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Abstract. In this paper we study a vector majorization ordering for comparing two m -tuples of
vectors of a real linear space. This extends the classical approach of (scalar) majorization theory
for comparing m -tuples of scalars in R . We prove a Sherman type inequality for a vector-
valued �C -convex function f , where �C is a cone ordering. In consequence, we obtain a
Hardy-Littlewood-Pólya-Karamata type inequality generated by m -tuples of vectors in a vector
space. As applications, we present majorization generalizations of the superadditivity properties
of the Jensen and Jensen-Mercer functionals generated by a convex function f . In addition, we
show that some sums generated by the Jensen and Jensen-Mercer functionals are Schur-concave
with respect to their weight vectors. We also give interpretations of the obtained results for
tridiagonal doubly stochastic matrices and doubly stochastic circular matrices.

1. Introduction

Let f : I → R be a function on an interval I ⊂ R , x = (x1,x2, . . . ,xk) ∈ Ik and
p ∈ P0

k , where

P0
k = {p = (p1, p2, . . . , pk) ∈ Rk : pi � 0, Pk > 0} with Pk =

k

∑
i=1

pi.

The Jensen functional is defined by

J( f ,x,p) =
k

∑
i=1

pi f (xi)−Pk f

(
1
Pk

k

∑
i=1

pixi

)
(1)

(see [8]). We adopt the convention that 0 f ( 0
0 ) = 0.

Equation (1) can be rewritten in the form

J( f ,x,p) = 〈p, f (x)〉− 〈p,e〉 f
( 〈p,x〉
〈p,e〉

)
, (2)

where f (x) = ( f (x1), f (x2), . . . , f (xk)) , e = (1,1, . . . ,1)∈Rk , and 〈·, ·〉 is the standard
inner product on Rk .

By Jensen’s inequality,

J( f ,x,p) � 0 for a convex function f .
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THEOREM A. [8] If f : I →R is a convex function then the function p→ J( f ,x,p)
is superadditive for any x ∈ Ik , i.e.,

J( f ,x,p+q) � J( f ,x,p)+ J( f ,x,q) for p,q ∈ P0
k . (3)

In consequence, the function p → J( f ,x,p) is monotone for any x ∈ Ik , i.e.,

J( f ,x,p+q) � J( f ,x,p) for p,q ∈ P0
k .

It is not hard to verify that property (3) is equivalent to the subadditivity of the
function

p → 〈p,e〉 f
( 〈p,x〉
〈p,e〉

)
, p ∈ P0

k .

That is,

〈p+q,e〉 f
( 〈p+q,x〉
〈p+q,e〉

)
� 〈p,e〉 f

( 〈p,x〉
〈p,e〉

)
+ 〈q,e〉 f

( 〈q,x〉
〈q,e〉

)
for p,q ∈ P0

k .

Consider a function f : [a,b] → R and a k -tuple x = (x1,x2, . . . ,xk) ∈ [a,b]k ,
where [a,b] ⊂ R is an interval. Let p = (p1, p2, . . . , pk) ∈ P0

k . The Jensen-Mercer
functional is defined by

M( f ,x,p) = Pk( f (a)+ f (b))−
k

∑
i=1

pi f (xi)−Pk f

(
a+b− 1

Pk

k

∑
i=1

pixi

)

(see [9]). Clearly,

M( f ,x,p) = ( f (a)+ f (b))〈p,e〉− 〈p, f (x)〉− 〈p,e〉 f
(

(a+b)〈p,e〉− 〈p,x〉
〈p,e〉

)
,

where f (x) = ( f (x1), f (x2), . . . , f (xk)) and e = (1,1, . . . ,1) ∈ Rk .
Mercer’s inequality [12, 13] says that

M( f ,x,p) � 0 for a convex function f .

THEOREM B. [9] If f : I = [a,b] → R is a convex function then the function
p → M( f ,x,p) is superadditive for any x ∈ Ik , i.e.,

M( f ,x,p+q) � M( f ,x,p)+M( f ,x,q) for p,q ∈ P0
k . (4)

In consequence, the function p → M( f ,x,p) is monotone for any x ∈ Ik , i.e.,

M( f ,x,p+q) � M( f ,x,p) for p,q ∈ P0
k .

It is easy to check that inequality (4) is equivalent to the subadditivity of the func-
tion

p → 〈p,e〉 f
( 〈p,y〉
〈p,e〉

)
, p ∈ P0

k ,
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where y = (a+b)e−x , i.e.,

〈p+q,e〉 f
( 〈p+q,y〉
〈p+q,e〉

)
� 〈p,e〉 f

( 〈p,y〉
〈p,e〉

)
+ 〈q,e〉 f

( 〈q,y〉
〈q,e〉

)
for p,q ∈ P0

k .

To motivate our studies, for a given vector c ∈ P0
k , consider two sum decomposi-

tions
c = p1 +p2 + . . .+pm and c = q1 +q2 + . . .+qn,

where p1,p2, . . . ,pm ∈ P0
k and q1,q2, . . . ,qn ∈ P0

k . It follows from Theorem A that

J( f ,x,c) � J( f ,x,p1)+ J( f ,x,p2)+ . . .+ J( f ,x,pm)

and
J( f ,x,c) � J( f ,x,q1)+ J( f ,x,q2)+ . . .+ J( f ,x,qn).

