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A WEIGHTED HARDY–TYPE INEQUALITY

FOR 0 < p < 1 WITH SHARP CONSTANT

NOUREDDINE AZZOUZ, VICTOR I. BURENKOV AND ABDELKADER SENOUCI

(Communicated by I. Perić)

Abstract. Hardy-type inequalities with sharp costants for 0 < p < 1 for power weight functions
were established in [10], [5]. In this work, we give an extension of these inequalities for general
weight functions, prove the existence of extremal functions and write them out explicitly.

1. Introduction

It is well known that for Lp -spaces with 0 < p < 1 the Hardy inequality is not sat-
isfied for arbitrary non-negative measurable functions, but is satisfied for non-negative
non-increasing functions. Moreover in [3], pp. 90–91, the sharp constant in the Hardy
type inequality for non-negative non-increasing functions was found (see [4] for more
details). Namely the following statement was proved there.

THEOREM 1. Let 0 < p < 1 and − 1
p < α < 1− 1

p . Then for all functions f
non-negative and non-increasing on (0,∞)∥∥∥∥xα−1

∫ x

0
f (y)dy

∥∥∥∥
Lp(0,∞)

�
(
1− 1

p
−α

)− 1
p ‖xα f (x)‖Lp(0,∞), (1)

and the constant
(
1− 1

p −α
)− 1

p is sharp.

Moreover, equality in [3] holds if, and only if, for some a > 0, A � 0, f (x) =
Aχ(0,a)(x) for x ∈ (0,∞) , x �= a and 0 � f (a) � A , where χ(0,a) is the characteristic
function of the interval (0,a) .

REMARK 1. The assumption α > − 1
p is natural because if α � − 1

p then for
all functions f �≡ 0 non-negative and non-increasing on (0,∞)‖xα f (x)‖Lp(0,∞) = ∞. If

α � 1− 1
p then for any A > 0 the inequality∥∥∥∥xα−1

∫ x

0
f (y)dy

∥∥∥∥
Lp(0,∞)

� A‖xα f (x)‖Lp(0,∞)

does not hold on the set of all functions non-negative and non-increasing on (0,∞).
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The last statement of Theorem 1 is not formulated in [3]. However, it can be easily
verified if one traces the proof of inequality (1) in [3]. It is explicitly stated and proved
in [1], Theorem 3.1.

The following much more general result was obtained in [9].

THEOREM 2. Let 0 < p � q < ∞ , 0 < p � 1 and u,v,w be non-negative mea-
surable functions on (0,∞) . Then for all function f non-negative and non-increasing
on (0,∞)

(∫ ∞

0

(∫ x

0
f (y)u(y)dy

)q
w(x)dx

) 1
q � C

(∫ ∞

0
[ f (x)]pv(x)dx

) 1
p

where

C = sup
t>0

(∫ t

0
v(x)dx

)− 1
p
(∫ ∞

0

(∫ min{s,t}

0
u(y)dy

)q
w(x)dx

) 1
q

and the constant C is sharp.

We also note the recent survey paper [6] dedicated to weighted integral inequalities
on the cone of monotone functions and books [8] and [7] containg a lot of information
about weighted inequalities of Hardy type.

Inequalities of type (1) were proved in [1], [2] for non-negative quasi-decreasing
functions, also with sharp constants.

In [10], [5] a Hardy type inequality for 0 < p < 1 was proved under weaker
assumptions on f but still of monotonicity type. The result was proved for the n -
dimensional variant of the Hardy operator, namely for the operator H defined for all
functions f ∈ Lloc

1 (Rn) by

(H f )(r) =
1

vnrn

∫
Br

f (x)dx, 0 < r < ∞, (2)

where Br is the open ball centered at the origin of radius r and vn is the volume of the
unit ball in R

n .
Note that for n = 1 inequality (1) is equivalent to the inequality

‖rα(H f )(r)‖Lp(0,∞) �
(
2
(
1− 1

p
−α

))− 1
p ‖|x|α f (x)‖Lp(−∞,∞) (3)

for all non-negative even functions on (−∞,∞) non-increasing on (0,∞) .

