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INTERPOLATION WITH A PARAMETER FUNCTION AND INTEGRABLE

FUNCTION SPACES WITH RESPECT TO VECTOR MEASURES
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FERNANDO MAYORAL 1 AND FRANCISCO NARANJO1

(Communicated by L. E. Persson)

Abstract. We establish interpolation formulae for different compatible couples formed by spaces
of scalar integrable functions with respect to a vector measure in connection with a parameter
function.

1. Introduction

An intrinsic problem in interpolation theory is to describe the spaces obtained
by applying an interpolation method to concrete compatible couples of spaces. For
instance, it is well-known that interpolating (L1, L∞) by the classical real method we
obtain the Lorentz spaces Lp,q, and the Lebesgue spaces Lp in particular. Namely, if
(Ω,Σ) is a measurable space, μ is a positive σ -finite measure on (Ω,Σ), 1 � p0 �=
p1 � ∞, 0 < θ < 1, 0 < q � ∞, and 1

p = 1−θ
p0

+ θ
p1

, then it holds with equivalence of
quasi-norms (see [4, Theorem 5.3.1]) that (Lp0 , Lp1)θ ,q = Lp,q, and, in particular,

(
L1, L∞)

1− 1
p ,p = Lp, 1 < p < ∞. (1)

An extension of the classical real method is the so-called real interpolation method
with a parameter function. Its construction consists in replacing the function tθ by
a more general function ρ , called parameter function, that satisfies certain suitable
conditions for the main theorems from interpolation theory (equivalence, reiteration,
duality, etc.) to be still valid. This is the case, for instance, when ρ belongs to the
class Q(0,1) , introduced by Persson [27]. The origin of this method can be found in
a paper by Peetre [26] and it has been considered by many different authors (see [17],
[16], [19], [23], [27] and [8] among others). Let us just mention that an advantage of
this interpolation method is that if it applies to the couple (L1, L∞) with the parameter

function ρ(t) = t 1− 1
p (1+ | logt|)−α , with 1 < p < ∞ and α ∈R, then one obtains the
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Lorentz-Zygmund spaces Lp,q(logL)α , which generalize the classical Lebesgue spaces
Lp, Lorentz spaces Lp,q and Zygmund spaces Lp(logL)α (see [3]).

Several of the present authors have shown (see [13]) that a similar result to (1)
does not hold in the case of a vector measure m . Indeed, if 1 < p < ∞ and m is a
vector measure, the space

(
L1(m), L∞(m)

)
1− 1

p ,p is reflexive because the natural em-

bedding L∞(m) ⊆ L1(m) is a weakly compact operator (see [14, Proposition 3.3] and
[2, Proposition II.2.3]), but Lp(m) is non-reflexive whenever L1(m) �= L1

w(m) (see [14,
Corollary 3.10]). However, as it is shown in [13, Theorem 12], it is possible to establish
a similar formula to (1) in terms of the Lorentz spaces Lp,q(‖m‖) , defined by means of
the semivariation ‖m‖ of the vector measure m .

In this paper we continue the research started in [13]. On the one hand, we ex-
tend the results given in [13] when general parameter functions are considered, pro-
viding a description of the interpolated spaces for the couples (Lp0(m),Lp1(m)) and(
Lp0

w (m),Lp1
w (m)

)
consisting in spaces of p -integrable and weakly p -integrable func-

tions with respect to a vector measure m. On the other hand, we derive interpolation
formulae for couples

(
Λq0

ϕ0(‖m‖),Λq1
ϕ1(‖m‖)) of Lorentz spaces defined by the semi-

variation ‖m‖ of m, which generalize some classical results established by Gustavsson
[16], Merucci [23] and Persson [27], when m is in particular a finite positive scalar
measure.

2. Preliminaries

We start by introducing the spaces of scalar integrable functions with respect to a
vector measure that we are going to use in the paper. Let X be a real Banach space
and m : Σ → X be a countably additive vector measure, where Σ is a σ -algebra of
subsets of some nonempty set Ω . Let X ′ and X ′′ denote the dual and bidual spaces of
X , respectively, and let B(X) be the unit ball of X . The semivariation of m is the set
function ‖m‖ : Σ → [0,∞) defined by

‖m‖(A) := sup{|〈m,x′〉|(A) : x′ ∈ B(X ′)}, A ∈ Σ,

where |〈m,x′〉| is the total variation measure of the scalar measure 〈m,x′〉 , given by
〈m,x′〉(A) := 〈m(A),x′〉 for all A ∈ Σ . We note that the semivariation ‖m‖ need not be
an additive function, but ‖m‖ and the measure m coincide if m is a finite positive scalar
measure. Basic properties of the semivariation can be found in [9, Chapter IV, §10]. In
particular, we would like to point out that ‖m‖(Ω)< ∞ for a (countably additive) vector
measure m (see [9, Lemma IV.10.4]).