It is of interest to know when the following inequality (5) holds:

J( f ,x,p1)+ J( f ,x,p2)+ . . .+ J( f ,x,pm)
� J( f ,x,q1)+ J( f ,x,q2)+ . . .+ J( f ,x,qn). (5)

This can be helpful for constructing refined Jensen type inequalities.
Likewise, in accordance to Theorem B, one has

M( f ,x,c) � M( f ,x,p1)+M( f ,x,p2)+ . . .+M( f ,x,pm)

and
M( f ,x,c) � M( f ,x,q1)+M( f ,x,q2)+ . . .+M( f ,x,qn).

In this context it would be nice to know when the inequality (6) is met:

M( f ,x,p1)+M( f ,x,p2)+ . . .+M( f ,x,pm)
� M( f ,x,q1)+M( f ,x,q2)+ . . .+M( f ,x,qn). (6)

And this can be utilized in deriving refined Jensen-Mercer type inequalities.
One of our aims is to provide a condition on the vector tuples (p1,p2, . . . ,pm)

and (q1,q2, . . . ,qn) for the inequalities (5)–(6) to hold. So, for the Jensen and Jensen-
Mercer functionals, we are interested in inequalities of the Hardy-Littlewood-Pólya-
Karamata type generated by tuples of vectors. A wider class of Sherman type inequali-
ties will be also considered.

To this end, in Section 2 we investigate a vector majorization relation for com-
paring tuples of vectors (x1,x2, . . . ,xm) and (y1,y2, . . . ,yn) . This extends the classical
approach of (scalar) majorization theory for comparing n -tuples of scalars in R [10].

In Sections 3 and 4 we demonstrate majorization generalizations of Theorems A
and B for the Jensen and Jensen-Mercer functionals, respectively. As applications,
we interpret the obtained results for tridiagonal doubly stochastic matrices and doubly
stochastic circular matrices.
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2. Vector majorization

Unless stated otherwise, throughout this section V and W are real linear spaces
and C ⊂ W is a convex cone.

Recall that a nonempty subset C of W is said to be a convex cone if (i) a,b ∈ C
implies a+b ∈ C , and (ii) a ∈ C and 0 � t ∈ R imply t a ∈ C .

If C ⊂W is a convex cone then the relation �C on W defined by: for a,b ∈W ,

b �C a iff a−b ∈ C ,

is called the cone ordering (induced by C ).
An m× n real matrix A = (ai j) is said to be column stochastic if ai j � 0 for

i = 1,2, . . . ,m , j = 1,2, . . . ,n , and all column sums of A are equal to 1, i.e.,
m
∑
i=1

ai j = 1

for j = 1,2, . . . ,n .
An n× n real matrix A = (ai j) is said to be doubly stochastic if ai j � 0 for

i = 1,2, . . . ,n , j = 1,2, . . . ,n , and all row and column sums of A are equal to 1, i.e.,
n
∑
j=1

ai j = 1 for i = 1,2, . . . ,n , and
n
∑
i=1

ai j = 1 for j = 1,2, . . . ,n .

In other words, an m× n matrix A is column stochastic iff A � 0 (entrywise)
and eA = e , where e = (1, . . . ,1) is the vector of ones of an appropriate dimension.
Likewise, an n×n matrix A is doubly stochastic iff A � 0 (entrywise) and eA = e =
eAT .

Given an m×n real matrix A = (ai j) and (x1,x2, . . . ,xm)∈V m and (y1,y2, . . . ,yn)
∈ V n , we write

(y1,y2, . . . ,yn) = (x1,x2, . . . ,xm)A (7)

in the usual sense

y j = a1 jx1 +a2 jx2 + . . .+amjxm for j = 1,2, . . . ,n . (8)

We say that n -tuple Y = (y1,y2, . . . ,yn) ∈ V n is pre-majorized by m-tuple X =
(x1,x2, . . . ,xm) ∈ V m , written as Y ≺p X , if there exists an m× n column stochastic
matrix A = (ai j) such that

(y1,y2, . . . ,yn) = (x1,x2, . . . ,xm)A. (9)

(See [5] for a similar concept of matrix majorization induced by row stochastic matrix
A .)

We say that n -tuple (y1,y2, . . . ,yn)∈V n is majorized by n -tuple (x1,x2, . . . ,xn)∈
V n , written as Y≺ X , if there exists an n×n doubly stochastic matrix A = (ai j) such
that

(y1,y2, . . . ,yn) = (x1,x2, . . . ,xn)A. (10)

It is known [10, p. 33] that if V = R then ≺ reduces to the usual (scalar) ma-
jorization ordering for n -tuples in Rn defined equivalently as follows (see [10, p. 8]).
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A vector y = (y1,y2, . . . ,yn) ∈ Rn is said to be majorized by a vector x = (x1,x2,
. . . ,xn) ∈ Rn , written as y ≺ x , if

l

∑
i=1

y[i] �
l

∑
i=1

x[i] for l = 1,2, . . . ,n

with equality for l = n . Here x[i] and y[i] are the i th largest entry of x and y , respec-
tively.

A function f : I → W is said to be �C -convex on a convex set I ⊂ V , if

f (αx+(1−α)y) �C α f (x)+ (1−α) f (y) for x,y ∈ I , α ∈ [0,1] .

