ forall I > le. Also since Y, Bi(n Z B(n
n=ny n=ny
for all n > n, and l e N. Therefore for arbitrary r > 0, we have o (rx;) < € for all
[ > l¢. This means that ||x;||4, — 0 as [ — . So x is an order continuous element.
Now let x € V4 (A) be an order continuous element. Then by definition

1(0,0,...,x(i4+1),x(i+2),...)||4 — 0 as i — oo.

This means that x € cl{x € V(1) : x(k) # 0 for finite k € N} = hg(A).
(iv) Define a countable set Sqp = cl{x € V4(1) : x(k) # 0 for finite k € N and
x(k) € Q}. Itis easy to show that Sg is separable. We show that c/Dgp = S¢. The
inclusion S¢ C clDg is obvious. We show only the inclusion c/Dgp C S¢. Let x =
(x(1),x(2),...,x(p),0,0,...) € cIDg and x; = (x;(1),x;(2),...,xj(p),0,0,...) € So
is such that xj(k) — x(k) as j — oo for each k € N. We prove that for each x € ¢c/Dg
there exists x; € Sp such that ||x; —x||4, — 0 as j — . We choose for any r >0,
€ (0,M), where M > 0, a constant. Then for any r > 0 there exists a jo € N such
that

rZ\x <—f0r] joand n=1,2,...,p
kel,

By the condition (b) of Proposition 1, we have there exists a constant M > 0 such that

1
2 O <)L_> < M. Therefore for j > jo and convexity of ® = (¢,);_,, we have
=1 n

aa(rtx—) = X o(f T 0 -n®)+ 3 o(f ¥ k-nw))

" kel, n=p+1 " k=n—Ap+1
©° P
,
<So(r b0 5@+ Y o£ X o) -x0)
n=1 M kel, n=p+1 " k=p—2p+1

<%n§’1¢n(l_n> <€

Since r is arbitrary, so we have |x; —x||3, — 0 as j — . Hence /D¢y = So. Since
S is separable and h4, (1) = clDg = S, so h4(A) is separable. [

REMARK 1. Since the Luxemberg norm ||.||5 and the Amemiya norm ||.||4, are
equivalent, so all the results of Theorem 1 are also true for the space ik ().

THEOREM 2. Let @ = (¢,)7_, be a Musielak-Orlicz function satisfying the ;-
condition. Then hop(A) = Vp(L).
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Proof. We need to show here only the inclusion Vg(A) C he(A). Let x € Vg (A).

Then for some 7 > 0, 0p(1x) < oo, i.e., 2 (pn( 2 |x(k ) < 0. We show that for
n=1 " kel,

any r > 0 there exists a n, € N such that Z (p,,( Y |x(k ) <o, If r€[0,1]

n=ny "kel
Y |x(k ) < oo,

then it is easily follows because 2 (p,,( 2 |x(k ) < 2 (pn(
n=ny " kel

n=ny Mo kel,
Now, we fix ¢ and choose r > t. Since x € Vg(A), i.e., for some 7 > 0 0o (1x) < o0, 80

there exists n, and a constant a such that 2 (pn( 2 |x(k ) . Therefore for
n=ny, " kel,

each n > n,, we have qon( Y |x(k ) < =. Choose a sequence (c,);,_; of positive
kel

oo

real numbers such that 2 cp < oo. So for a given € > 0, there exists a n, such that

n=1
2 cn < z.Letu= A 2 |x(k)|, K > 0 be a constant and « is chosen above. Since
n=ny kel

r>1 sothereis a [ € N such that r < 2/t. Now applying &, -condition for all n > n,,
we have

ou(= 3 1 0)) < 0u(2 3 15(0)) + 00 < Kl (= 3 1) )+<§Ki)cn

” kel " kel ” kel

Taking summation both sides over n > n,, we obtain

So(rziw)<n S mlg 3 o) (5K) 5o <=

n kel, n=ny n kel, n=n,

Hence x € hop(A). O

COROLLARY 1. Let ® € &, i.e., (1.1) holds. Then
(i) V(L) is separable,
(ii) Vo(A) is order continuous.

