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2-HILBERT C*-MODULES AND SOME GRUSS’ TYPE
INEQUALITIES IN A-2-INNER PRODUCT SPACES

TABANDEH MEHDIABAD MAHCHARI AND AKBAR NAZARI

(Communicated by J. Pecari¢)

Abstract. In this paper we generalize the concept of complex valued 2-inner product to A -valued
2-inner product, where A is a C* -algebra. We define and study the notion of A -valued 2-inner
product on right A-module E(E is a linear space) and by new definition, some Griiss type
inequalities are given.

1. Preliminaries

In this section, we Introduce 2-inner product spaces and Hilbert C*-modules. The
concepts of 2-inner product and 2-inner product spaces have been studied by many
authors, see [2] and also, for Hilbert C*-modules you can see [10].

Here we give the basic definitions and the elementary properties of 2-inner product
spaces.

Let X be a linear space of dimension greater than 1 over the field K = R of real
numbers or the field K = C of complex numbers. Suppose that (.,.|.) is a K-valued
function defined on X x X x X satisfying the following conditions:

(@) (x,x|z) >0 and (x,x|z) =0 if and only if x.z are linearly dependent,

(b) (x,x|z) = (z,2]x),

(d)
(e) (x+x,y|z) = (x,y]z) + (¥, y|z).

ox,y|z) = a{x,y|z) for any scalar a € K,

{
{
© (xl2) = (o),
(
(

(.,.]) is called a 2-inner product on X and (X,(.,.|.)) is called a 2-inner product
space (or 2-pre-Hilbert space). Some basic properties of 2-inner product (.,.|.) can be
immediately obtained as follows [3]:

For any x,y,z€ X and a € K;

(0,y]z) =0, (x,0[z) =0, (1)
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(x, aylz) =0 {x, ylz), 2)
(T2 Fy) = X Fy,xFylz) = (x,x]2) + (,]z) F 2Re(x, yl2), 3)

1 i . .
(roylz) = 7@zl +y) = @zl =)l + 7 [z 2l +iy) = (2, 2lv =), )
(x,yloz) = |af*(x.yl2), 5)
[(x,y]2)|* < (x,x[2) (y,y|z)  (Cauchy-Schwarz inequality), (6)
(z,yl2) = (,zlz) = 0. @)
In any given 2-inner product space (X, (.,.|.)), we can define a function ||.|.|| on

X x X by

llxlzll = v/ (x,xlz) (8)

forall x,z € X.
It is easy to see that this function satisfies the following conditions:

(i) |[x[z]| = 0 and ||x|z|| = 0 if and only if x and z are linearly dependent,
(i) [zl = llxlz]l
(iii) [Jox|z|| = |et|||x|z|| for any scalar o € K,

(@) b+l < [lxlzll + [1X'|z]]-

Any function ||.|.|| defined on X x X and satisfying the above conditions is called
a2-normon X and (X,||.|.]|) is called a linear 2-normed space [8]. Whenever a 2-inner
product space (X,(.,.].)) is given, we consider it as a linear 2-normed space (X, |.|.]|)

with the 2-norm defined by (8).

Now, we give briefly definition of Hilbert C*-modules.

Let A be a C*-algebra. An inner product A-module is a linear space E which is
a right A-module (with compatible scalar multiplication: A (xa) = (Ax)a = x(Aa) for
x€E,aeA, A € C), together with a map (x,y) — (x,y) : E x E — A such that for all
xyz2€E, o, eCanda€cA:

(@) (x,x) >0 and (x,x) =0 if and only if x =0
(b") (ox+By,z) = alx,2) + B(.2),
(") (xa
d)

xa,y) = afx,y),
x) =5y

Recall that an element a of C*-algebra A is positive if @ is hermition and ¢ (a) C
R™. We write a > 0 to mean that a is positive (see [11]).

Note that, it follows from the last condition that the inner product is conjugate
linear in its second variable. So that an inner product space is the same thing as an
inner product C-module.
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If E satisfies all the conditions for an inner product A-module except for the sec-
ond part of the first condition then we call E a semi-inner product A-module. For such
modules there is an useful version of the Cauchy-Schwarz inequality [10]:

If E is a semi-inner product A-module and x,y € E then

0,20 () | (e [ ) ©)

For x in E we write ||x|| = || {x,x) H% . It is easy to deduce from this that if E is an
inner product A-module then ||.|| is anorm on E and || {x,)|| < [|x]|||v]]-

An inner product A-module which is complete with respect to its norm is called a
Hilbert A-module or a Hilbert C* -module over the C*-algebra A.