A function f : I → W is said to be �C -concave if − f is �C -convex (cf. [3, pp. 72–
73]).

In the forthcoming theorem we present a Sherman type inequality (12) for tuples
of vectors (cf. [17], see also [1, 4, 16]). Here we extend the classical (scalar) result to
the vector case. However, the idea of the proof remains the same [16].

THEOREM 2.1. Let f : I → W be a �C -convex function defined on a con-
vex set I ⊂ V . Let X = (x1,x2, . . . ,xm) ∈ I m , Y = (y1,y2, . . . ,yn) ∈ I n , a =
(a1,a2, . . . ,am) ∈ Rm

+ and b = (b1,b2, . . . ,bn) ∈ Rn
+ .

If
Y = XA and a = bAT (11)

for some m×n column stochastic matrix A = (ai j) , then

n

∑
j=1

b j f (y j) �C

m

∑
i=1

ai f (xi). (12)

If f is �C -concave, then the inequality (12) is reversed.

Proof. In light of (11) we have

(y1,y2, . . . ,yn) = (x1,x2, . . . ,xm)A.

Thanks to (8) we can see that y j =
m
∑
i=1

ai jxi with
m
∑
i=1

ai j = 1, j = 1,2, . . . ,n , and ai j � 0.

Hence, by the �C -convexity of f ,

f (y j) = f

(
m

∑
i=1

ai jxi

)
�C

m

∑
i=1

ai j f (xi) for j = 1,2, . . . ,n .

Therefore
n

∑
j=1

b j f (y j) �C

n

∑
j=1

b j

m

∑
i=1

ai j f (xi),
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which means
n

∑
j=1

b j f (y j) �C

m

∑
i=1

n

∑
j=1

b jai j f (xi).

However, a = bAT by (11). So, we get ai =
n
∑
j=1

b jai j , i = 1,2, . . . ,m .

In consequence, we conclude that

n

∑
j=1

b j f (y j) �C

m

∑
i=1

(
n

∑
j=1

b jai j

)
f (xi) =

m

∑
i=1

ai f (xi).

This completes the proof of inequality (12). �
It is worth emphasing that the above requirement (11) leads to the notion of weighted

majorization for pairs (X,a) and (Y,b) (see [4]).
We now illustrate Sherman type inequality (12) by providing an example.

EXAMPLE 2.2. Here we extend a result in [2].
Let V = W = Hk be the real linear space of k × k Hermitan matrices, with

the Loewner cone C = Lk of all positive semidefinite matrices in Hk , and with the
Loewner ordering � induced by Lk .

Let f be a real operator convex function defined on an interval [0,∞) ⊂ R . As
usual, we extend the action of f on Lk via the standard action of f on the (nonnegative)
eigenvalues of the matrices in Lk . Thus f : I → Hk with I = Lk .

We consider the matrices A and AT of sizes m× (m+ 1) and (m+ 1)×m , re-
spectively, where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 . . . 0 1

2
1
m

1
2

1
2 . . . 0 0 1

m

0 1
2 . . . 0 0 1

m
...

...
. . .

...
...

...

0 0 . . . 1
2 0 1

m

0 0 . . . 1
2

1
2

1
m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and AT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 0 . . . 0 0

0 1
2

1
2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 1
2

1
2

1
2 0 0 . . . 0 1

2

1
m

1
m

1
m . . . 1

m
1
m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For any positive vector b = (b1,b2, . . . ,bm,bm+1)∈Rm+1
+ , we introduce a = bAT .

Clearly, a = (a1,a2, . . . ,am), where

ai =
bi−1 +bi

2
+

bm+1

m
, i = 1,2, . . . ,m, b0 = bm.

Then for positive semidefinite matrices x1,x2, . . . ,xm ∈ Lk ,
m

∑
j=1

b j f

(
x j +x j+1

2

)
+bm+1 f

(
x1 +x2 + . . .+xm

m

)
�

m

∑
i=1

(
bi−1 +bi

2
+

bm+1

m

)
f (xi). (13)
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This inequality is an extension of that given in [2, Theorem 1.2].
In fact, to show (13) take X = (x1,x2, . . . ,xm) and Y = XA = (y1,y2, . . . ,ym,ym+1) .

Then we have

y j =
x j +x j+1

2
, j = 1,2, . . . ,m, xm+1 = x1,

ym+1 =
x1 +x2 + . . .+xm

m
.

Now, inequality (13) is a direct corollary to (12) by Theorem 2.1.

As a consequence of Theorem 2.1 we have the following Hardy-Littlewood-Pólya-
Karamata type result for n -tuples of vectors.

THEOREM 2.3. Let f : I → W be a �C -convex function defined on a convex
set I ⊂ V . Let X = (x1,x2, . . . ,xn) ∈ I n and Y = (y1,y2, . . . ,yn) ∈ I n .

Then

Y ≺ X implies
n

∑
i=1

f (yi) �C

n

∑
i=1

f (xi). (14)

Proof. We put m = n and b = e = (1, . . . ,1) ∈ Rn in Theorem 2.1. Because
Y ≺ X , we see that Y = XA with some doubly stochastic matrix A (cf. (10)). By
setting a = bAT as in (11), we obtain a = eAT = e . Now, the required inequality (14)
is due to (12). �

REMARK 2.4. In the case V = W = R and C = [0,∞) , Theorem 2.3 becomes
the classical Majorization Theorem (see [10, pp. 92–93]).