Let L0(m) denote the space of all measurable functions f : Ω→R . Two functions
f , g ∈ L0(m) will be identified if are equal m-a.e., that is, if ‖m‖({w ∈ Ω : f (w) �=
g(w)}) = 0. We also recall that f ∈ L0(m) is said to be weakly integrable (with respect
to m) if f ∈ L1(|〈m,x′〉|) for all x′ ∈ X ′ . In this case (see [28, Corollary 3]) for each

A ∈ Σ there exists an element
∫

A
f dm ∈ X ′′ (called the weak integral of f over A)

such that

〈∫
A

f dm,x′
〉

=
∫

A
f d〈m,x′〉 for all x′ ∈ X ′. The space L1

w(m) of all (m-a.e.
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equivalence classes of) weakly integrable functions becomes a Banach lattice when it
is endowed with the natural order m-a.e., and the norm

‖ f‖1 := sup

{∫
Ω
| f |d|〈m,x′〉| : x′ ∈ B(X ′)

}
, f ∈ L1

w(m).

A weakly integrable function f is called integrable (with respect to m) if the vector∫
A

f dm ∈ X for all A ∈ Σ (see [20] or [25]). The set L1(m) of all (m-a.e. equivalence

classes of) integrable functions becomes an order continuous closed ideal of L1
w(m) ,

and in general L1(m)� L1
w(m).

If 1 < p < ∞, a function f ∈ L0(m) is said to be weakly p-integrable (with respect
to m) if | f |p ∈L1

w(m) , and p-integrable (with respect to m) if | f |p ∈ L1(m) . We denote
by Lp

w(m) the space of (m-a.e. equivalence classes of) weakly p -integrable functions
and by Lp(m) the space of (m-a.e. equivalence classes of) p -integrable functions.
Obviously we have that Lp(m) ⊆ Lp

w(m). The natural norm for both spaces is given by

‖ f‖p := sup

{(∫
Ω
| f |p d|〈m,x′〉|

) 1
p

: x′ ∈ B(X ′)

}
, f ∈ Lp

w(m).

The spaces Lp(m) and Lp
w(m) have been deeply studied in [14]. The space L∞(m) con-

sists in those (m-a.e. equivalence classes of) essentially bounded functions equipped
with the supremum norm ‖ · ‖∞. It holds that L∞(m) ⊆ L1(m) with

‖ f‖1 � ‖m‖(Ω) · ‖ f‖∞, f ∈ L∞(m).

Given f ∈ L0(m) , we shall consider its distribution function (with respect to the vector
measure m) ‖m‖ f : [0,∞) → [0,∞) defined by

‖m‖ f (s) := ‖m‖({w ∈ Ω : | f (w)| > s}),

where ‖m‖ is the semivariation of the measure m . This distribution function has sim-
ilar properties that in the scalar case (see [13]). For instance, ‖m‖ f is bounded, non-
increasing and right-continuous. The decreasing rearrangement of f (with respect to
the measure m) f∗ : (0,∞) → [0,∞) is given by

f∗(t) := inf
{
s > 0 : ‖m‖ f (s) � t

}
.

Some properties of f∗ can be found in [13]. In particular, the function f∗ is non-
increasing and right-continuous. It also verifies that f∗(t) = 0 for any t � ‖m‖(Ω).

For 0 < q � ∞ and a non-negative measurable function ϕ defined on (0,∞) , we
denote by Λq

ϕ(‖m‖) the set of all f ∈ L0(m) such that the quantity

‖ f‖Λq
ϕ (‖m‖) :=

⎧⎪⎨
⎪⎩

(∫ ∞

0
(ϕ(t) f∗(t))q dt

t

) 1
q

, if 0 < q < ∞,

sup
t>0

ϕ(t) f∗(t), if q = ∞,
(2)
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is finite. When ϕ(t) = t
1
p (1 + | log t|)α , where 1 � p < ∞ and α ∈ R, we obtain

the space Lp,q(logL)α(‖m‖) , which can be considered as a version of the Lorentz-
Zygmund space in the vector measure setting (see the definition in [3] for a finite pos-
itive scalar measure). In particular, if α = 0 we recover the Lorentz space Lp,q(‖m‖)
introduced in [13]. For the special case p = q, we denote the space Lp,p(‖m‖) simply
by Lp(‖m‖). As it has been pointed out in [13], in general, the spaces Lp(‖m‖) and
Lp(m) do not coincide if 1 � p < ∞. However, it holds that (see [13, Proposition 7])

L∞(m) ⊆ Lp,1(‖m‖) ⊆ Lp(‖m‖)⊆ Lp(m) ⊆ Lp
w(m) ⊆ Lp,∞(‖m‖), 1 � p < ∞,

and all these inclusions are continuous. We also note that Lp,q(‖m‖) is a quasi-Banach
lattice with the Fatou property.