THEOREM 3. ([10], [5]) Let 0 < p < 1 , α < n− 1
p and M > 0 . Moreover, let

f be a function non-negative and Lebesgue measurable on R
n such that for all r > 0

‖ f (x)|x|
n
p′ ‖Lp(Br) < ∞ where p′ = p

p−1 . If for almost all x ∈ R
n

| f (x)| � M|x|−n‖ f (y)|y|
n
p′ ‖Lp(B|x|) , (4)

then
‖rα(H f )(r)‖Lp(0,∞) � N‖ f (x)|x|α− n−1

p ‖Lp(Rn), (5)
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where

N = pM1−pv−1
n

(
(n−α)p−1

)− 1
p
, (6)

and the constant N is sharp.

REMARK 2. If f (x) = g(|x|) where g is a non-negative non-increasing function,

then inequality (4) is satisfied with M =
(
pv−1

n

) 1
p , hence for such functions inequality

(5) holds with the sharp constant

N =
(
vn

(
n− 1

p
−α

))−1
(7)

which for n = 1 coincides with the constant in inequality (3). The aim of this paper is to
obtain conditions ensuring the validity of an analogue of inequality (5) for the weighted
Lebesgue spaces Lp,u(Rn) and Lp,v(0,∞) for the operator H defined by (2).

2. Main results

Let Ω be a Lebesgue measurable set in R
n , u be a non-negative Lebesgue mea-

surable function on Ω (weight function), and 0 < p < ∞ . We denote by Lp,u(Ω) the
space of all Lebesgue measurable functions f on Ω for which

‖ f‖Lp,u(Ω) =
(∫

Ω
| f (x)|p u(x) dx

) 1
p

< ∞.

THEOREM 4. Let C1 > 0 , 0 < p < 1 and u, v be weight functions on R
n, (0,∞)

respectively. Suppose that∫
Br

u
1

1−p (x)dx = ∞ for some r > 0 (8)

and
V (r) :=

∫ ∞

r
v(ρ)ρ−npdρ < ∞ for all r > 0. (9)

Consider the set of all Lebesgue measurable functions f on R
n satisfying the inequality

| f (x)| � C1u
1

1−p (x)‖ f‖
Lp,u (B|x|)

(10)

for almost all x ∈ R
n . Then for all functions f in this set

‖H f‖
Lp,v (0,∞) � C2‖ f‖Lp,w (Rn), (11)

where
w(x) = u(x)V (|x|), x ∈ R

n,

and
C2 = v−1

n pC1−p
1 .
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If, in addition, ∫
Br2

\Br1

u
1

1−p (x)dx < ∞ for all 0 < r1 < r2 < ∞ (12)

and ∫ 1

0
exp
(
−Cp

1

∫
B1\B|x|

u
1

1−p (y)dy
)

v(r)r−np dr < ∞, (13)

then the constant C2 is sharp and there exists a function f ∈ Lp,w(Rn) not equivalent
to 0 , satisfying inequality (10) and such that there is equality in inequality (11).

The proof of Theorem 4 is based on the following statements.

LEMMA 1. Assume that 0 < p < 1 , u is a weight function on R
n and inequality

(10) is satisfied with some C1 > 0 for almost all x ∈ R
n .

1 . If
∫
Br

u
1

1−p (x)dx < ∞ for all r > 0 , then f is equivalent to 0 on R
n .

2 . If
∫
Br

u
1

1−p (x)dx = ∞ for some r > 0 and

ρ = inf

{
r > 0 :

∫
Br

u
1

1−p (x)dx = ∞
}

> 0,

then f is equivalent to 0 on Bρ .

Proof. Let r > 0 for Case 1 and 0 < r < ρ for Case 2. Hölder’s inequality with
the exponents 1

p and
( 1

p

)′ = 1
1−p implies that for |x| � r

‖ f‖Lp,u(B|x|) � ‖ f‖L1(Br)

(∫
Br

u
1

1−p (y)dy
) 1

p−1
.

Hence by inequality (10)

‖ f‖L1(Br) � C1‖ f‖L1(Br)

(∫
Br

u
1

1−p (y)dy
) 1

p
.

Let for 0 < γ � 1

r0(γ) = sup

{
r > 0 :

∫
Br

u
1

1−p (x)dx � γ pC−p
1

}
.

Note that

intBr0(γ)u
1

1−p (x)dx = lim
r→r0(γ)−

∫
Br

u
1

1−p (x)dx � γ pC−p
1 .