We will assume in the rest of the paper that ® = (¢,);;_, is a Musielak-Orlicz
function with all ¢, being finitely valued. The following known Lemmas are useful in
the sequel:

( ;JEMMA 2. Let x € h% (M) be an arbitrary element. Then ||x||5 = 1 if and only if
op(x)=1.

Proof. The proof will run on the parallel lines of the proof of Lemma 2.1 in
[23]. O

LEMMA 3. Suppose ® € & and ® > 0. Then for any (x;) C VE(1),
(/|3 — 0) if and only if 6a(x1) — 0.

xl§—0
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Proof. For the proof this lemma see [1], [14]. O

LEMMA 4. If ® € &, i.e., (1.1) holds, then for any x € qu(l),

|[x|[§ = 1 if and only if op(x) = 1.

Proof. Since ® € &, implies V(1) = h(A). The proof will be follows from
Lemma2. 0

LEMMA 5. Let ® € &y, i.e., (1.1) holds and satisfy the condition (x), i.e., (1.2)
holds. Then for any x € V5(A) and every € € (0,1) there exists 5(¢) € (0,1) such that
Oo(x) < 1 — € implies ||x||5 <1-6.

Proof. The proof of this lemma will be given in a similar way as the proof of
Lemma 9 in[1]. O

LEMMA 6. [1] Let (X,]|.||) be a normed space. If f : X — R is a convex function
in the set K(0,1) ={x e X :|x|| < 1} and |f(x)| < M for all x € K(0,1) and some
M > 0. Then f is almost uniformly continuous in K(0,1); i.e., forall d € (0,1) and
€ >0 there exists a 6 >0 such that ||y|| <d and ||x—y|| < & implies |f(x)— f(y)| <&
Sorall x,y € K(0,1).

LEMMA 7. Let ® € &y, i.e., (1.1) holds, ® > 0 and satisfies the condition (x),
i.e., (1.2) holds. Then for each d € (0,1) and € > 0 there exists 0 = 6(d,€) > 0 such
that og(x) < d, oe(y) < 0 imply

|00 (x+y) — 0o (x)| < & for any x,y € Vg(R). 3.1

Proof. Since ® € &, and satisfies condition (*), so by Lemma 5, there exists
dy € (0,1) such that ||x[|5 < d;. Also, by Lemma 3, we find a § > 0 such that for
every 8 > 0, og(y) < & implies |[y||5 < & for any y € VE(A). So, if op(x) <
d and og(y ) S then [|x||5 < d; and ||y|% < 8. Hence, by Lemma 6, we have
|ow(x+y) — 0o (x)| < € because the functional og satisfies all the assumptions of f
defined in Lemma 6. [J

LEMMA 8. Let ® € &,, i.e., (1.1) holds and satisfies the condition (x), i.e., (1.2)
holds and ® > 0. Then for any x € V5(1) and any € > 0 there exists § = 5(¢) >0
such that 6g(x) > 1+ ¢ implies ||x||5 > 1+38.

Proof. The proof of this lemma goes on the parallel lines of the proof of the
Lemma 4 in [24]. O

Itis to be noted that, for a fixed x € V4 (L) the set K(x) defined earlier (see Section
1) will be of the form K (x) = {k >0: x4 =10+ G@(kx))}
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LEMMA 9. Let x € Vi(A) be given and x 7é 0. If K(x) =0, then ||x|[4 =
(u

)
2 0, V). x(n), where o4, = llm (P—) and Vyx(n) = - 2 |x(2)

n=1 i€l

)|, n€N.

Proof. Let f(k) = 1(1+ 0o(kx)), where

:niq,n( > )]) = 3 o (va(n)).

" icly, n=1
O (kx
Since f(k) is continuous and K(x) = 0, so we have ||x||3 = 11m f( )—klim q)]({ )
Then o, = lim (pn_(u) is finite for all n € supp x. If not, there exists a ny € supp x

U—oco I
Oo(kx) _ 1. Pno (kV3.x(no))

k—o0 kV,lx (l’lo )

WV

such that ||x||4 = gim Vyx(ng) = . So we have

O (kx . e Ou(kVyx(n o
||XHA = l_m% :,}E}l IEVT(n()))VAX(n) — Z o,Vyx(n). O
n=1

n=1
LEMMA 10. Let x € Vi(A) be given and x # 0. If ® = (¢,)>_, is a Musielak-
Orlicz function satisfying condition (eo), then K(x) # 0.