Next we review some basic notions and facts related to the definition of certain
classes of parameter functions defined on (0,∞) that will be considered throughout
the paper. We shall follow the notation used by Persson [27]. Namely, given two
real numbers a0 < a1 , the class Q[a0,a1] denotes all non-negative functions ρ on
(0,∞) such that ρ(t)t−a0 is non-decreasing and ρ(t)t−a1 is non-increasing. We write
ρ ∈ Q(a0,a1) if ρ ∈ Q[a0 + ε,a1 − ε] for some ε > 0. Moreover, ρ ∈ Q(a0,−) (re-
spectively, ρ ∈Q(−,a1)) means that ρ ∈Q(a0,b) (respectively, ρ ∈ Q(b,a1)) for cer-
tain real number b. Specially important for us will be the class Q(0,1). Observe that
ρ ∈ Q(0,1) if and only if ρ is non-negative, ρ(t)t−α is non-decreasing and ρ(t)t−β

is non-increasing, for some 0 < α < β < 1.
Let us recall briefly the construction of the real interpolation method with a pa-

rameter function. Let (A0,A1) be a quasi-Banach couple, that is, two quasi-Banach
spaces A0, A1 which are continuously embedded in some Hausdorff topological vector
space. The Peetre’s K -functional is defined, for f ∈ A0 +A1 and t > 0, by

K(t, f ) = K(t, f ;A0,A1) := inf
{‖ f0‖A0 + t‖ f1‖A1 : f = f0 + f1 , f0 ∈ A0, f1 ∈ A1

}
.

For ρ ∈ Q(0,1) and 0 < q � ∞, the space (A0,A1)ρ ,q is formed by all those elements
f ∈ A0 +A1 such that the quasi-norm

‖ f‖(A0,A1)ρ,q :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∫ ∞

0

(
K(t, f ;A0,A1)

ρ(t)

)q dt
t

) 1
q

, if 0 < q < ∞,

sup
t>0

K(t, f ;A0,A1)
ρ(t)

, if q = ∞,

is finite. In the particular case when ρ(t) = tθ , 0 < θ < 1, the space (A0,A1)ρ ,q co-
incides with the interpolation space (A0,A1)θ ,q obtained by the classical real method
(see [4]).

The interpolation space (A0,A1)ρ ,q can be also defined by using a parameter func-
tion ρ belonging to other similar function classes, such as the class P+− or Bψ (see
[17], [16] and [27]). In fact, these classes Q(0,1), P+− and Bψ can be considered (in
some sense) the same class (see [27, Proposition 1.3]), sometime called quasi-power
function class (see [27, Proposition 1.2]). In this paper we focus on parameter functions
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in the class Q(0,1), but it is possible to consider other classes of parameter functions
as quasi concave functions (see [3, Definition II.5.6] and [4, Lemma 5.4.3]), logarith-
mic type functions (see [10], [11] and [12]) or slowly varying functions (see [15]). We
refer to [26], [17], [16], [19], [23], and [27] for a complete information about the real
interpolation method with a parameter function.

We shall use the following equality (3) that relates the interpolation space with re-
spect a parameter function of quasi-normed ideal function spaces and their correspond-
ing r -convexifications. With the above notation, if A0 is one of the spaces L1(‖m‖) or
L1,∞(‖m‖) and A1 is the space L∞(m), it is hold that

(
A(r)

0 ,A(r)
1

)
ρ ,q

=
[
(A0,A1)ρ1,

q
r

](r)
, (3)

where ρ1(t) :=
(

ρ(t
1
r )

)r
, for 1 � r < ∞. For a quasi-normed function space A ⊆

L0(m), its r -convexification is defined by A(r) :=
{

f ∈ L0(m) : | f |r ∈ A
}

and equipped

with the quasi-norm ‖ f‖A(r) := ‖| f |r‖
1
r
A . The above equality (3) follows by applying the

estimates of the K -functional obtained in [22, Theorem 1] (see also [22, Remark 2]).
Regarding the function spaces we have introduced by means of (2) it is not difficult to
check by using their definitions the following result.

PROPOSITION 1. Let 1 � r < ∞ and 0 < q � ∞. Then

1)
(
Λq

ϕ(‖m‖))(r) = Λrq

ϕ
1
r
(‖m‖).

In particular, for ϕ(t) = t, we have

2)
(
L1(‖m‖))(r) = Lr(‖m‖), for q = 1, and

3)
(
L1,∞(‖m‖))(r) = Lr,∞(‖m‖), for q = ∞.

As usual, the equivalence a � b (respectively a � b ) means that
1
c

a � b � ca

(respectively a � cb ) for some positive constant c independent of appropriate param-
eters. Two quasinormed spaces, A and B , are considered as equal and we write A = B
whenever their quasi-norms are equivalent.