Then for 0 < γ < 1
‖ f‖

L1

(
Br0(γ)

) � γ‖ f‖
L1

(
Br0(γ)

),
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which implies that f is equivalent to 0 on Br0 (γ) for any 0 < γ < 1, hence f is equiv-
alent to 0 on Br0

where r0 = r0(1) . Clearly r0 � ∞ in Case 1 and r0 � ρ in Case 2.
If in Case 1 r0 = ∞ or in Case 2 r0 = ρ , we get the required statement. Assume that
r0 < ∞ in Case 1 and r0 < ρ in Case 2. Note that∫

Br0

u
1

1−p (x)dx = C−p
1 .

Indeed, by the definition of r0 ,
∫
Br0

u
1

1−p (x)dx � C−p
1 . If

∫
Br0

u
1

1−p (x)dx < C−p
1 , then,

due to continuity in r of the function
∫
Br

u
1

1−p (x)dx on [0,∞) in Case 1 and on [0,ρ) in

Case 2, there exists ε > 0 such that
∫
Br0+ε

u
1

1−p (x)dx < C−p
1 . Hence, by the definition

of r0 , r0 � r0 + ε which is impossible.
Since f is equivalent to 0 on Br0 inequality (10) takes the form

| f (x)| � C1u
1

1−p (x)‖ f‖Lp,u(B|x|\Br0
)

for almost all x ∈ R
n with |x| > r0 . Therefore by Hölder’s inequality for r > r0

‖ f‖L1(Br\Br0 ) � C1‖ f‖L1(Br\Br0 )

(∫
Br\Br0

u
1

1−p (x)dx
) 1

p
.

Let

r1 = sup

{
r > r0 :

∫
Br\Br0

u
1

1−p (x)dx � C−p
1

}
.

Then similarly to the above f is equivalent to 0 on Br1\Br0 hence on Br1 . If r1 = ∞
in Case 1 and r0 = ρ in Case 2, then f is equivalent to 0 on R

n , on Bρ respectively.
Otherwise ∫

Br1\Br0

u
1

1−p (x)dx = C−p
1 .

Repeating this procedure we obtain that either f is equivalent to 0 on R
n in Case 1 or

on Bρ in Case 2, or f is equivalent to 0 on Brk for any k ∈ N where rk are such that
r0 < r1 < .. . < rk < .. . < ∞ in Case 1 and r0 < r1 < .. . < rk < .. . < ρ in Case 2, and∫

Brk\Brk−1

u
1

1−p (x)dx = C−p
1 .

Therefore

∫
Brk

u
1

1−p (x)dx =
∫

Br0

u
1

1−p (x)dx+
k

∑
m=1

∫
Brm\Brm−1

u
1

1−p (x)dx = (k+1)C−p
1 , k ∈ N,

hence ∫
Bσ

u
1

1−p (x)dx = lim
k→∞

∫
Brk

u
1

1−p (x)dx = ∞, f ∼ 0 on Bσ =
∞⋃

k=1

Brk ,
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where σ = lim
k→∞

rk.

In Case 1 this is only possible if σ = ∞ , hence f is equivalent to 0 on R
n . In

Case 2 all rk < ρ , hence σ � ρ . Also, by the definition of ρ , σ � ρ . So σ = ρ and
f is equivalent to 0 on Bρ . �

REMARK 3. The statement of Lemma 1 explains the assumption of inequality (8)
on u in Theorem 4. Recall that in the case of inequality (4) u(x) = |x|n(p−1) and∫
B1

u
1

1−p (x)dx = ∞ as required in Theorem 4.

Given r1,r2 > 0, let Br1	Br2 denote the symmetric difference of the balls Br1
and Br2 . Clearly Br1	Br2 = Br1\Br2 if r1 � r2 and Br1	Br2 = Br2\Br1 if r1 < r2 .

For non-negative functions g measurable on R
n we introduce the following nota-

tion ∫ ∗

Br1	Br2

g(x)dx = sgn(r1− r2)
∫

Br1	Br2

g(x)dx.

Note that

∫ ∗

Br1	Br2

g(x)dx =
∫

Br1

g(x)dx−
∫

Br2

g(x)dx =

{ ∫
Br1\Br2

g(x)dx, 0 < r2 � r1 � ∞,

−∫Br2\Br1
g(x)dx, 0 < r1 � r2 � ∞.