Proof. Suppose in contrary that K(x) = 0, then by the Lemma 9, we obtain
m Pn(u)
U—>o0 u

isfying condition (ee;). [

< oo for each n € supp x, a contradiction to the assumption that @ sat-

THEOREM 3. Let ® = (¢,);_, be a Musielak-Orlicz function satisfying condition
(%), i.e., (1.2) holds, ® € &, i.e., (1.1) holds and ® > 0. Then the space V(L) has
the UKK_-property.

Proof. Since ® € §, and ® > 0, so for a given € > 0, by Lemma 3, there exists
a n > 0 such that

€
g > 7 = ow(x) > 1. 3.2)
Now with this > 0 , from Lemma 5, we can find a 6; € (0, 1) such that
x5 > 1—8 = oa(x) > 1-7. (3.3)

Suppose (x1) C BVE(L)). [[xllh — x5, xi(i) — x(i) forall i € N and sep(x;) > e.
We will show that there exists a § > 0 such that ||x||5 < 1— 8. If possible, suppose
that [|x]|% > 1— 8. Then we can select a finite set / = {1,2,...,N — 1} on which
|| x|7]|% > 1— 8. Since x;(i) — x(i) for each i € N, so we get that x; — x uniformly on
1. Consequently, since [|x;[|5 — ||x||%. there exists Iy € N such that

il > 1— 8 and [|(x — x5 < & forall 1,m > Iy .
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Keeping in mind (3.3), the first inequality implies that o (x;|;) > 1 —1n for I > Iy.
Since sep(x;) > €, i.e., ||x; —xm|/% > €, so the second inequality implies that ||(x; —
Xm)|n_g]|s = § for {,m > Iy,1 # m. Hence for N € N there exists a Iy such that
%1y In—7]15 = & . Without loss of generality, we may assume that ||x;|n_[|5 = % for all
I,N € N. Therefore, by (3.2), we have oe(x/|n_7) = 7.

By convexity of ¢, for each n € N, we have for any a € [0,1] and u € R that
on(ou) = @u(ou+ (1 — a)0) < o, (u). Therefore, if 0 <u < v < o, then @,(u) =
@n($v) < 50u(v), which means that (””T(") < (””T(V) for each n € N. Assuming now that
0<u,y<eo, u+v>0, we get

Ou(u+v)= uq”'u(itv) +v (p"u(itv) > u(p"T(“) + vq)"T(V) = @u(u) + @u(v)

for each n € N. Using this fact, we obtain o (x;|1) + 0o (x;|n—7) < Ow(x;) < 1. This
implies that 0g(x;|y—;) < 1 —oo(x/|1) <1—(1—=7) =1, 1ie., oo(x|n_7) <n. This
contradicts to the fact that oo (x;|n—;) = 1. This finishes the proof. [

THEOREM 4. The space V4(A) has the UKK.-property whenever @ satisfies
condition (1), ® € &, i.e, (1.1) holds and ® > 0.

Proof. For a given € > 0, let (x;) C B(Va(A)), |lx|13 — |1x]|4, x1(i) — x(i) for
each i € N and sep(x;) > €. We shall prove that ||x||4 < 1—§. Itis trivial when x=0.
So, we assume that x # 0. Then by Lemma 10, we have K(x) # 0, i.e., for each x €
VA(A) there exists a k; € Ry such that ||x||4 = k%(l + 0o (kix)) . Since x; — x weakly
implies x;(i) — x(i) foreach i € N, so we can select a finite set 7 = {1,2,3,....N—1}
on which x; — x uniformly. So, there exists [y € N such that

10— x4 < = forall 1,m > Iy. (3.4)

[\

Since sep(x;) > €, so we have by definition that |x; —xm||A € for I # m. This
inequality together with (3.4) implies that ||(x; — x)|[n_7]|4 = for l#mand l,m>
In. Hence for each N € N there exists a Iy such that ||x;, |n— 1||q> > £. Without loss of
generality, we may assume that ||x;|n_;|[4, = § forall /,N € N. Therefore, by Lemma
3, there exists ) € (0,€) such that Gq>(x1|N,1) > 0.