We finish this section with some estimates for the K -functional that will be useful
to establish our interpolation results in Section 3. These estimates can be obtained
following the same techniques used in [13] with minor modifications (see [13, Lemma 3
and Propositions 8 and 10] for details). Let us also mention that similar estimates were
obtained independently by Cerdà, Martı́n and Silvestre in [6] for capacities.

PROPOSITION 2. i) If f ∈ L1(‖m‖), then K(t, f ;L1(‖m‖),L∞(m)) �
∫ t

0
f∗(s)ds.

ii) If f ∈ L1,∞(‖m‖), then t f∗(t) � K(t, f ;L1,∞(‖m‖),L∞(m)).
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3. Description of the interpolated spaces

In this section we provide a description of the interpolated spaces for the cou-
ples (Lp0(m),Lp1(m)) and

(
Lp0

w (m),Lp1
w (m)

)
and also derive interpolation formulae

for couples
(
Λq0

ϕ0(‖m‖),Λq1
ϕ1(‖m‖)) of Lorentz spaces, generalizing some classical re-

sults established by Gustavsson [16], Merucci [23] and Persson [27]. We start with the
following key result that we shall use throughout the section.

THEOREM 3. Let 0 < q � ∞ , ρ ∈ Q(0,1), and ϕ(t) =
t

ρ(t)
. Then,

(
L1(‖m‖),L∞(m)

)
ρ ,q =

(
L1,∞(‖m‖),L∞(m)

)
ρ ,q = Λq

ϕ (‖m‖).

In particular, if 0 < θ < 1, it holds that

(
L1(‖m‖),L∞(m)

)
θ ,q =

(
L1,∞(‖m‖),L∞(m)

)
θ ,q = L

1
1−θ ,q(‖m‖).

Proof. Since L1(‖m‖)⊆ L1,∞(‖m‖) , it is clear the inclusion (L1(‖m‖),L∞(m))ρ ,q

⊆ (L1,∞(‖m‖),L∞(m))ρ ,q, and the inequality

‖ f‖(L1,∞(‖m‖),L∞(m))ρ,q
� ‖ f‖(L1(‖m‖),L∞(m))ρ,q

, f ∈ (
L1(‖m‖),L∞(m)

)
ρ ,q . (4)

We have also the inclusion
(
L1,∞(‖m‖),L∞(m)

)
ρ ,q ⊆Λq

ϕ (‖m‖) as a consequence of the
inequality ii) in Proposition 2. In particular, we obtain

‖ f‖Λq
ϕ (‖m‖) � ‖ f‖(L1,∞(‖m‖),L∞(m))ρ,q

, f ∈ (
L1,∞(‖m‖),L∞(m)

)
ρ ,q . (5)

In order to check that the inclusion Λq
ϕ(‖m‖) ⊆ (

L1(‖m‖),L∞(m)
)

ρ ,q holds, we as-

sume first that q < ∞, and consider the function W (t) =
tq−1

ρ(t)q . Since ρ ∈ Q(0,1), in

particular ρ(t)t−α is non-decreasing for some 0 < α < 1, it is not difficult to check
that ∫ ∞

r

W (t)
tq

dt � 1−α
α rq

∫ r

0
W (t)dt, r > 0.

The weighted Hardy inequality for non-increasing functions [1, Theorem 1.7] (see also
[29, Theorem 3] or [5, Proposition 2.6] for the case 0 < q < 1) gives, for any f ∈
Λq

ϕ(‖m‖),
(∫ ∞

0

[
1
t

∫ t

0
f∗(u)du

]q

W (t)dt

) 1
q

�
(∫ ∞

0
f∗(t)qW (t)dt

) 1
q

=
(∫ ∞

0

(
t

ρ(t)
f∗(t)

)q dt
t

) 1
q

= ‖ f‖Λq
ϕ (‖m‖) < ∞.
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In particular, the function
1
t

∫ t

0
f∗(u)du is finite a.e. and, since f∗ is non-increasing and

f∗(t) = 0 for all t � ‖m‖(Ω), this means that
∫ ∞

0
f∗(u)du < ∞, that is, the inclusion

Λq
ϕ(‖m‖) ⊆ L1(‖m‖) holds. Then, for any f ∈ Λq

ϕ(‖m‖), by applying the estimate i)
in Proposition 2 and the weighted Hardy inequality again, we obtain

‖ f‖(L1(‖m‖),L∞(m))ρ,q
=

(∫ ∞

0

(
K(t, f ;L1(‖m‖),L∞(m))

ρ(t)

)q
dt
t

) 1
q

�
(∫ ∞

0

(
1

ρ(t)

[∫ t

0
f∗(u)du

])q dt
t

) 1
q

=
(∫ ∞

0

[
1
t

∫ t

0
f∗(u)du

]q tq−1

ρ(t)q dt

) 1
q

=
(∫ ∞

0

[
1
t

∫ t

0
f∗(u)du

]q

W (t)dt

) 1
q

� ‖ f‖Λq
ϕ (‖m‖). (6)