By taking the spherical coordinates it follows that for any 0 < r1,r2 � ∞
∫ ∗

Br1	Br2

g(x)dx =
∫ r1

r2

(∫
Sn−1

g(ρσ)dσ
)

ρn−1dρ ,

where Sn−1 is the unit sphere in R
n . If g is radial, i.e. g(x) = g(|x|) , x ∈ R

n , then

∫ ∗

Br1	Br2

g(x)dx = nvn

∫ r1

r2
g(ρ)ρn−1dρ .

LEMMA 2. Let 0 < p < 1 , C1 > 0 , u be a weight function on R
n satisfying

conditions (8) and (12), and

f (x) = Ku
1

1−p (x)exp

(
Cp

1

p

∫ ∗

B|x|	B1

u
1

1−p (y)dy

)
, x ∈ R

n, (14)

where K � 0. Then f ∈ Lp,u(Br) for all r > 0 and

f (x) = C1u
1

1−p
(x)‖ f‖Lp,u(B|x|), x ∈ R

n. (15)

Moreover, if u is a positive radial function satisfying (8) and (12), then any radial
function f ∈ Lp,u(Br) for all r > 0 satisfying (15) has form (14).
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Proof. 1. Let f be given by formula (14). By taking the spherical coordinates we
get that for any r > 0

‖ f‖Lp,u(Br) = K
(∫

Br

u
p

1−p (x)exp
(
Cp

1

∫ ∗

B|x|	B1

u
1

1−p (y)dy
)
u(x)dx

) 1
p

= K
(∫ r

0

(∫
Sn−1

u
1

1−p (ρσ)dσ
)

exp
(
Cp

1

∫ ρ

1

(∫
Sn−1

u
1

1−p (tω)dω
)
tn−1dt

)
ρn−1dρ

) 1
p

= KC−1
1

(∫ r

0

(
exp
(
Cp

1

∫ ρ

1

(∫
Sn−1

u
1

1−p (tω)dω
)
tn−1dt

))′

ρ
dρ
) 1

p

= KC−1
1

(∫ r

0

(
exp
(
Cp

1

∫ ∗

Bρ	B1

u
1

1−p (y)dy
))′

ρ
dρ
) 1

p

= KC−1
1

(
exp
(
Cp

1

∫ ∗

Br	B1

u
1

1−p (y)dy
)
− lim

τ→0+
exp
(
−Cp

1

∫
B1\Bτ

u
1

1−p (y)dy
)) 1

p

= KC−1
1 exp

(Cp
1

p

∫ ∗

Br	B1

u
1

1−p (y)dy
)

< ∞

(16)
due to conditions (8) and (12). Therefore for all x ∈ R

n

exp
(Cp

1

p

∫ ∗

B|x|	B1

u
1

1−p (y)dy
)

= K−1C1‖ f‖Lp,u(B|x|) (17)

and equality (14) implies equality (15).

2. Next assume that f ∈ Lp,u(Br) for all r > 0 and satisfies equality (15). Then
for all x ∈ R

n which we represent in the form x = rσ , σ ∈ Sn−1 we get

f (rσ)p = Cp
1 u

p
1−p (rσ)

∫ r

0

(∫
Sn−1

f (ρω)pu(ρω)dω
)

ρn−1dρ .

Multiplying by u(rσ) and integrating over Sn−1 yields∫
Sn−1

f (rσ)pu(rσ)dσ =Cp
1

(∫
Sn−1

u
1

1−p (rσ)dσ
)∫ r

0

(∫
Sn−1

f (ρω)pu(ρω)dω
)

ρn−1dρ

(18)
Let for r > 0

F(r) =
∫ r

0

(∫
Sn−1

f (ρω)pu(ρω)dω
)

ρn−1dρ = ‖ f‖p
Lp,u(Br)

and
U(r) =

∫
Sn−1

u
1

1−p (rσ)dσ .

Then the function F is absolutely continuous on [0,a] for any a > 0 and for almost all
r > 0 we have

F ′(r) =
(∫

Sn−1

f (rω)pu(rω)dω
)
rn−1 (19)
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and equality (18) takes the form

F ′(r) = Cp
1U(r)rn−1F(r). (20)

If f is equivalent to 0 on R
n , then equality (14) is trivial (with K = 0). Assume that f

is not equivalent to 0 on R
n . Then r0 = inf{r > 0 : F(r) > 0} < ∞ . Hence, for r > r0

F(r) > 0 and for almost all r > 0

(lnF(r))′ =
F ′(r)
F(r)

= Cp
1U(r)rn−1.