EXAMPLE 2.5. Consider the simplest majorization relation

(x, x, . . . , x) ≺ (x1,x2, . . . ,xn),

in the sense
(x, x, . . . , x) = (x1,x2, . . . ,xn)A,

where x = x1+x2+...+xn
n and A is the n×n matrix of the form

A =
1
n

⎛⎜⎜⎜⎝
1 1 . . . 1
1 1 . . . 1
...

... · · · ...
1 1 . . . 1

⎞⎟⎟⎟⎠ .

Then we obtain the Jensen type inequality

f

(
x1 +x2 + . . .+xn

n

)
�C

f (x1)+ f (x2)+ . . .+ f (xn)
n

,

as a particular case of (14) in Theorem 2.3.
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A function F : I n →W with a convex set I ⊂V is said to be �C -Schur-convex
on I n if for X,Y ∈ I n ,

Y ≺ X implies F(Y) �C F(X).

A function F : I n → W with a convex set I ⊂ V is said to be �C -Schur-concave
on I n , if −F is �C -Schur-convex on I n .

Notice that Theorem 2.3 says that the function

F(x1, . . . ,xn) =
n

∑
i=1

f (xi) for (x1,x2, . . . ,xn) ∈ I n

is �C -Schur-convex on I n , whenever f is �C -convex on I .
A function F : I n → W with a set I ⊂ V is said to be permutation-invariant

on I n if for X ∈ I n and P ∈ Pn ,

F(XP) = F(X),

where Pn denotes the set of all n×n permutation matrices.
A function F : I n → W with a convex set I ⊂ V is said to be �C -convex on

I n if for X ∈ I n , Y ∈ I n and α ∈ [0,1] ,

F(αX+(1−α)Y) �C αF(X)+ (1−α)F(Y).

A function F : I n → W with a convex set I ⊂ V is said to be �C -concave on I n ,
if −F is �C -convex on I n .

THEOREM 2.6. Let F : I n → W be a permutation-invariant �C -convex func-
tion on I n with a convex set I ⊂ V . Let X = (x1,x2, . . . ,xn) ∈ I n and Y =
(y1,y2, . . . ,yn) ∈ I n .

Then
Y ≺ X implies F(y1,y2, . . . ,yn) �C F(x1,x2, . . . ,xn). (15)

Proof. We assume Y≺ X , that is, Y = XA for some doubly stochastic matrix A .
By virtue of Birkhoff’s Theorem [10, p. 30],

A =
n!

∑
i=1

λiPi

for some n×n permutation matrices Pi with
n!
∑
i=1

λi = 1 and λk � 0, i = 1,2, . . . ,n! .

For this reason, we deduce that

F(y1,y2, . . . ,yn) = F((x1,x2, . . . ,xn)A) = F((x1,x2, . . . ,xn)
n!

∑
i=1

λiPi)

= F

(
n!

∑
i=1

λi(x1,x2, . . . ,xn)Pi

)
�C

n!

∑
i=1

λiF((x1,x2, . . . ,xn)Pi)

=
n!

∑
i=1

λiF(x1,x2, . . . ,xn) = F(x1,x2, . . . ,xn).
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The above inequality is a consequence of the �C -convexity of F . The equality before
the last one follows from the permutation-invariance of F . �

3. Applications for the Jensen functional

Throughout this section V = Rk , I = P0
k and W is a linear space with a convex

cone C ⊂ W inducing preordering �C on W .
Proof of the next result will be simplified if we first prove a lemma.

LEMMA 3.1. Let f : I →W be a �C -convex function on an interval I = [a,b]⊂
R . Let P = (p1,p2, . . . ,pl) ∈ I l , where I = P0

k .
Then for any fixed x ∈ Ik ,

〈
l

∑
i=1

pi,e〉 f

⎛⎜⎜⎝ 〈
l
∑
i=1

pi,x〉

〈
l
∑
i=1

pi,e〉

⎞⎟⎟⎠�C

l

∑
i=1

〈pi,e〉 f
( 〈pi,x〉
〈pi,e〉

)
. (16)

If f is �C -concave, then the inequality (16) is reversed.

Proof. The following identity holds:

〈
l
∑
i=1

pi,x〉

〈
l
∑
i=1

pi,e〉
=

l

∑
i=1

αi
〈pi,x〉
〈pi,e〉 , (17)

where

αi =
〈pi,e〉
l
∑
j=1

〈p j,e〉
for i = 1,2, . . . , l . (18)

Since f : I → W is �C -convex on I , and
l
∑
i=1

αi = 1 with αi � 0 for i = 1,2, . . . , l ,

from (17)–(18) one has

f

⎛⎜⎜⎝ 〈 l
∑
i=1

pi,x〉

〈
l
∑
i=1

pi,e〉

⎞⎟⎟⎠ = f

(
l

∑
i=1

αi
〈pi,x〉
〈pi,e〉

)
�C

l

∑
i=1

αi f

( 〈pi,x〉
〈pi,e〉

)
(19)

=
l

∑
i=1

〈pi,e〉
l
∑
j=1

〈p j,e〉
f

( 〈pi,x〉
〈pi,e〉

)
=

1
l
∑
j=1

〈p j,e〉

l

∑
i=1

〈pi,e〉 f
( 〈pi,x〉
〈pi,e〉

)
.