This implies that Λq
ϕ (‖m‖) ⊆ (

L1(‖m‖),L∞(m)
)

ρ ,q . For the case q = ∞, the inclusion

Λ∞
ϕ (‖m‖) ⊆ (

L1(‖m‖),L∞(m)
)

ρ ,∞ can be obtained in the following way. Recall that

ρ(s)s−α is non-decreasing for some 0 < α < 1. Then, for every f ∈ Λ∞
ϕ (‖m‖), in

which case ‖ f‖Λ∞
ϕ (‖m‖) := sup

s>0

s f∗(s)
ρ(s)

< ∞, we have

1
ρ(t)

∫ t

0
f∗(s)ds =

1
ρ(t)

∫ t

0

s f∗(s)
ρ(s)

ρ(s)
s

ds � ‖ f‖Λ∞
ϕ (‖m‖)

1
ρ(t)

∫ t

0

ρ(s)
s

ds

= ‖ f‖Λ∞
ϕ (‖m‖)

1
ρ(t)

∫ t

0

ρ(s)
sα sα−1ds � 1

α
‖ f‖Λ∞

ϕ (‖m‖) < ∞. (7)

This means that
∫ ∞

0
f∗(s)ds < ∞, that is, the inclusion Λ∞

ϕ (‖m‖) ⊆ L1(‖m‖) holds.

Then, for any f ∈ Λ∞
ϕ (‖m‖), by applying the estimate i) in Proposition 2 and the above

inequality (7), we obtain

K(t, f ;L1(‖m‖),L∞(m))
ρ(t)

� 1
ρ(t)

∫ t

0
f∗(s)ds � 1

α
‖ f‖Λ∞

ϕ (‖m‖) .

Taking supremum, we obtain Λ∞
ϕ (‖m‖) ⊆ (

L1(‖m‖),L∞(m)
)

ρ ,∞ , and

‖ f‖(L1(‖m‖),L∞(m))ρ,∞ � ‖ f‖Λ∞
ϕ (‖m‖), f ∈ Λ∞

ϕ (‖m‖). (8)

Finally we get the equality between the three spaces (even for q = ∞)(
L1(‖m‖),L∞(m)

)
ρ ,q =

(
L1,∞(‖m‖),L∞(m)

)
ρ ,q = Λq

ϕ(‖m‖)
as metric spaces (the equivalence of their quasi-norms is given by (4), (5) and (6),
or (8) for q = ∞). For last part of the statement it is enough to take the function
ρ(t) = tθ , 0 < θ < 1. �
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REMARK 1. Note that in the proof of Theorem 3 the assumption ρ ∈ Q(0,1) is
only required for using that ρ(t)t−α is non-decreasing for some 0 < α < 1. Thus,
Theorem 3 still continues being valid with the weaker assumption ρ ∈ Q(0,−).

COROLLARY 1. Let 1 � r < ∞ , ρ ∈ Q(0,1) , ϕr(t) =
t

1
r

ρ
(
t

1
r

) and 0 < q � ∞.

Then (Lr(‖m‖),L∞(m))ρ ,q = (Lr,∞(‖m‖),L∞(m))ρ ,q = Λq
ϕr(‖m‖). In particular, if 0 <

θ < 1, it holds that (Lr(‖m‖),L∞(m))θ ,q = (Lr,∞(‖m‖),L∞(m))θ ,q = L
r

1−θ ,q(‖m‖).

Proof. Taking into account the equality (3) and the previous Theorem 3, we have

for τ(t) =
(

ρ(t
1
r )

)r
and φ(t) =

t
τ(t)

the following equalities

(Lr(‖m‖),L∞(m))ρ ,q =
[(

L1(‖m‖),L∞(m)
)

τ, q
r

](r)
=

[
Λ

q
r
φ (‖m‖)

](r)

= Λq

φ
1
r
(‖m‖) = Λq

ϕr(‖m‖).

The above chain of equalities also works for the pair (Lr,∞(‖m‖),L∞(m)) . �

When, in particular, m is a finite positive scalar measure Corollary 1 turns out
to be [27, Lemma 6.1] (see also [16, Lemma 3.1]). The following result extends [13,
Theorem 12 and Corollary 13].

COROLLARY 2. Let 1 � r < ∞ , ρ ∈ Q(0,1) , ϕr(t) =
t

1
r

ρ
(
t

1
r

) and 0 < q � ∞.

Then (Lr(m),L∞(m))ρ ,q = (Lr
w(m),L∞(m))ρ ,q = Λq

ϕr(‖m‖). In particular, if 0 < θ < 1,

it holds that (Lr(m),L∞(m))θ ,q = (Lr
w(m),L∞(m))θ ,q = L

r
1−θ ,q(‖m‖).