In this paper, as in the case of inner product C*-modules in [10], we are going to
define and study the concept of 2-inner product C*-modules. Indeed, 2-inner product
C*-modules are generalization of 2-inner product spaces for C*-algebra A rather than
C (So that a 2-inner product space is the same thing as a 2-inner product C-module).

2. 2-pre-Hilbert C*-modules

In this section, we define and study the notion of 2-inner product C*-modules (or
2-pre-Hilbert C*-modules) and state elementary properties in this case.

Let E be aright A-module where A is a C*-algebra, an A -combination of x1,x;,
...,X, in E is written as follows

n
Zx,-a,-:xla1+x2a2+...+xnan (a; €A)
i=1

and xp,x2,...,x, are called A-independent if the equation
xiay+xpay+ ...+ x,a, =0

has exactly one solution, namely a; = a; = ... = a, = 0, otherwise, we say that
X1,X2,...,X, are A-dependent.

The maximum number of elements in E that are A-independent, is called A-rank
of E.

DEFINITION 1. Let A be a C*-algebra. A 2-inner product A-module (or 2-pre-
Hilbert C*-modules) is a linear space E by A-rank greater than 1, which is a right
A-module(with compatible scalar multiplication: A(xa) = (Ax)a = x(Aa) for x € E,
acA, A €C) together with a map (x,y,z) — (x,y|z): E x E x E — A such that for all
x,xX v,z€EE,acA, a,B€C;

(A) (x,x|z) > 0;(x,x|z) =0 if and only if x,z are A-dependent,
(B) (ax+Bx’,ylz) = oefx,ylz) + B, yl2),

(©) (xa,y|z) = afx,y|z),
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(D) (x,ylz) = (v,x[z)",
(B) (x,x,]2) = (z,2]x).

(E,{.,.].)) is called an A-2-inner product space or C*-2-inner product space.
Note that if A = C then E with a 2-inner product is a 2-inner product C-module. If E
satisfies all the condition for a 2-inner product A-module except for the second part of
condition (A), then we call E a 2-semi-inner product A-module.

Recall thatin a C* -algebra A, for each a € A there exist a unique pair of hermition
elements b,c € A such that a = b+ic (b= $(a+a*) and ¢ = 5-(a —a*)), for more
details see [11]. Let us that call b = R(a) and ¢ = 3(a) If no confusion can arise( note
that R(a) and 3 (a) are belong to A).

We have also, properties (1)—(5) in A-2-inner product spaces and similarly these
properties can be obtained as follow:

From (B) and (D), we have
(0,ylz2) = (x,0[z) =0 (10)

and also
(x,yalz) = (x,y|z)a". (11)
Using (B) and (E), we have

(z,zlxFy) = xFy,xFylz) = (x,x]z) + (,ylz) F2R(x,y]z) (12)
and |
Rx,ylz) = Z[<Z7ZIX+y> —(z,2x—y)], (13)
1
S(x,ylz) = R]—i(x,ylz)] = ZKZ’Z'” iy) — (z,z]x — iy)], (14)
then

(x,ylz) = %[(Z»ZIHﬁ —(z,2lx —y)] +£

Using the above formula and (D), we have for any a € A, that

[(zzlx+iy) = (zlx—iy)].  (15)

(x,ylza) = afx,ylz)a". (16)
However, for o € C, (16) reduces to
(x,ylaz) = o> (x, [2)- (17)
Also, from (17) it follows that
(x,y[0) =0. (18)

Now, we prove that there is an useful version of the Cauchy-Schwarz inequality:
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PROPOSITION 1. If E is a 2-semi inner product A-module and x,y,z € E then
(¥,xlz) (x,12) < [[(x, x[2) [ (v, ¥]z).- (19)
Proof. Suppose, as we may without loss of generality, that ||(x,x|z)|| = 1. For
a €A, we have
0 < (xa—y,xa—ylz)
=a(x,x|z)a” —a(x,ylz) — (y.x|zg)a” + (y,ylz)
<aa” —alx,ylz) — (v,x[z)a" + (y,y]z).
(The last line comes from the fact (1.6.8 in [4]) that if ¢ is a positive element of A then
aca* < ||c|laa*.) Now put a = (y,x|z) to get aa™ < (y,y|z), as required. [
COROLLARY 1. let E be a 2-inner product A-module and x,y € E then
(x,yly) = (»xly) =0.