Therefore, by using the Newton-Leibnitz formula for the derivative of the absolutely
continuous function lnF for the interval [r0 +1,r] , we get

F(r) = F(r0 +1)exp
(
Cp

1

∫ r

r0+1
U(ρ)ρn−1dρ

)
. (21)

By passing to the limit as r → r+
0 we get that F(r0) > 0 which is impossible if r0 > 0

(because, by the definition of r0 , F(r0) = 0). So r0 = 0 and equalities (18)–(21) imply
that for almost all r > 0∫

Sn−1

f (rσ)pu(rσ)dσ = F ′(r)r1−n = Cp
1U(r)F(r)

= Cp
1U(r)F(1)exp

(
Cp

1

∫ r

1
U(ρ)ρn−1dρ

)
= Kp

(∫
Sn−1

u
1

1−p (rσ)dσ
)

exp
(
Cp

1

∫ r

1
U(ρ)ρn−1dρ

)
= Kp

(∫
Sn−1

u
1

1−p (rσ)dσ
)

exp
(
Cp

1

∫ ∗

Br	B1

u
1

1−p (y)dy
)
,

where
K = C1F(1)

1
p = C1‖ f‖Lp,u(B1).

Assume now that the functions u and f are radial: u(x) = u(|x|) , f (x) = f (|x|) .
Then by (21) we get that for almost all r > 0

nvn f (r)pu(r) = Kpnvnu
1

1−p (r)exp
(
Cp

1

∫ ∗

Br	B1

u
1

1−p (y)dy
)

which implies equality (14). �

EXAMPLE 1. In the case u(x) = |x|μ with μ > n(p− 1) equality (14) takes the
form

f (x) = K1|x|
μ

1−p exp
(Cp

1 nvn

p

(
n+

μ
1− p

)−1|x|n+ μ
1−p

)

where K1 = K exp
(
− Cp

1 nvn
p

(
n+ μ

1−p

)−1)
.

In the case of inequality (4) u(x) = |x|n(p−1) and equality (14) takes the form

f (x) = K|x|
(Cp

1 vn
p −1

)
n.

If, as in Remark 2, C1 = (pv−1
n )

1
p then f (x) = K .
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LEMMA 3. Let 0 < p < 1 and u be a weight function on R
n satisfying the con-

dition (8). If a measurable function f is such that for some C1 > 0 condition (10) is
satisfied for almost all x ∈ R

n , then for all r > 0

‖ f‖L1(Br) � C3‖ f‖Lp,u(Br) (22)

where
C3 = pC1−p

1 .

If u also satisfies condition (12), then the constant C3 in (22) is sharp and equality
is attained for any function f defined by equality (14).

Moreover, if u is a positive radial function satisfying (8) and (12), then any positive
radial function f ∈ Lp,u(Br) for all r > 0 for which there is equality in (22) has the
form (14).

Proof. 1. Since 1− p > 0 by inequality (10)

| f (x)|1−p � C1−p
1

(∫
B|x|

| f (y)|p u(y) dy
) 1−p

p
u(x)

which implies that

| f (x)| � C1−p
1

(∫
B|x|

| f (y)|p u(y) dy
) 1

p−1| f (x)|p u(x)

for almost all x ∈ R
n. All such x we represent in the form x = ρσ , σ ∈ Sn−1 . By

taking the spherical coordinates and multiplying both sides by ρn−1 we get

| f (ρσ)|ρn−1 � C1−p
1

(∫ ρ

0

(∫
Sn−1

| f (tω)|pu(tω)dω
)
tn−1dt

) 1
p−1| f (ρσ)|pu(ρσ)ρn−1

for almost all ρ > 0 and σ ∈ Sn−1 .
By integrating over Sn−1 we get that for almost all ρ > 0(∫

Sn−1

| f (ρσ)|dσ
)

ρn−1

� C1−p
1

(∫ ρ

0

(∫
Sn−1

| f (tω)|pu(tω)dω
)
tn−1dt

) 1
p−1(∫

Sn−1

| f (ρσ)|pu(ρσ)dσ
)

ρn−1

= pC1−p
1

[(∫ ρ

0

(∫
Sn−1

| f (tω)|pu(tω)dω
)
tn−1dt

) 1
p
]′

ρ
.