Proof. It is enough to use the following chain of continuous inclusions

Lr(‖m‖) ⊆ Lr(m) ⊆ Lr
w(m) ⊆ Lr,∞(‖m‖), 1 � r < ∞,

and Corollary 1. �

REMARK 2. Note that the function ρ(t) = t1−
1
p (1 + | log t|)−α belongs to the

class Bψ whenever 1 < p < ∞ and |α| < min
{

1
p ,1− 1

p

}
. On the other hand, re-

call that Bψ ⊆ Q(0,1) (see [27, Proposition 1.3]). As a consequence of this obser-
vation and the Cororally 2, the space Lp,q(logL)α (‖m‖) can be obtained as an inter-
polation space with respect to couple

(
L1(m),L∞(m)

)
. Indeed Lp,q(logL)α (‖m‖) =

(L1(m),L∞(m))ρ ,q for all 0 < q � ∞. However, the restriction |α| < min
{

1
p ,1− 1

p

}
can be removed as we shall see just now. For α ∈ R (without any restriction), it is
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easy to check that the submultiplicative function ρ(t) := sup
u>0

ρ(ut)
ρ(u)

is precisely the

function ρ(t) = t1−
1
p (1+ | logt|)|α | (see, for instance, [23]), which is continuous and

satisfies that ρ(t) = o(max{1,t}) as t → 0 and t → ∞. Hence, there exists a function
η ∈ Q[0,1] such that η � ρ (see Lemma 1.2 in [21, Chapter II, Section 1]). In fact
η ∈ P+− , and then ρ � τ for some τ ∈ Q(0,1) (see [27, Proposition 1.3]). Note

that ϕ � φ , where ϕ(t) =
t

ρ(t)
and φ(t) =

t
τ(t)

, and therefore Λq
ϕ(‖m‖) = Λq

φ (‖m‖).
Then

Lp,q(logL)α (‖m‖) = Λq
ϕ (‖m‖) = Λq

φ (‖m‖) = (L1(m),L∞(m))τ,q = (L1(m),L∞(m))ρ ,q.

We summarize these comments in the following

COROLLARY 3. Let 1 < p < ∞ , 0 < q � ∞ , α ∈R, and ρ(t)= t1−
1
p (1+ | logt|)−α .

Then
(
L1(m),L∞(m)

)
ρ ,q = Lp,q(logL)α(‖m‖).

Before stating the next result, we collect some useful facts we shall use in the rest
of the paper.

REMARK 3. If 1 < p < ∞ and ρ(t) := t1−
1
p , it holds by Corollary 2 that(

L1(m),L∞(m)
)

ρ ,1 = Lp,1(‖m‖) ⊆ Lp(m) ⊆ Lp
w(m)

⊆ Lp,∞(‖m‖) =
(
L1(m),L∞(m)

)
ρ ,∞ .

The above (continuous) inclusions show that the spaces Lp(m) and Lp
w(m) are of the

class C(ρ ;L1(m),L∞(m)) (see [27, Examples 2.1 and 2.2] and [4, Theorem 3.11.4]).

LEMMA 1. If ρ ∈ Q(0,1) and τ ∈ Q(0,−), then ρ(τ(t)) ∈ Q(0,−).

Proof. Since ρ ∈ Q(0,1) there exists 0 < ε < 1
2 such that ρ(t)t−ε is non-decrea-

sing and ρ(t)t−(1−ε) is non-increasing. Furthermore, by the assumption τ ∈ Q(0,−),
there also exist b∈R and 0 < δ < b

2 so that τ(t)t−δ is non-decreasing and τ(t)t−(b−δ )

is non-increasing. In particular, τ is non-decreasing. Thus, if t � s,

ρ(τ(t))t−εδ = ρ(τ(t))τ(t)−ε
(

τ(t)t−δ
)ε

� ρ(τ(s))τ(s)−ε
(

τ(s)s−δ
)ε

= ρ(τ(s))s−εδ ,

and so ρ(τ(t))t−εδ is non-decreasing. A similar argument shows that the function
ρ(τ(t))t−(1−ε)(b−δ ) is non-increasing. In other words, ρ(τ(t)) ∈ Q[εδ ,c− εδ ] with
c = (1− ε)(b− δ )+ εδ . �

LEMMA 2. (see Lemma 3.3 in [27]) Let ρ ∈ Q(0,1) , ρ0,ρ1 ∈ Q(0,−), and put

τ(t) = ρ1(t)
ρ0(t)

. If τ ∈ Q(0,−) or τ ∈ Q(−,0), then the function ρ0(t)ρ(τ(t)) ∈ Q(0,−).
When in addition ρ0,ρ1 ∈ Q(0,1), then the function ρ0(t)ρ(τ(t)) ∈ Q(0,1).
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Proof. For instance, assume that τ ∈ Q(0,−). Then, for i = 0,1, there exist num-
bers ai ∈ R, 0 < δi < ai