Now, it is not hard to see that (19) implies (16). �
The next result is a Sherman like inequality (21) for the function (22).
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THEOREM 3.2. Let f : I → W be a �C -convex function on an interval I =
[a,b] ⊂ R . Let P = (p1,p2, . . . ,pm) ∈ I m , Q = (q1,q2, . . . ,qn) ∈ I n , a = (a1,a2,
. . . ,am) ∈ Rm

+ and b = (b1,b2, . . . ,bn) ∈ Rn
+ , where I = P0

k .
If

Q = PA and a = bAT (20)

for some m×n column stochastic matrix A = (ai j) , then for any fixed x ∈ Ik ,

n

∑
j=1

b j〈q j,e〉 f
( 〈q j,x〉
〈q j,e〉

)
�C

m

∑
i=1

ai〈pi,e〉 f
( 〈pi,x〉
〈pi,e〉

)
. (21)

If f is �C -concave, then the inequality (21) is reversed.

Proof. For any fixed x ∈ Ik , the number 〈p,x〉
〈p,e〉 lies in I . Namely, x ∈ Ik implies

xi ∈ I , i.e., a � xi � b , for i = 1,2, . . . ,k . Hence ae � x � be . Here � stands for the
componentwise ordering on Rk . In this way, we have

〈p,ae〉
〈p,e〉 � 〈p,x〉

〈p,e〉 � 〈p,be〉
〈p,e〉 ,

and further

a � 〈p,x〉
〈p,e〉 � b.

Thus we find that 〈p,x〉
〈p,e〉 ∈ I , as wanted.

So, the function

p → 〈p,e〉 f
( 〈p,x〉
〈p,e〉

)
, p ∈ P0

k , (22)

is well-defined. Consequently, both sides of the inequality (21) are well-defined.
We shall show that the function (22) is �C -convex on the convex set I = P0

k .
To see this, we utilize Lemma 3.1 for l = 2. Namely, fix any p,q ∈P0

k and α ∈ (0,1) .
Then αp,(1−α)q ∈P0

k . We use (16) for the vectors αp and (1−α)q in place of p1

and p2 . We obtain

〈αp+(1−α)q,e〉 f
( 〈αp+(1−α)q,x〉
〈αp+(1−α)q,e〉

)
�C 〈αp,e〉 f

( 〈αp,x〉
〈αp,e〉

)
+ 〈(1−α)q,e〉 f

( 〈(1−α)q,x〉
〈(1−α)q,e〉

)
= α〈p,e〉 f

( 〈p,x〉
〈p,e〉

)
+(1−α)〈q,e〉 f

( 〈q,x〉
〈q,e〉

)
. (23)

In the case α = 0 or α = 1 inequality (23) holds trivially.
Now, it follows from Theorem 2.1 applied to the �C -convex function (22) that

the inequality (21) is satisfied. �
As a special case of the previous theorem, we have a Hardy-Littlewood-Pólya-

Karamata type result as follows. The right-hand side of inequality (24) can be viewed as
the f -divergence [7] of 〈P,x〉= (〈p1,x〉, . . . ,〈pn,x〉) and 〈P,e〉= (〈p1,e〉, . . . ,〈pn,e〉) ,
respectively. Similarly for the left-hand side of inequality (24).
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THEOREM 3.3. Let f : I →W be a �C -convex function on a closed interval I ⊂
R . Let P = (p1,p2, . . . ,pn) ∈ I n and Q = (q1,q2, . . . ,qn) ∈ I n , where I = P0

k .
Then for any fixed x ∈ Ik ,

Q ≺ P implies
n

∑
i=1

〈qi,e〉 f
( 〈qi,x〉
〈qi,e〉

)
�C

n

∑
i=1

〈pi,e〉 f
( 〈pi,x〉
〈pi,e〉

)
. (24)

If f is �C -concave, then the inequality (24) is reversed.

Proof. We set m = n and b = e = (1, . . . ,1) ∈ Rn . By virtue of the vector ma-
jorization (q1,q2, . . . ,qn) ≺ (p1,p2, . . . ,pn) , we infer that (q1,q2, . . . ,qn) = (p1,p2,
. . . ,pn)A for some doubly stochastic matrix A .

We define a = bAT . Then a = eAT = e .
Finally, by applying Theorem 3.2, Eq. (21), we establish the inequality (24), as

desired. �

It is obvious that the statement (24) asserts that for any fixed x ∈ Ik , the function

F(p1,p2, . . . ,pn) =
n

∑
i=1

〈pi,e〉 f
( 〈pi,x〉
〈pi,e〉

)
, pi ∈ I ,

is �C -Schur-convex on I n .
For a W -valued function f : I → W , the Jensen functional is defined as follows.

Let p = (p1, p2, . . . , pk) ∈ Rk
+ , x = (x1,x2, . . . ,xk) ∈ Ik . Then we set

J( f ,x,p) = [p, f (x)]−〈p,e〉 f
( 〈p,x〉
〈p,e〉

)
, (25)

where f (x) = ( f (x1), f (x2), . . . , f (xk)) , e = (1,1, . . . ,1)∈Rk , and 〈·, ·〉 is the standard

inner product on Rk , and [p, f (x)] =
k
∑
i=1

pi f (xi) ∈ W .

