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ENDPOINT ESTIMATES FOR COMMUTATORS OF INTRINSIC
SQUARE FUNCTIONS IN MORREY TYPE SPACES

Hua WANG

(Communicated by B. Opic)

Abstract. In this paper, the boundedness properties of commutators generated by b and intrinsic
square functions in the endpoint case are discussed, where b € BMO(RR"). We first establish
the weighted weak LlogL-type estimates for these commutator operators. Furthermore, we
will prove endpoint estimates of commutators generated by BMO(R") functions and intrinsic
square functions in Morrey type spaces. In particular, we can obtain endpoint estimates of these
commutators in the weighted Morrey spaces L1 (w) for 0 < k < 1 and w € A, and in the gen-
eralized Morrey spaces L€, where © is a growth function on (0,+) satisfying the doubling
condition.

1. Introduction and main results

The intrinsic square functions were first introduced by Wilson in [28, 29]; they are
defined as follows. For 0 < a < 1, let 6y, be the family of functions ¢ defined on R”
such that @ has support containing in {x € R" : |x| < 1}, [gs @(x)dx =0, and for all
x,x € R",

lp(x) — ()] < Jx =]
For (y,1) € R%M =R x (0,4c0) and f € L}, .(R"), we set

loc

|f*@(y)| = sup , (1.1)

= sup
PECy PECy

Aa(f)(1:1)

/)%@—dﬂ@&
]Rn

where ¢;(x) =7 "@(x/t). Then we define the intrinsic square function of f (of order
o) by the formula

a0 =[] (ratrionn) 22)" 12)

where T'(x) denotes the usual cone of aperture one:
+1.
Lx)={(1) eR :jx—y| <1}
Mathematics subject classification (2010): 42B25, 42B35.

Keywords and phrases: Intrinsic square functions, weighted Morrey spaces, generalized Morrey
spaces, commutators, A, weights.

© MY, Zagreb 801

Paper MIA-18-59


http://dx.doi.org/10.7153/mia-18-59

802 H. WANG

Similarly, we can define a cone of aperture f3 for any 8 > 0:

Tp(x) ={ () eRY "t x—y[ < B-1},

and the corresponding square function

2 dvd 1/2
— yat
FupF)) = ( S (Aetnn) 55 ) ~ (13)
The intrinsic Littlewood—Paley ¢ -function and the intrinsic ¢; -function will be given
respectively by
= 2dr\ "2
900 = ([ () ) (14
0 t

and

n 1/2
yi‘,a(f)(x)=<//RM (ﬁ)l (Aa(f)(y,t))2%> ., A>1. (15

Let b be a locally integrable function on R", in this paper, we will consider the
commutators generated by b and intrinsic square functions, which are defined respec-
tively by the following expressions in [23].

5 1/2
dydt
y—) . (1.6)

(b, 7a) () = ( /. T

. 2d 1/2
[b,%](f)(x)=</o sup {) , (L)

PECy

[b(x) = b(2)] @ (y—2)f(z) dz

Rn

/Rn [b(x) = b()] @ (x =) f(v) dy

and

6,97 o] (F)(x)

¢ An
(=) 2
RN E+ =) pee,

On the other hand, the classical Morrey spaces .£7 A were originally introduced
by Morrey in [ 4] to study the local behavior of solutions to second order elliptic partial
differential equations. Since then, these spaces play an important role in studying the
regularity of solutions to partial differential equations. For the boundedness of the
Hardy-Littlewood maximal operator, the fractional integral operator and the Calderén—
Zygmund singular integral operator on these spaces, we refer the reader to [1, 3, 17]. In
[13], Mizuhara introduced the generalized Morrey space L”'® which was later extended
and studied by many authors (see [7, 8, 9, 12, 15]). In [11], Komori and Shirai defined

[b(x) —b(2)] @i (y —2) f(2) dz

Rn

tn+l

) 1/2
dydt) JA > 1.

(1.8)
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the weighted Morrey space L”**(w) which could be viewed as an extension of weighted
Lebesgue space, and then discussed the boundedness of the above classical operators
in Harmonic Analysis on the weighted space LP>*(w). Recently, in [23, 24, 25, 26], we
have established the strong type and weak type estimates for intrinsic square functions
and their commutators on L”© and LPX(w) with 1 < p < eo.