By integrating over (0,r) we get

∫ r

0

(∫
Sn−1

| f (ρσ)|dσ
)

ρn−1dρ � pC1−p
1

(∫ r

0

(∫
Sn−1

| f (tω)|pu(tω)dω
)
tn−1dt

) 1
p

which implies inequality (22).
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2. Let f be defined by equality (14). By taking the spherical coordinates we
get that for any r > 0

‖ f‖L1(Br) = K
∫

Br

u
p

1−p (x)exp
(Cp

1

p

∫ ∗

B|x|	B1

u
1

1−p (y)dy
)
dx

= K
∫ r

0

(∫
Sn−1

u
1

1−p (ρσ)dσ
)

exp
(Cp

1

p

∫ ρ

1

(∫
Sn−1

u
1

1−p (tω)dω
)
tn−1dt

)
ρn−1dρ

= KpC−p
1

∫ r

0

(
exp
(Cp

1

p

∫ ρ

1

(∫
Sn−1

u
1

1−p (tω)dω
)
tn−1dt

))′

ρ
dρ

= KpC−p
1

∫ r

0

(
exp
(Cp

1

p

∫ ∗

Bρ	B1

u
1

1−p (y)dy
))′

ρ
dρ

= KpC−p
1

(
exp
(Cp

1

p

∫ ∗

Br	B1

u
1

1−p (y)dy
)
− lim

ε→0+
exp
(
− Cp

1

p

∫
B1\Bε

u
1

1−p (y)dy
)

= KpC−p
1 exp

(Cp
1

p

∫ ∗

Br	B1

u
1

1−p (y)dy
)

(23)

due to condition (8). Comparing (23) and (16) we see that there is equality in (22).

3. Finally assume that u is a positive radial function satisfying (8) and (12),
u(x) = u(|x|) , x ∈ R

n , f ∈ Lp,u(Br) for all r > 0 is a positive radial function,
f (x) = f (|x|) , x ∈ R

n , and there is equality in (22) for all r > 0. Then for any r > 0

nvn

∫ r

0
f (ρ)ρn−1dρ = C3

(
nvn

∫ r

0
f (ρ)pu(ρ)ρn−1dρ

) 1
p
.

Differentiating this equality we get that for almost all r > 0

(nvn)
p−1
p f (r)rn−1 =

C3

p

(∫ r

0
f (ρ)pu(ρ)ρn−1dρ

) 1
p−1

f (r)pu(r)rn−1

which implies that

f (r)u(r)prn−1 = Cp
1 nvnu(r)

1
1−p rn−1

∫ r

0
f (ρ)pu(ρ)ρn−1dρ .

If
F(r) =

∫ r

0
f (ρ)pu(ρ)ρn−1dρ

then it follows that
F ′(r) = Cp

1 nvnu
1

1−p (r)rn−1F(r)

Similarly to the argument of Step 2 of the proof of Lemma 2 this implies that for all r > 0

F(r) = F(1)exp
(
Cp

1 nvn

∫ r

1
u

1
1−p (ρ)ρn−1dρ

)
hence for almost all r > 0

F ′(r) = f (r)prn−1 = F(1)nvnC
p
1 exp

(
Cp

1 nvn

∫ r

1
u

1
1−p (ρ)ρn−1dρ

)
u

1
1−p (r)rn−1
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and

f (r) = Ku
1

1−p (r)exp
(Cp

1

p

∫ ∗

Br	B1

u
1

1−p (y)dy
)
,

where
K = C1‖ f‖Lp,u(B1),

and the statement follows. �
Proof of Theorem 4. Since

‖H f‖Lp,v(0,∞) =
(∫ ∞

0
v(r) |(H f )(r)|p dr

) 1
p

=
(∫ ∞

0
v(r)

1
vp
n rnp

∣∣∣∣
∫

Br

f (x)dx

∣∣∣∣
p

dr
) 1

p

� 1
vn

(∫ ∞

0
v(r)

1
rnp

(∫
Br

| f (x)|dx
)p

dr
) 1

p
,

by Lemma 3 we obtain

‖H f‖Lp,v(0,∞) � C3

vn

(∫ ∞

0

(v(r)
rnp

∫
Br

| f (x)|p u(x)dx
)
dr
) 1

p
.