2 , such that ρi(t)t−δi is non-decreasing and ρi(t)t−(ai−δi) is

non-increasing. Choose any 0 < δ < min{δ0,δ1} . Since ρ(τ(t))
τ(t) is non-increasing, we

have whenever t � s that

ρ0(t)ρ(τ(t))t−(a1−δ ) = ρ1(t)
ρ(τ(t))

τ(t)
t−(a1−δ ) = ρ1(t)t−(a1−δ1) ρ(τ(t))

τ(t)
t−δ1+δ

� ρ1(s)s−(a1−δ1) ρ(τ(s))
τ(s)

s−δ1+δ = ρ0(s)ρ(τ(s))s−(a1−δ ).

Reasoning in a similar way we obtain that ρ0(t)ρ(τ(t))t−δ is non-decreasing. Hence,
the function ρ0(t)ρ(τ(t)) ∈ Q[δ ,a1− δ ].

Note that if τ ∈ Q(−,0), the proof works with slight changes, but now taking into

account that ρ(τ(t)) is non-increasing and ρ(τ(t))
τ(t) is non-decreasing. �

COROLLARY 4. Let 1 < p0 �= p1 < ∞ , ρ ∈ Q(0,1) , ϕ(t) =
t

1
p0

ρ
(

t
1
p0

− 1
p1

) , and

0 < q � ∞. Then

(Lp0(m),Lp1(m))ρ ,q = (Lp0
w (m),Lp1(m))ρ ,q = (Lp0

w (m),Lp1
w (m))ρ ,q = Λq

ϕ(‖m‖).

In particular, if 0 < θ < 1 and
1
p

=
1−θ

p0
+

θ
p1

, it holds that

(Lp0(m),Lp1(m))θ ,q = (Lp0
w (m),Lp1(m))θ ,q = (Lp0

w (m),Lp1
w (m))θ ,q = Lp,q(‖m‖).

Proof. Without loss of generality we may suppose that p0 < p1, because (see [16,
Proposition 2.2] and also [27, Example 1.2]) (A0,A1)ρ ,q = (A1,A0)ρ̃ ,q, for the function

ρ̃(t) := tρ
( 1

t

)
. Let ρi(t) := t

1− 1
pi , for i = 0,1. Since τ := ρ1

ρ0
∈ Q(0,1), we have by

Remark 3 and [27, Proposition 4.3] (see also [24]) that

(Lp0(m),Lp1(m))ρ ,q = (Lp0
w (m),Lp1(m))ρ ,q = (Lp0

w (m),Lp1
w (m))ρ ,q

=
(
L1(m),L∞(m)

)
η,q

with η(t) := ρ0(t)ρ(τ(t)). Moreover, Lemma 2 implies that η ∈ Q(0,1) . It follows
from Theorem 3 that

(Lp0(m),Lp1(m))ρ ,q = (Lp0
w (m),Lp1(m))ρ ,q = (Lp0

w (m),Lp1
w (m))ρ ,q

=
(
L1(m),L∞(m)

)
η,q = Λq

ϕ(‖m‖),

where ϕ(t) =
t

η(t)
=

t
1
p0

ρ
(

t
1
p0

− 1
p1

) . �
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Our Theorem 3, Corollary 1, and the reiteration theorem (see for example [27,
Corollary 4.4] and [24]) allow us to establish the next result, which can be read as a
version of [27, Proposition 6.2] for the case of a vector measure.

THEOREM 4. Let ρ ∈ Q(0,1) and 0 < q0,q,q1 � ∞.

a) If ϕ0 ∈Q(0,1), then
(
Λq0

ϕ0(‖m‖),L∞(m)
)

ρ ,q = Λq
ϕ(‖m‖), where ϕ(t)=

ϕ0(t)
ρ(ϕ0(t))

.

b) If ϕ1 ∈ Q(0, 1
p ), 1 � p < ∞ , then

(
Lp(‖m‖),Λq1

ϕ1(‖m‖))ρ ,q = Λq
ϕ (‖m‖), with

ϕ(t) =
t

1
p

ρ
(

t
1
p

ϕ1(t)

) .

c) Let ϕ0,ϕ1 ∈ Q(0,1) and put φ := ϕ0
ϕ1

. If φ ∈ Q(0,−) or φ ∈ Q(−,0), then(
Λq0

ϕ0(‖m‖),Λq1
ϕ1(‖m‖))ρ ,q = Λq

ϕ(‖m‖), where ϕ(t) =
ϕ0(t)

ρ(φ(t))
.