We are now in a position to interpret the previous results in terms of the Jensen
functional.

COROLLARY 3.4. Let f : I → W be a �C -convex function on a closed interval
I ⊂R . Let P = (p1,p2, . . . ,pm)∈I m , Q = (q1,q2, . . . ,qn)∈I n , a = (a1,a2, . . . ,am)
∈ Rm

+ and b = (b1,b2, . . . ,bn) ∈ Rn
+ , where I = P0

k .
If

Q = PA and a = bAT (26)

for some m×n column stochastic matrix A = (ai j) , then for any fixed x ∈ Ik ,

n

∑
j=1

b jJ( f ,x,q j) �C

m

∑
i=1

aiJ( f ,x,pi). (27)

If f is �C -concave, then the inequality (27) is reversed.
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Proof. From (25) we have

n

∑
j=1

b jJ( f ,x,q j) =
n

∑
j=1

b j

(
[q j, f (x)]−〈q j,e〉 f

( 〈q j,x〉
〈q j,e〉

))

=

[
n

∑
j=1

b jq j, f (x)

]
−

n

∑
j=1

b j〈q j,e〉 f
( 〈q j,x〉
〈q j,e〉

)
. (28)

Likewise,

m

∑
i=1

aiJ( f ,x,pi) =
m

∑
i=1

ai

(
[pi, f (x)]−〈pi,e〉 f

( 〈pi,x〉
〈pi,e〉

))

=

[
m

∑
i=1

aipi, f (x)

]
−

m

∑
i=1

ai〈pi,e〉 f
( 〈pi,x〉
〈pi,e〉

)
. (29)

By (26) via the standard algebra it can be shown that

n

∑
j=1

b jq j =
m

∑
i=1

aipi.

So, by comparing (28) and (29) and taking into account Theorem 3.2, we conclude that
inequality (27) is valid. This completes the proof. �

By setting a and b to be the all ones vector e , with the aid of a doubly stochastic
matrix A , one obtains the following result from Corollary 3.4.

COROLLARY 3.5. Let f : I → W be a �C -convex function on a closed interval
I ⊂ R . Let P = (p1,p2, . . . ,pn) ∈ I n and Q = (q1,q2, . . . ,qn) ∈ I n , where I =
P0

k .
Then for any fixed x ∈ Ik ,

Q ≺ P implies
n

∑
i=1

J( f ,x,qi) �C

n

∑
i=1

J( f ,x,pi). (30)

If f is �C -concave, then the inequality (30) is reversed.

Proof. It suffices to apply Corollary 3.4 with m = n and b = e = (1, . . . ,1) ∈ Rn .
Indeed, from Q ≺ P we get Q = PA for some doubly stochastic matrix A (cf. (10)).
By setting a = bAT as in (26) we obtain a = eAT = e . So, the required inequality (30)
follows from (27). �

Notice that the above result (30)) says that for any fixed x ∈ Ik , the function

J(p1,p2, . . . ,pn) =
n

∑
i=1

J( f ,x,pi), pi ∈ I,

is �C -Schur-concave on I n .
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EXAMPLE 3.6. Let f : I →W be a �C -convex function on a closed interval I ⊂
R . In our consideration we use the following symmetric, tridiagonal, doubly stochastic
matrix A = AT of size n×n generated by the scalars c1,c2, . . . ,cn−1 . That is,

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− c1 c1 0 . . . 0 0 0
c1 1− c1− c2 c2 . . . 0 0 0

0 c2 1− c2− c3
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 . . .
. . . 1− cn−3− cn−2 cn−2 0

0 0 . . . . . . cn−2 1− cn−2− cn−1 cn−1

0 0 . . . . . . 0 cn−1 1− cn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For any positive vector b = (b1,b2, . . . ,bn) ∈ Rn
+ and P = (p1,p2, . . . ,pn) ∈ I n , we

define a = (a1,a2, . . . ,an) by a = bAT , and Q = (q1,q2, . . . ,qn) ∈ I n by Q = PA ,
where I = P0

k .
Thus we derive

ai = ci−1bi−1+(1−ci−1−ci)bi +cibi+1 , i = 1,2, . . . ,n , b0 = c0 = 0 , bn+1 = cn = 0,

qi = ci−1pi−1 +(1− ci−1− ci)pi + cipi+1 , i = 1,2, . . . ,n , p0 = 0 , pn+1 = 0.

For this reason, for any fixed x ∈ Ik , the following inequality (31) can be established
from (21):

n

∑
j=1

b j〈c j−1p j−1 +(1− c j−1− c j)p j + c jp j+1,e〉

× f

( 〈c j−1p j−1 +(1− c j−1− c j)p j + c jp j+1,x〉
〈c j−1p j−1 +(1− c j−1− c j)p j + c jp j+1,e〉

)
�C

m

∑
i=1

[ci−1bi−1 +(1− ci−1− ci)bi + cibi+1]〈pi,e〉 f
( 〈pi,x〉
〈pi,e〉

)
. (31)

Furthermore, it follows from (27) that

n

∑
j=1

b jJ( f ,x,c j−1p j−1 +(1− c j−1− c j)p j + c jp j+1)

�C

m

∑
i=1

[ci−1bi−1 +(1− ci−1− ci)bi + cibi+1]J( f ,x,pi).