DEFINITION 2. Let E be a linear space by A-rank greater than 1 which is a right
A-module where A is a C*-algebra and let ||.|.|| be a real valued function in E x E
satisfying the following conditions:

(I) |Ix|z|]] = 0 and ||x|z|| = 0 if and only if x,z are A-dependent,
(A1) [[zxl] = [|x]z]
(D) |ox|z]| = ||| x|z]| for any scalar o € K,
(IV) |lxalz|| < ||al||x|z|| forany a € A,
V) x4zl < el + [1X]z]) -

||.|-|| is called an A-2-norm or C*-2-norm on E and (E,|.|.]|) is called an A-
2-normed or C*- 2-normed space. Note that an ordinary linear 2-normed space is a
C-2-normed space.

Using(V), we have for any points x,y € E and any a € A,

x|yl = [[x[y +xal|.

Let E be a 2-inner product A-module. For x,z in E we define ||x|z]| = || (x,x|z)]|2 .
It follows from proposition 1 that

1yl [T < Hlelzll izl (20)

and it is easy to deduce that ||.|.|| is an A-2-norm on E (using the formulas ||ab| <
llal|||b]| and ||a|| = ||a*|| where a,b € A, we have (IV) and by (20) we have the condi-
tion (V)).

A 2-inner product A-module which is complete with respect to its A-2-norm is
called a 2-Hilbert A-module, or a 2-Hilbert C* -module over the C* -algebra A. (Note
that, convergence in A-2-normed space is the same thing as convergence in linear 2-
normed space.)
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EXAMPLE 1. Let A be a commutative unital C*-algebra. By the commutative
Gelfand-Naimark theorem we can identify A with C(X), the algebra of continuous
complex-valued functions on a compact Hausdorff space X. If X were an euclidean
manifold then one would analyse it by geometric techniques, among the most important
of which is the study of vector bundles over X. A vector bundle E can be described
as follows. Take a fixed euclidean space H (note that, for example, if (H,{.,.)) is a
Hilbert space a continuous 2-inner product is defined on H by (a,b|c) = {(a,b)||c||* —
(a,c){b,c), a,b,c € H) and for each ¢ in X let H, be a subspace of H. Let E be the
space of all continuous functions & from X to H such that, for all ¢ inX, (¢) € H;.
Then E is naturally endowed with a C(X)-valued 2-semi inner product. Namely, if
&,m € E, then we define (&,7|y) to be the function ¢ — (§(¢),n(¢)|y(t))u Also, E
has the structure of a C(X)-module: given £ in E and f in C(X) we define & f to be
the pointwise product 7 — &(¢) f(¢), which is an element of E .

EXAMPLE 2. Recall that every C*-algebra A itself is a Hilbert A-module, but
note that A is not a nontrivial 2-pre-Hilbert A-module. Indeed, if A is a 2-pre-Hilbert
A-module then by (C), (11), (16) and (A),

{a,blc) = ac(1,1|1)c*b* =0 (a,b,c € A).

In the following example we show that, every 2-semi-inner product A-module is
an semi-inner product A-module.

EXAMPLE 3. Let E be a 2-semi inner product A-module, then E is a semi-inner
product A-module if we define

(x,y) = (x,yl2) + (x,v[2),

where x,y,z € E and z,7 are A-module independent.