Since V4 (A) is order continuous, i.e., ||x—x|;||3, — O for sufficiently large N' and
hence there exists a ‘1—1 > 0 such that ||x|;[|3, > ||x[|4 — 51 . Also, since x;(i) — x(i) for
each i and ||x/|[4 — [|x]|4, so there exists Ny € N such that

x27l1% > [lx]|d — S for > N.

Since ||x;||4 < 1 implies k; > 1 for all [ € N, so for each n € N the convexity of ¢,
and the inequality @, (u+v) > @,(u) + @,(v) for all u,v € R* implies that

12 xulie

L S (S ) + S (3 )

n=1 n jel, n=N n jely,
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N-1 > Nl 4
L0+ % ( b ; (i) + ll (g%(’;—ijzn_zwumﬁ+§—i}§v|xl<j>))
N-1 > Nl

3 wn(’;—ijgv \xz(j)|>
= kll(l+6q)(k1xl|1>> +kll %@n(% ivxl(]”)
n= nj=

> (1o (nl)) + 3 (7 3 ) k> 1
> ||X1\1Hé>+6q><xl|N—1> [ 2 (Pn< 2 lx(j ) 2‘ (

n —N

n

> )]

" j=n—2Anp+1

0 38
> ||x1% — Zl + 68 = ||x||5 + Tl for { > Np.

Therefore ||x||3 < 35' , which means that the space V(1) has the coordinatewise

Uniform Kadec-Klee property (]

THEOREM 5. Let ® = ()5, > 0 be a Musielak-Orlicz function satisfying con-
dition (%), i.e., (1.2) holds and &, i.e., (1.1) holds. Then V5(X) has the uniform
Opial property.

Proof. Let € > 0 be any number and (x;) C S(V&(L)) be any weakly null se-
quence. We show that for any € > 0 there is a it > 0 such that

hmlanxl + x5 > 1+u,

for each x € V5(L) satisfying ||x||5 > €. Since ® € &, and @ > 0, so by Lemma 3,
for each € > 0 there is a number & € (0,1) such that for each x € V5(1), we have
Op(x) = 0. Since @ € §,, @ > 0 and P satisfies the condition (x), so by Lemma 7
for any € > 0, there exists 6; € (0,0) such that g (1) < 1, og(v) < 61 imply

|op(u+v) — oo(u)| < g forany u,v € V&(A). (3.5)

Since 0g(x) < oo, so there is a number ny € N such that

S o3 Tkl <2 (36)

n=ngp+1 njel,
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From (3.6) it follows that

5< ¥ o T 0 )+ > o5 X k0))

n jel, n=n0+1 n jel,
1o
<Y qon( > G )
n=1 ” JE
& o o0 76
which implies )’ (p,,( > |x(j ) 5— —1 > 68— s= 8 Since x; — 0 weakly,
n=1 n jely,

i.e., x;(i) — 0 for each i, so there exists a [y such that for all / > [y, the last inequality
yields

2 76

Y on(5 3 ) +20)) > (3.7)

n=1 ” JEl
Again, by the fact that x;, — 0 weakly, we can choose an ng such that og(x;|n,) — 0
as [ — co. So there exists a [; > [y such that op(x]s,) < 8 for all [ >1[;. Since
(x;) C S(VE()), ie., [|x]|% =1, so by Lemma 4, we have oo(x;) = 1. This implies
that there exists ng such that 6o (x;|n_n,) < 1. Now choose u = x;|N_,, and v = x;, .
Then u,v € V5(X), 0o(u) <1, 0g(v) < ;. So from (3.5), forall / >1;, we have

|60 (1[N +¥1ny) — O (%1 [y ) | < 5

which implies that o (x;) —% < 0o (xl\ano) forall [ >1;,1i.e., 2 (pn( 2 lx;(j )
n=ngp+1 jEIn

>1 —g forall [ > 1;. Again, since 6o (x/[n_n,) <1 and Go(x|N_y,) < @ < 8y, %0
from the equations (3.5) and (3.7), we obtain

o100 = X ou(5 T i) ++0))+ 5 o B bli)+a0)])

” J€El, n=np+1 " JEI,
- 3
>2<pn( Y )0+ Y o5 2 u0)) -2
= njel n=np+1 n jel,
76 o, 6 58
CSE U IS