This result can be compared to [2, Theorem 1.2].
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4. Applications for the Jensen-Mercer functional

As previously, we assume that V = Rk , I = P0
k and W is a linear space with a

convex cone C ⊂ W inducing preordering �C on W .
Let f : I → W be a W -valued function with a (closed) interval I = [a,b] ⊂ R ,

and p = (p1, p2, . . . , pk) ∈ I , x = (x1,x2, . . . ,xk) ∈ Ik . The Jensen-Mercer functional
is defined by

M( f ,x,p) = [p,( f (a)+ f (b))e]− [p, f (x)]−〈p,e〉 f
(

(a+b)〈p,e〉− 〈p,x〉
〈p,e〉

)
,

where f (x) = ( f (x1), f (x2), . . . , f (xk)) , e = (1,1, . . . ,1)∈Rk , and 〈·, ·〉 is the standard
inner product on Rk , and

[p, f (x)] =
k

∑
i=1

pi f (xi) ∈ W ,

( f (a)+ f (b))e = ( f (a)+ f (b), f (a)+ f (b), . . . , f (a)+ f (b)) ∈ W k,

[p,( f (a)+ f (b))e] =
k

∑
i=1

pi( f (a)+ f (b)) ∈ W .

It is obvious that

M( f ,x,p) = [p, f̃ (y)]−〈p,e〉 f
( 〈p,y〉
〈p,e〉

)
,

where y = (a+b)e−x and f̃ (y) = ( f (a)+ f (b))e− f (x) .
In Theorem 4.1 we demonstrate a Sherman like inequality (34) related to the func-

tion

p → 〈p,e〉 f
( 〈p,(a+b)e−x〉

〈p,e〉
)

, p ∈ P0
k . (32)

THEOREM 4.1. Let f : I →W be a �C -convex function on an interval I = [a,b] .
Let P = (p1,p2, . . . ,pm) ∈I m , Q = (q1,q2, . . . ,qn) ∈I n , a = (a1,a2, . . . ,am) ∈Rm

+
and b = (b1,b2, . . . ,bn) ∈ Rn

+ , where I = P0
k .

If
Q = PA and a = bAT (33)

for some m×n column stochastic matrix A = (ai j) , then for any fixed x ∈ Ik ,

n

∑
j=1

b j〈q j,e〉 f
( 〈q j,(a+b)e−x〉

〈q j,e〉
)

�C

m

∑
i=1

ai〈pi,e〉 f
( 〈pi,(a+b)e−x〉

〈pi,e〉
)

. (34)

If f is �C -concave, then the inequality (34) is reversed.
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Proof. It is easily seen that the vector y = (a+b)e−x lies in Ik . So, the function
(32)) is well-defined. Therefore both the sides of the inequality (34) are well-defined,
too.

Applying Theorem 3.2 for the vector y ∈ Ik , we have

n

∑
j=1

b j〈q j,e〉 f
( 〈q j,y〉
〈q j,e〉

)
�C

m

∑
i=1

ai〈pi,e〉 f
( 〈pi,y〉
〈pi,e〉

)
,

whence we obtain the desired inequality (34). �

THEOREM 4.2. Let f : I →W be a �C -convex function on an interval I = [a,b] .
Let P = (p1,p2, . . . ,pn) ∈ I n and Q = (q1,q2, . . . ,qn) ∈ I n , where I = P0

k .
Then for any fixed x ∈ Ik ,

Q ≺ P implies
n

∑
i=1

〈qi,e〉 f
( 〈qi,(a+b)e−x〉

〈qi,e〉
)

�C

n

∑
i=1

〈pi,e〉 f
( 〈pi,(a+b)e−x〉

〈pi,e〉
)

.

(35)

Proof. Since Q = PA for some doubly stochastic matrix A , we have e = eAT .
By setting m = n and a = b = e , we obtain a = bAT . Now, the required result (35)
can be deduced from Theorem 4.1. �

It is worth noting that (35) guarantees �C -Schur-convexity on I n of the function

F(p1,p2, . . . ,pn) =
n

∑
i=1

〈pi,e〉 f
( 〈pi,(a+b)e−x〉

〈pi,e〉
)

, pi ∈ I .

In the forthcoming corollaries we provide inequalities involving the Jensen-Mercer
functional.

COROLLARY 4.3. Let f : I → W be a �C -convex function on an interval I =
[a,b] . Let P = (p1,p2, . . . ,pm)∈I m , Q = (q1,q2, . . . ,qn)∈I n , a = (a1,a2, . . . ,am)
∈ Rm

+ and b = (b1,b2, . . . ,bn) ∈ Rn
+ , where I = P0

k .
If

Q = PA and a = bAT (36)

for some m×n column stochastic matrix A = (ai j) , then for any fixed x ∈ Ik ,

n

∑
j=1

b jM( f ,x,q j) �C

m

∑
i=1

aiM( f ,x,pi). (37)

If f is �C -concave, then the inequality (37) is reversed.