EXAMPLE 4. Let E be a 2-inner product A-module, then we can construct a quo-
tient of E that is a 2-inner product A-module, using proposition 1. In fact Let A be a
unital C*-algebra, B a C*-subalgebra of A containing the identity, and y: A — B a
linear norm reducing idempotent. Such a map is called a conditional expectation from
A to B. A conditional expectation is always a positive map and satisfies

y(bac) =by(a)c (a € A,b,c €B)
(see [12]). Suppose that E is a 2-semi-inner product A-module with A-valued 2-semi-
inner product (.,.].)4. Then E is a 2-semi-inner product B-module under B-valued

2-semi-inner product given by

(xyl2)e = y((x,yl2)a).
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3. A Griiss’ type inequality in A -2-inner product spaces

The Griiss inequality have been studied by many authors in different spaces, see
[51, [7], [6], [1] and [9]. This section is a version of section 3 in [6] for A-2-inner
product spaces.

Throughout this section, let E be a 2-inner product A-module over the C* -algebra
A (with unit 14 ) equipped to A-2-norm ||x|z|| = ||{x,x|z) H% (x,z € E). We assume that
xlp =x forevery x € E.

The following lemma holds.

LEMMA 1. Let E be a 2-inner product A-module over C* algebra A, y,x,z,Y € E
and a # d. Then
RY —x,x—y[z2) =20
if and only if
y+Y y+Y > 1
S =V (Y =y, Y —y2).
<x 5 X T [2) S gV =» Y —yla)
Proof. Define

I :=RY —x,x—y|z), L= (Y—y,Y—y\z>—<x—

B

A simple calculation shows that
L =L =R[{x,y|z) + {¥,x]|2)] — R, y|z) — (x,x]|z)
and thus, obviously, /; > 0 iff I, > 0 showing the required equivalence. [
The following corollary is obvious.
COROLLARY 2. Let x,z,e € E and a,b € A with a# b. Then
R{eb —x,x—ealz) >0

if and only if

Xx—e——,x—e

b b
(rmetety

’Z> < %(b —a)le,elz)(b—a)".

COROLLARY 3. Let x,z,e € E, (e,e|z) # 0 be an idempotent and a,b € A with

a#b. If
R{eb —x,x—ealz) >0

then 4b |
a
— < <||b—a|.
Je=e=lel < 5 =a
Proof. Since (e, e|z) # 0 is idempotent, we have, ||e,z|| = || (e,e|z>H% = 1. There-

fore the desired inequality is obtained. [
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LEMMA 2. Let E be a 2-inner product A-module and x,z,e € E. If {e,e|z) #0
is idempotent, then e(e,e|z) = za+ e for some a € A, and therefore

(eelz)(e,x]z) = (e,x]z),  (x,elz) = (x,elz)(e,e]z).

Proof. Observe that the equality

(e, elz) —e.ele,elz) —elz)
= <eve|z> <eve|z> <eve|z> - <e7e|z> <e7e|z> - <eve|z> <eve|z> + <e7e|z>
=0,

implies that e{e,e|z) —e = za or 7 = (e{e,e|z) — )b, for some a,b € A.
If e{e,e|z) — e = za, then

(e, e|z) (e, x|z) = (e, e|2),x]z)
za+e,x|z)
za,x|z) + (e, x|z)
e,x|z).

=
=
=
=

Similarly, (x,e|z) = (x,e|z){e,e|z).
But, if z = (e{e,e|z) —e)b, then z = e({e,e|z)b — b), that means e,z are A-
dependent or (e,e|z) = 0. Therefore, this case does not occur. [

The following lemma also holds.

LEMMA 3. Let E be a 2-inner product A-module, x,z,e € E and (e,e|z) # 0 be
an idempotent. Then

0 < (x,x]z) — (x, e[z) (e,x[2)

and
1x,x[2) — (x, elz) (e, x|2) || = inf ||x — eaz]|*. 1)
acA
Proof. Observe, for any a € A, that

(= eax— e, el)le) = (1) — (3, el e 1) — afe,xl) + ates el e, 1)
= <x»x|z> - <x»e|z> <evx|z>'

This implies that
<X,)C|Z> - <X,€|Z> <€,X|Z> = <)C— e<x,e|z>,x— e<x,e|z>|z> 2 0.
Also,we have

1Gx,xlz) = (x,efz) (e, x[2) | = || (x — ea,x — e(x, e[2)[2) |-
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Using (20), we have
106, x12) = (x,el2) (e, x> = || (x — ea,x — e(x,e|2)|2)||*
< | — ealz]|[lx — e(x, el2)]z]|?
= [|x — ealz]|*[| (x,x[z) — (x,e[z) (e, xI2) |
which gives the bound
1Gx,x12) = (xel2) e, x2) || < [|x— ealz]|’,  a €A (22)

Taking the infimum in (22) over a € A, we deduce

16,612} = (x,efe) e, x| < inf [lx — ealz]|.