Proof. a) Since ϕ0 ∈ Q(0,1), the function ρ0(t) :=
t

ϕ0(t)
∈ Q(0,1). Applying

Theorem 3 and reiteration, we get that

(
Λq0

ϕ0(‖m‖),L∞(m)
)

ρ ,q =
((

L1(‖m‖),L∞(m)
)

ρ0,q0
,L∞(m)

)
ρ ,q

=
(
L1(‖m‖),L∞(m)

)
η,q ,

where η(t) := ρ0(t)ρ
(

t
ρ0(t)

)
= ρ0(t)ρ (ϕ0(t)) . It follows from Lemma 1 that the func-

tion ρ (ϕ0(t)) ∈ Q(0,−). Therefore, it also holds that η ∈ Q(0,−). Using again The-
orem 3 (and Remark 1), we conclude that(

Λq0
ϕ0(‖m‖),L∞(m)

)
ρ ,q =

(
L1(‖m‖),L∞(m)

)
η,q = Λq

ϕ(‖m‖),

with ϕ(t) =
t

η(t)
=

ϕ0(t)
ρ(ϕ0(t))

.

b) From ϕ1 ∈ Q(0, 1
p), it follows that ρ1(t) :=

t
ϕ1(t p)

∈ Q(0,1). According to

Corollary 1, and using reiteration, we have that

(
Lp(‖m‖),Λq1

ϕ1(‖m‖))ρ ,q =
(
Lp(‖m‖),(Lp(‖m‖),L∞(m))ρ1,q1

)
ρ ,q

= (Lp(‖m‖),L∞(m))η,q ,

where η(t) = ρ(ρ1(t)). By Lemma 1, we obtain that η(t)∈Q(0,−) . Applying Corol-
lary 1 (see also Remark 1), it follows that(

Lp(‖m‖),Λq1
ϕ1(‖m‖))ρ ,q = (Lp(‖m‖),L∞(m))η,q = Λq

ϕ (‖m‖),
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where ϕ(t) =
t

1
p

η
(
t

1
p

) =
t

1
p

ρ
(

t
1
p

ϕ1(t)

) .

c) For i = 0,1 put ρi(t) :=
t

ϕi(t)
. Note that ρ1

ρ0
= φ := ϕ0

ϕ1
. Due to ϕ0,ϕ1 ∈Q(0,1),

the functions ρ0,ρ1 ∈ Q(0,1) too. By Theorem 3 and reiteration, it holds that

(
Λq0

ϕ0(‖m‖),Λq1
ϕ1(‖m‖))ρ ,q =

((
L1(‖m‖),L∞(m)

)
ρ0,q0

,
(
L1(‖m‖),L∞(m)

)
ρ1,q1

)
ρ ,q

=
(
L1(‖m‖),L∞(m)

)
η,q ,

with η(t)= ρ0(t)ρ(φ(t)). On the other hand, since ρ ,ρ0,ρ1 ∈Q(0,1), and φ ∈Q(0,−)
or φ ∈ Q(−,0), the function η ∈ Q(0,1) by Lemma 2. Finally, it follows from
Theorem 3 that

(
Λq0

ϕ0
(‖m‖),Λq1

ϕ1
(‖m‖))ρ ,q =

(
L1(‖m‖),L∞(m)

)
η,q = Λq

ϕ(‖m‖), where

ϕ(t) =
t

η(t)
=

ϕ0(t)
ρ(φ(t))

. �

Corollary 3 and Theorem 4 give the following result.

COROLLARY 5. Assume that 1 < p0 �= p1 < ∞, 0 < q0,q,q1 � ∞, and α0,α1 ∈
R. If 0 < θ < 1,

1
p

=
1−θ

p0
+

θ
p1

, and α = (1−θ )α0 + θα1, it holds that

(Lp0,q0(logL)α0(‖m‖),Lp1,q1(logL)α1(‖m‖))θ ,q = Lp,q(logL)α(‖m‖).

In the particular case when m is a finite positive scalar measure, Corollary 5 pro-
vides an interpolation result in the same direction that [23, Corollaire 1] (see also [16,
Proposition 3.3]).

As an application of our results, we finish the paper showing the reflexivity of the
space Lp,q(logL)α(‖m‖), for 1 < p,q < ∞, and α ∈R. According to Corollary 3 such
a space is a Banach space. We recall that L∞(m)⊆ L1(m) is a weakly compact inclusion
since L1(m) has order continuous norm (see [14, Proposition 3.3]). Following the ideas
of Heinrich [18, Proposition 2.2] (see also [2, Proposition II.2.3] and [7, Corollary 4.4])
it can be proved that (A0,A1)ρ ,q, with 1 < q < ∞, is reflexive if and only if the inclusion
A0∩A1 ⊆ A0 +A1 is weakly compact. In particular, by applying Corollary 3 we derive
the following result.

COROLLARY 6. If 1 < p,q < ∞, and α ∈ R, the space L p,q(logL)α(‖m‖) is
reflexive.
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Escuela Politécnica Superior

c/ Villadiego, s/n
09001–Burgos, Spain

e-mail: amanzano@ubu.es

Fernando Mayoral
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