Fubini’s theorem yields

‖H f‖Lp,v(0,∞) � C3

vn

(∫
Rn

| f (x)|p u(x)
(∫ ∞

|x|
v(r)
rnp dr

)
dx
) 1

p

= C2

(∫
Rn

| f (x)|p u(x) V (|x|) dx
) 1

p

and inequality (11) follows.

2. Assume that condition (12) is also satisfied. Let for all x ∈ R
n

g(x) = u
1

1−p (x)exp
(Cp

1

p

∫ ∗

B|x|	B1

u
1

1−p (y)dy
)

and for a > 0 for all x ∈ R
n

ga(x) = g(x)χBa
(x).

Then by Lemma 2 the function ga satisfies inequality (10), and for x ∈ Ba there is
equality in (15).

Moreover, by (23) with K = 1

‖Hga‖p
Lp,v(0,∞) =

∫ a

0
(vnr

n)−p‖g‖p
L1(Br)

v(r)dr+
∫ ∞

a
(vnr

n)−p‖g‖p
L1(Ba)

v(r)dr

=
(
pC−p

1 v−1
n

)p
[∫ a

0
exp
(
Cp

1

∫ ∗

Br	B1

u
1

1−p (y)dy
)
v(r)r−npdr

+exp
(
Cp

1

∫ ∗

Ba	B1

u
1

1−p (y)dy
)
V (a)

]
. (24)
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Also

‖ga‖p
Lp,w(Rn) = ‖g‖p

Lp,w(Ba)
=
∫
Ba

u
1

1−p (x)exp
(
Cp

1

∫ ∗

B|x|	B1

u
1

1−p (y)dy
)
V (|x|)dx

=
∫ a

0

(∫
Sn−1

u
1

1−p (rσ)dσ
)
rn−1 exp

(
Cp

1

∫ r

1

(∫
Sn−1

u
1

1−p (ρω)dω
)

ρn−1dρ
)
V (r)dr

= C−p
1

∫ a

0

(
exp
(
Cp

1

∫ r

1

(∫
Sn−1

u
1

1−p (ρω)dω
)

ρn−1dρ
))′

r
V (r)dr

= C−p
1 lim

ε→0+

∫ a

ε

(
exp
(
Cp

1

∫ ∗

Br	B1

u
1

1−p (y)dy
))′

r
V (r)dr . (25)

Let us put

I(ε,a) :=
∫ a

ε

(
exp
(
Cp

1

∫ ∗

Br	B1

u
1

1−p (y)dy
))′

r
V (r)dr .

Then we have

I(ε,a) = exp
(
Cp

1

∫ ∗

Ba	B1

u
1

1−p (y)dy
)
V (a)− exp

(
−Cp

1

∫
B1\Bε

u
1

1−p (y)dy
)
V (ε)

−
∫ a

ε
exp
(
Cp

1

∫ ∗

Br	B1

u
1

1−p (y)dy
)
V ′(r)dr

� exp
(
Cp

1

∫ ∗

Ba	B1

u
1

1−p (y)dy
)
V (a)r

+
∫ a

0
exp
(
Cp

1

∫ ∗

Br	B1

u
1

1−p (y)dy
)
v(r)r−npdr < ∞ (26)

by condition (13). Therefore in (25) the limit as ε → 0+ exists and is finite. Hence,
ga ∈ Lp,w(Rn) .

Moreover, equality (26) implies that also the limit

lim
ε→0+

exp
(
−Cp

1

∫
B1\Bε

u
1

1−p (y)dy
)
V (ε)

exists and is finite. This limit cannot be positive, otherwise condition (13) will not be
satisfied. Hence, it is equali to 0. By passing in (26) to the limit as ε → 0+ we get that

‖ga‖p
Lp,w(Rn) = C−p

1

[∫ a

0
exp
(
Cp

1

∫ ∗

Br	B1

u
1

1−p (y)dy
)
v(r)r−npdr

+exp
(
Cp

1

∫ ∗

Ba	B1

u
1

1−p (y)dy
)
V (a)

]
. (27)

By comparing (24) and (27) we see that for f = ga in inequality (11) there is
equality for any a > 0. �

REMARK 4. If in Theorem 4 we take u(x) = |x|−n(1−p) and v(r) = rα p with
α p−np+1 < 0, then we obtain inequality (5) in Theorem 3.
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