Since, for ap = (x,el|z), we get ||x — eao|z||* = || (x,x|z) — (x,e|z) {e,x|z)|| , then the rep-
resentation (21) is proved. [

Now we can prove the Griiss inequality in A -2-inner product spaces.

THEOREM 2. Let E be a 2-inner product A-module, e,z € E and {(e,e|z) # 0 be
an idempotent. If a,b,c,d € A and x,y are vectors in E such that the conditions

Rec —x,x—ealz) 20, R{ed—y,y—eblz) >0 (23)

hold o, if the following assumptions

a+tc 1 b+d 1
- < slle—all, - < sfld— 24
Hx ) ’ZH plle=al Hy ‘2 ‘ZH ylld =l 24)
are valid, then one has the inequality
1
16x,ylz) = (x,elz) e, yi)| < 7 lle — all-lld = bl (25)

Furthermore, if there is a non zero element m in E such that (m,e|z) =0 and (m,m|z) =
1, then the constant %f is best possible.

Proof. We have

[1{x,ylz) = (s elz) (e, y[2) || = || (x — e{xsefz), y — ey, el2)[2) ],

now, use inequality (20) for the vectors x —e(x,e|z), y — e(y,e|z), then we have the
following inequality

[{x,¥|2) — (x, elz){e,yl2)|| < ||lx —efx,elz)z]|.[|ly — ey, elz) |z]. (26)
Using Lemma 3 and the conditions (24) we obviously have that

a+tc
2

. 1
= efx.elalel] = inf |lx — ealz]) < | x— e “Z5|¢]| < S lle—al
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and
b+d

2

. 1
Iy = e(eldlell = inf 1y — ealel| < [[y— == |2 < 5lla—l
acA 2

and so, by (26) the desired inequality (25) is obtained.
To prove the sharpness of the constant 1, assume that (25) holds with x =y and a
constant C > 0, i.e.,

1(e.x]2) — (x,e|2) (e, xl2) | < Clle —all?, @7
provided x,e,z,a and c satisfy the hypothesis of the theorem.
If we define
_a+c n c—a
x=e— m—=

then we have

[(=e 556 = 3he=al

and thus the condition (24) is fulfilled. From (27) we have
1(x,x]2) = (x,ef2) (e,x]2) || < Clle —al?
and, since
I 312) — (el e 12l = g lle—alP
then, we get
Jle—alP <Clle—al?,

for a # ¢, which implies that C > %, and the proof is completed. [

4. A refinement of Griiss inequality in A-2-inner product spaces

This section is a new version of Theorem 2 in [9] for A-2-inner product spaces.
The following result improving (25) holds.

THEOREM 3. Let E be a 2-inner product A-module. If x,y,e,z € E, {(e,e|z) #0
is an idempotent and a,b,c,d € A such that
b+d
2

a+tc
2

hold, then one has the inequality

1 1
b= e 55l < 5lle—all, [[y—e=5|d]| < 542

14, ylz) = (xsefz) (e yI2) |

1 1 > ate| ||2\2
<_ — — — | = — — —
glle—alla—bl = (Flle—alP ~ |l =[] )

1 5 b4d| |12\ 2
< (=0 = p=e=7[)

1
< glle—allla—b.
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Furthermore, if there is a non zero element m in E such that (m,e|z) =0 and (m,m|z) =
1, then the constant % is best possible.

Proof. A simple calculation shows that
(ea —e(x,e|z),e(x,e|z) —ec|z) — (ea — x,x — ec|z) = {x,x|z) — (x,e|2) (e, x|2),
Therefore
R{ea —e(x,e|z),e{x,e|z) — ec|z) — R{ea — x,x — ec|z) = (x,x|z) — (x,e|z) (e, x|2).

Since for any a,b € A,R(a) = 1(a+a*) and (a,b|z) + (b,alz) < S{a+b,a+b|z),s0

R{ea —e(x,e|z),e{x,e|z) — ec|z) < =(a—c){e,e|z)(a—c)*.