Since ® € §, and satisfying the condition (x) and ® > 0, so by Lemma 8, there is a
(> 0 depending only on § such that ||x; +x||% > 1+ u. Hence lilmianxl +x||5 >

1+ u. This completes the proof. [

COROLLARY 2. (i) If @ satisfies condition-8; and (x) then 15 [24] has the
uniform Opial property.
(it) Suppose Ay =n, n=1,2,... and @,(u) = |ulP" forall u e R, 1 < p, < oo

Vn. Then it is easy to verify that ® € &, if and only if limsup p, < eo. Therefore ces(Lp)

n—o00

[10] has the uniform Opial property.
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(#ii) If @ =@ Vn and ® € &y, then Cesaro-Orlicz sequence spaces ces@ [9] has
the uniform Opial property.

THEOREM 6. Let ® > 0 be a Musielak-Orlicz function satisfying conditions (eo})
and &, i.e., (1.1). Then V4() has the uniform Opial property.

Proof. Take any € >0 and x € VA(4) with ||x||4 > €. Let (x;) C S(V4(L)) be
any weakly null sequence. We will show that for every € > 0 thereis a pt > 0 such that

hmmexl + x| >1+u,

for each x € V4(A). Since ® € §, and @ > 0 by Lemma 3, there is a § € (0,%)
independent of x such that op(%) > &. Since @ € &, implies V4 (A) = hg(A), which
is order continuous by Theorem 1. Hence x is an order continuous element. So, there
exists a natural number ny € N such that

ey = bl < and 3, (5 3 FU) <

n=ngp+1 njel,

_9
.

Since 0¢(35) > 6, it follows that

=3

s<Ya(r ™) 3 a(i 3z

n=1 njel n=no+1 " Jj€h
& [x(j) 0

<So( )5
n=1 " JE

This gives 2 (p,,( D (/) ) 8 . Since x; — 0 weakly implies that x;(i) — 0
n=1 njel,

as [ — oo for each i, so we have O (x;],,) — 0 as [ — . Hence, by Lemma 3, there

exists a natural number [y such that

HXZ‘"OH;‘) < g for all I > [y which implies HXI|N—n0H3> >1-— g, since ||x;||4 = 1.

(3.8)
Now for all [ > [y, we have
A A A o)
[[x; +x[|o = H(xl +) [y + (% +x)‘N*"0H<1> 2 H(Xl +5) lng +xl|N*noH<1> Y
1) 6 1)
2 [falag +0l5-10 o= g = 5 = Icbo 21l = -

Since @ satisfying condition (e} ), so by Lemma 10, there exists k; > 0 such that for
[ > Iy, we have

¥l + 1101 I = = (14 60 (ki (¥l + 1150, ) ) -
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Now using the fact that 0¢ (1 +Vv) > 0 (u) + 0a(v),, whenever supp(u) Nsupp(v) =0,
then we have

R N O R (A
1 d = kl kl [0 1 noy kl Lo} 1 lN—nQ 4
a1l )
2 H'xl‘N7"0||®+ k_lG(D <klx|n0> - Z
Without loss of generality, we may assume that k; > % for all [ because if k; < % then

we have [|x;+x|4 >2— % > 1+ 8. Using the convexity of @, we have og <k1x|n0> >

2k; 0 (%x\n()) . Therefore (3.8) implies that

1 1)
[ + x| > HXI\anOH2,+ZGq><§X\nO> -7

S (Ly KOy 8
>||xz\an0||$+221¢n(,L—,€ZI )3
n= nJ n
0 ) 116

>1—-42.--" =1 ,
g s Ta Ty

which implies that lilminf [|x; +xHé, > 1+ u, where u depends upon 0. This completes
the proof. [J

COROLLARY 3. (i) Let A, =n, n=1,2,... and @,(u) = |uP* for all u € R,
1 < pp <o Vn. Then it is easy to verify that ® € 8 if and only if limsup p, < .

n—oo

Therefore ces?p) [10] has the uniform Opial property.

(ii) Suppose @, = @ and A, =1 forall n € N and ® € &,. Then l$ [25] has the
uniform Opial property.

@) If oo =0 VYn, Ay=n, n=1,2,... and ® € &, then the Cesaro-Orlicz
sequence spaces ces‘?o [9] has the uniform Opial property.
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