In order to simplify the notations, for any given ¢ > 0, we set

o o

when @(¢) =1 (1 +log™¢). The main results of this paper can be stated as follows. For
the endpoint estimates for these commutator operators [b,.%5 |, [b, %] and [b,¥; |

in the weighted Lebesgue space L} (R"), when b € BMO(R") and w € Ay, we will
show

THEOREM 1.1. Let 0 < ox < 1, w € A and b € BMO(R"). Then for any given
o > 0, there exists a constant C > 0 independent of f and ¢ such that

n. f ()]
w({xeR":|[b,7](f)(x)| >0}) <C RndD <_> -w(x)dx,

(6
where ®(t) =1t(1+log"¢).

THEOREM 1.2. Let 0 < v < 1, w € A and b € BMO(R"). Then for any given
o > 0, there exists a constant C > 0 independent of f and ¢ such that

(&

n. |f(x)]
w({xeR": |[b,%](f)(x)| >0c})<C N o <_> -w(x)dx,
where ®(t) =1t(1+log"¢).

THEOREM 1.3. Let 0< o<1, we€ Ay and b€ BMO(R"). If A > (3n+2a)/n,
then for any given ¢ > 0, there exists a constant C > 0 independent of f and ¢ such

that
w({xeR": |[b,%’f7a}(f)(x)| >0})<C an) (ﬁ) -w(x)dx,

o
where ®(t) =1t(1+1log"t).

Let 0 < x < 1. Assume that 6 is a positive increasing function defined in (0, +eo)
and satisfies the following % condition:

0 0
©) (80,
where C > 0 is a constant independent of & and . For the endpoint estimates of

commutators generated by BMO(RR") functions and intrinsic square functions in the
Morrey type spaces associated to 6, we will prove

forany 0 < § < & < +oo, (1.9)
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THEOREM 1.4. Let 0 < < 1, w€ Aj and b € BMO(R"). Assume that 0 sat-

isfies the Py condition (1.9) with 0 < k < 1, then for any given ¢ > 0 and any ball
B, there exists a constant C > 0 independent of f, B and ¢ such that

¥W X N X u l ‘f(x” w(x X
T EB'“”’%W’|>"})<C53p{e<w<3>>/3q’< o ) “"}’

where ®(t) =1t(1+1log"t).

THEOREM 1.5. Let 0 < < 1, w € A and b € BMO(R"). Assume that 0 sat-
isfies the Dy condition (1.9) with 0 < K < 1, then for any given ¢ > 0 and any ball
B, there exists a constant C > 0 independent of f, B and ¢ such that

1 . 1 £()]
e(w(B))W({XEB' |6, %a](f)(x)| >0}) <C51;P{ oW (B)) /Bq>< - ) w(x)dx} :

where ®(t) =1t(1+1log"t).

THEOREM 1.6. Let 0 < a <1, we Ay and b € BUO(R"). Assume that 0 satis-
fies the Dy condition (1.9) with 0 < k < 1 and A > (3n+20)/n, then for any given
o > 0 and any ball B, there exists a constant C > 0 independent of f, B and ¢ such
that

! ! )]
oGy " (e B: (b %a](fﬂx)}>0})<ngp{9(w(3))/3d>< : )w(x)dx},

where ®(t) =1t(1+log"t).

2. Notations and preliminaries
A weight w will always mean a positive function which is locally integrable on
R", B = B(xp,rg) = {x € R" : |x—xp| < rp} denotes the open ball centered at x, and

with radius rp > 0. For 1 < p < e, a weight function w is said to belong to the
Muckenhoupt’s class A, if there is a constant C > 0 such that for every ball B C R"

(see [0, 16]),
p—1
(%/w(x)dx) (%/w(x)_l/(p_l)dx> <C.
B B

Forthe case p =1, w € Ay, if there is a constant C > 0 such that for every ball B C R",
/ x)dx < C- essmfw( ).
1B] €B

We also define Aco = Uj<p<ed) . Itis well known thatif w € A, with 1 < p < oo, then
for any ball B, there exists an absolute constant C > 0 such that

w(2B) < Cw(B). 2.1)
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In general, for w € A; and any j € Z. , there exists an absolute constant C > 0 such
that (see [6]) ' '
w(2/B) < C-2""w(B). (2.2)

Moreover, if w € A.., then for all balls B and all measurable subsets E of B, there
exists a number 6 > 0 independent of E and B such that (see [6])

w(E) E|\°
@“(i) | -

A weight function w is said to belong to the reverse Holder class RH,, if there exist
two constants > 1 and C > 0 such that the following reverse Holder inequality holds
for every ball B C R".

()" foe)

Given a ball B and A > 0, AB denotes the ball with the same center as B whose
radius is A times that of B. For a given weight function w and a measurable set E,
we also denote the Lebesgue measure of E by |E| and the weighted measure of E by
w(E), where w(E) = [z w(x)dx. Equivalently, we could define the above notions with
cubes instead of balls. Hence we shall use these two different definitions appropriate to
calculations.