=

As in the proof of Corollary 2

a+tc a—l—c‘ >
xX—e zZ),

R(ea —x,x —eclz) = %(a—c)<e,e|z>(a—c)* — <x—e

2 2
Therefore + +
(x,x|2) — (x,e|z) (e, x[z) < <x —e” 2 St 2 - ‘Z>
Similarly
b+d b+d
(3ylz) = (v,elz){e,ylz) < <y_e 2 YT ‘Z>
We obtain

1¢xsxlz) — (xsefz) (e, x[2) || (v yIz) = (v, elz) (e, vl |

a+c 2 b+d 2
<|[G=e R -7

Finally, using the elementary inequality for real numbers

(m* —n?)(p* —q°) < (mp —nq)*
on .
le—al Hle—al~ [l
m= — — = | = — — —
5 lle—al, n=lglle—a X—e——| )
1
1 1 ) b+d| |2]?
p=jla-sl,  q=|gla-oP~ -]
we get
e [t
2 FlP 27 F

1 1 > ate| ||2\2
<_ — — — | = — — —
glle—alla—bl = (Flle—alP ~|lr—“=[¢] )

1 5 b+d, |12\1
< (hra-o-[p-e 24

1
< glle—allla—b.
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The fact that % is the best constant can be proven in a similar manner to the one in the
previous theorem. The details are omitted. [J

5. Some companion inequality
The following companion of Griiss inequality in A-2-inner product spaces holds.

THEOREM 4. Let (E,{.,.|.)) be a A-2-inner product space and e,z € E such that
(e,e|z) #0 is an idempotent. If a,b € A and x,y € E are so that

X+y x+y ‘
LI LI A >
9t<eb 2.2 eaz>/0 (28)
or,
x+y a+b)H 1
-7 g_ — , 2
|52 -2 < 500-al (29)
then we have the inequality
1
IR[(x,y]z) — (x,elz) (e, v < ZHb—aII2~ (30)

Furthermore, if there is a non zero element m in E such that (m,e|z) =0 and (m,m|z) =
1, then the constant %f is best possible.

Proof. Using (13), we have

R{w,ulz) < —(w+u,w+ulz). (31)

Bl

Since
(x,y[z) — (x.elz)(e,y|z) = (x —e(x,e,[z),y — ey, e|z)|z),
then, using(31), we may write

R[(x,ylz)—(x, e|z) (e, y]2)]
[(x —efx,elz),y — e(y,elz)|z)

|
%

e(x,elz) +y—e(y,elz),x —e(x,elz) +y—e(y,elz)[z)

<x+y >,x+y_e<x+y Z>‘Z>

2 2

_|_
2
e n PRl it DIk wl
2 2 VA

) ’e

1
iae
<x
Therefore,

I, v12) = (el eyl < [ (55252 ]) - (S5 Ee

He2i) o
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If we apply the Griiss inequality (25) for ’% , then we get

S (e S < g -ar
— — < = ||b—all”. 33
H<2 2 f > el \e ) < gkl 33)

Making use of (32) and(33) we deduce (30).
The fact that ‘l‘ is best possible constant in (30) follows by the fact that if in
(28) we choose x =y, then it because R(eb — x,x — ealz) > 0, implying ||(x,x|z) —
(x,e|z){e,x|z)||> < %[|b —al|?, for which, by Griiss inequality in A-2-inner product

space, we know that the constant % is best possible. [

The following corollary might be of interest if one wanted to evaluate the norm of
IR[Cx,ylz) — {x,elz) (e, vl

COROLLARY 4. Let (E,{.,.|.)) be a A-2-inner product space and e,z € E, such
that (e,e|z) # 0 is an idempotent. If a,b € A and x,y € E are so that

xEty xty
St et A >
R(eb— "2 2 —ealz) 20 (34)
or,
xty a+b 1
- g ~ - )
’2 ez’ﬂ ylIb—al (35)
then we have the inequality
1
K[, y12) = s el ey < g 16— all. (36)

Furthermore, if there is a non zero element m in E such that (m,e|z) =0 and (m,m|z) =
1, then the constant Alf is best possible.

Proof. Apply Theorem 4 for —y instead of y. [J
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