Proof. We take y = (a+ b)e− x and f̃ (y) = ( f (a) + f (b))e− f (x) . It follows
from (34) that

n

∑
j=1

b j〈q j,e〉 f
( 〈q j,y〉
〈q j,e〉

)
�C

m

∑
i=1

ai〈pi,e〉 f
( 〈pi,y〉
〈pi,e〉

)
. (38)
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Moreover, we have
n

∑
j=1

b jM( f ,x,q j) =
n

∑
j=1

b j

(
[q j, f̃ (y)]− 〈q j,e

〉
f

( 〈q j,y〉
〈q j,e〉

))

=

[
n

∑
j=1

b jq j, f̃ (y)

]
−
〈

n

∑
j=1

b jq j,e

〉
f

( 〈q j,y〉
〈q j,e〉

)
. (39)

Similarly,
m

∑
i=1

aiM( f ,x,pi) =
m

∑
i=1

ai

([
pi, f̃ (y)

]
−〈pi,e〉 f

( 〈pi,y〉
〈pi,e〉

))

=

[
m

∑
i=1

aipi, f̃ (y)

]
−
〈

m

∑
i=1

aipi,e

〉
f

( 〈pi,y〉
〈pi,e〉

)
. (40)

By making use of (36) it can be shown that
n

∑
j=1

b jq j =
m

∑
i=1

aipi.

Now, combining (38), (39) and (40) leads to (37), as claimed. �

COROLLARY 4.4. Let f : I → W be a �C -convex function on an interval I =
[a,b] . Let P = (p1,p2, . . . ,pn)∈I n and Q = (q1,q2, . . . ,qn)∈I n , where I = P0

k .
Then for any fixed x ∈ Ik ,

Q ≺ P implies
n

∑
i=1

M( f ,x,qi) �C

n

∑
i=1

M( f ,x,pi). (41)

Proof. It is sufficient to appeal to Corollary 4.3 with a = b = e , because Q = PA
and a = bAT for some doubly stochastic matrix A . This yields (41), which was to be
proven. �

It may be noted here that statement (41) ensures �C -Schur-concavity on I n of
the function

M(p1,p2, . . . ,pn) =
n

∑
i=1

M( f ,x,pi), pi ∈ I .

EXAMPLE 4.5. The circular matrix (circulant) induced by a real sequence (c1,c2,
. . . ,cn) is the n×n matrix whose first column is (c1,c2, . . . ,cn)T and the other columns
are obtained by succesive cyclic permutations of the first column, i.e.,

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1 cn cn−1 . . . c3 c2

c2 c1 cn . . . c4 c3

c3 c2 c1
. . . c5 c4

...
...

. . .
. . .

...
...

cn−1 cn−2 cn−3 . . . c1 cn

cn cn−1 cn−2 . . . c2 c1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(42)



VECTOR MAJORIZATION AND SCHUR-CONCAVITY 785

(cf. [14]). If in addition the circular matrix (42) has nonnegative entries summing to
one in each column and row, then A is called a doubly stochastic circular matrix (see
[10, pp. 62–64]).

In this context, for a �C -convex function f : I → W , I = P0
k , m = n , P =

(p1,p2, . . . ,pn) ∈ I n , b = (b1,b2, . . . ,bn) ∈ Rn
+ , and x ∈ Ik , Theorem 4.1 gives

n

∑
j=1

b j〈q j,e〉 f
( 〈q j,(a+b)e−x〉

〈q j,e〉
)

�C

n

∑
i=1

ai〈pi,e〉 f
( 〈pi,(a+b)e−x〉

〈pi,e〉
)

, (43)

where (q1,q2, . . . ,qn) = Q = PA and (a1,a2, . . . ,an) = a = bAT . Hence it can be
deduced that for i, j = 1,2, . . . ,n ,

q j = cn− j+2p1 + cn− j+3p2 + cn− j+4p3 + . . .+ cnp j−1 + c1p j + c2p j+1 + . . .

+cn− jpn−1 + cn− j+1pn,

ai = cib1 + ci−1b2 + ci−2b3 + . . .

+cnbi+1 + cn−1bi+2 + cn−2bi+3 + . . .+ ci+2bn−1 + ci+1bn,

where cn+i = ci .
For instance, for

A = AT =
1

n−1

⎛⎜⎜⎜⎜⎝
0 1 1 . . . . . . 1

1 0 1
. . .

. . . 1
...

. . .
. . .

. . .
. . .

...
1 1 1 . . . 1 0

⎞⎟⎟⎟⎟⎠
and

q j = p1 + . . .+p j−1 +p j+1 + . . .+pn, j = 1,2, . . . ,n ,

ai = b1 + . . .+bi−1 +bi+1 + . . .+bn, i = 1,2, . . . ,n ,

inequality (43) can be rewritten as

n

∑
j=1

b j〈(p1+ . . .+p j−1+p j+1+ . . .+pn),e〉 f
( 〈(p1 + . . .+p j−1 +p j+1 + . . .+pn),y〉
〈(p1 + . . .+p j−1 +p j+1 + . . .+pn),e〉

)

�C

n

∑
i=1

(b1 + . . .+bi−1 +bi+1 + . . .+bn)〈pi,e〉 f
( 〈pi,y〉
〈pi,e〉

)
,

where y = (a+b)e−x . This inequality is related to those in [2, Theorem 1.4] and [14,
Corollary 3.4].

Acknowledgement. The author is grateful to an anonymous referee for giving valu-
able comments that improved the previous version of the manuscript.
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