Given a weight function w on R", for 1 < p < oo, the weighted Lebesgue space
LL,(R") is defined as the set of all functions f such that

= ([ lreormas) ¥ w

Let 0 < k <1 and w be a weight function on R”. Then the weighted Morrey
space LU (w) is defined by (see [11])

17

" 1
L) = { £ € L4005y = 500 g [ 70wl <.

where the supremum is taken over all balls B in R”.
Let ®© = 0O(r), r > 0, be a growth function, that is, a positive increasing function
in (0,+oc0) and satisfy the following doubling condition:

©(2r)<D-O(r), forall r>0, 2.4

where D = D(©) > 1 is a doubling constant independent of r. The generalized Morrey
space L'"®(IR") is defined as the set of all locally integrable functions f for which (see

[13]) .
w o /B o Oldx <

r>0;B(xq,r) S

where the supremum is taken over all balls B(xg,r) in R”".
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We next recall some basic definitions and facts about Orlicz spaces needed for
the proof of the main results. For more information on the subject, one can see [21].
A function @ is called a Young function if it is continuous, nonnegative, convex and
strictly increasing on [0, +e0) with ®(0) =0 and ®(¢) — +oo as t — +oo. We define
the ®-average of a function f over a ball B by means of the following Luxemburg

norm: 1 i
. X
Hqu)’B:mf{0>0; H/B(D<T)dx< 1}.

An equivalent norm that is often useful in calculations is as follows (see [18, 21]):

llos< ot {n+ s fo (Lo )b <olilon @9

Given a Young function ®, we use @ to denote the complementary Young function
associated to @. Then the following generalized Holder’s inequality holds for any
given ball B (see [18, 19]).

5] V080l <2l el 5

In order to deal with the weighted case, for w € A.., we need to define the weighted
®-average of a function f over a ball B by means of the weighted Luxemburg norm:

I lloga=int{o>0: - [@ (L) wmar <1},

It can be shown that for w € A, (see [21, 30]),

’|f||¢(w)73%%2%{n+$/3@<f;x”)w(x)dx}, (2.6)

1
W/B\f(x)-g( CHqu> BHchb

The young function that we are going to use is ®(z) =7(1 + 10g+t) with its comple-
mentary Young function ®(z) = exp(¢). Here by A ~ B, we mean that there exists a
constant C > 1 such that l <3 4 < C. Inthe present situation, we denote

and

1l crogrins = M o s Nllexpron.s = ll8llae,

By the generalized Holder’s 1nequahty with weight, we have (see [18, 30])

1
W /B |f(x) .g(x)‘w(x) dx < CHf}’LlogL(w),BHgHexpL(w),B' 2.7

Let us now recall the definition of the space of BMO(R") (Bounded Mean Oscil-
lation) (see [5, 10]). A locally integrable function b is said to be in BMO(R"), if

1
1|, = sup — / 1b(x) — by| dx < oo,
s |B| /B
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where bp stands for the average of b on B, i.e., bp = ‘7%' Jzb(y)dy and the supremum

is taken over all balls B in R"”. Modulo constants, the space BMO(R") is a Banach
space with respect to the norm || - |.. By the John—Nirenberg’s inequality, it is not
difficult to see that for any w € A, and any given ball B (see [30]),

|6~ bs|| 5 <C]. 2.8)

expL(w

Throughout this paper, the letter C always denotes a positive constant independent
of the main parameters involved, but it may be different from line to line.

3. Proofs of Theorems 1.1 and 1.2
Given a real-valued function b € BMO(RR"), we shall follow the idea developed in

[2, 4] and denote F(&) = ¢5P()—b(@] & ¢ C. Then by the analyticity of F(£) on C
and the Cauchy integral formula, we get

o)~ bla) = PO = [ e

27i &2
_ % / P O lb()-b(2)] . -0 g
0

Thus, for any ¢ € 6, 0 < oo < 1, we obtain

/R,, [b(x) = b(2)] @1 (y —2) f(2) dz
" / ) ( [ o= () dZ> /P "’de‘

:277:0

21 .
<L/ sup / oy —2)e < P f(2) dz| 0P qg
2]'[,' 0 (Pe(@ﬂo! Rn
1 m —e% cos 0-b(x
S5z | Aa(e ) ) 00 .
So we have
b.. S < 1 My —e%% cos6-b(x) 7
6] (W] < 37 [ Fale™™-1)@)-e 7
and

1

|[6,%a] (1) (x)| < E/OM% (e f) (x) -0 gp.

Then, by the L% -boundedness of intrinsic square functions (see [29]), and using
the same arguments as in [4], we can also show the following:

THEOREM 3.1. Let O <o <1, 1 < p < oo and w € Ay. Then the commutators
[b, ] and [b,4y] are all bounded from Li,(R") into ztselfwhenever b e BMO(R").
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We are now ready to give the proofs of Theorems 1.1 and 1.2, which are based
on the Calderén—Zygmund decomposition.

Proofs of Theorems 1.1 and 1.2. We will only give the proof of Theorem 1.1
here, since the proof of Theorem 1.2 is similar and easier. Inspired by the work in
[19, 20, 30], for any fixed ¢ > 0, we apply the Calderén—-Zygmund decomposition of
f atheight o to obtain a sequence of disjoint non-overlapping dyadic cubes {Q;} such
that the following property holds (see [22])

1

o<
|0l

/Q_\f(y)ldy<2"-o, 3.1)

where Q; = Q(c;,¢;) denotes the cube centered at ¢; with side length ¢; and all cubes
are assumed to have their sides parallel to the coordinate axes. Setting £ = |J; Q;. Now
we define two functions g and / as follows:

(x) = f(x) it xe E°,
o7 Jo f )|y if x€ 0,

and

h(x) = f(x) —g(x) = ;hi(xx
where /;(x) = h(x) g, (x). Then we have
lg(x)| <C-0, ae xeR" (3.2)
and
f(x) = g(x) +h(x). (3.3)

Obviously, supp i; € Qi, [o, hi(x)dx =0 and [|h]|,1 <2 [y, [f(x)|dx by the above
decomposition. Since |[b,.%6](f)(x)| < |[b,-Za] (8)(x)| +|[b,-Za] (h)(x)] by (3.3),
then we can write

w({xeR":|[b,](f)(x)| > 0})
<w({xreR": |[b,5”a] (g)(x)| >0/2})+w({xeR": Hb,ya] (h)(x)| >0/2})
=0L+5h.

Observe that w € Ay C Ay. Applying Chebyshev’s inequality and Theorem 3.1, we
obtain

4 2 ¢
h< || @], < =5 llell -

L2
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Moreover, by the inequality (3.2) and the A; condition, we deduce that
2
lell <c-o [ st hwix)dx

<coo( [ lrwmwart | .|g<x>|w<x>dx)

<co ( FWwie)ds+ S 52 [ 1) )

<C G( |f () w(x dx—l—Zessmfw /|f dy)
<coo( [ bt dx+/ O)wr) )
gc-a/Rn|f (3.4)

So we have

L <C M~w(x)dx<C Rn@(@)-w(x)dx.

RrR* O

To deal with the other term I, let O = 2,/nQ; be the cube concentric with Q; such
that £(QF) = (2y/n)¢(Q;). Then we can further decompose I, as follows.

b gw({x eJoi: ’[b,ya] (h)(x)’ > 0/2}>
+w<{x ¢Joi: ‘[b,fa](h)(x)) > o/z})

=L+ 1.

Since w € Ay, then by the inequality (2.1), we can get

L < ZW(Q;‘) < CZW(Q )

1

Furthermore, it follows from the inequality (3.1) and the A; condition that

CZ— ~essinfw( )/Q |f(y)|dy

Y€0i

< g;/@ F D) w(y)dy < %/ ’\f(y)|w(y)dy

; O

Lil] WwO)dy<C [ @ (@) w(y)dy.

R O
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For any given x € R" and (y,7) € I'(x), we have

s | [ 100~ 0@]0 0= de| <[00 ~bo - sup | [ olr—2)h
+ s | [ [0 b otr—2Ihe) e
(3.5)
Hence
b 7a] ()] < 2Jb0x) —ba| - Falh) )
2 dydt 12
<// q)sgg / ()_bQi](pt(y_Z)';hi(Z)dZ W)

= 2 |b(x) = bo,| - Fu (i) (x) + S (2[b - bQi}h,-) (x).

i

Then we can write

tecw({xeUer S bt -ho| a0 > 074}
+w<{x¢LiJQ?‘ :ya<;[b_bgi]hi> () >o/4}>

=I5+ 1s.

It follows directly from the Chebyshev’s inequality that

4
<2 / b(x)— b hi
5 <2 o |00l Zulh) )

<6§</<u“

Denote the center of Q; by ¢;. For any ¢ € 6y, 0 < o < 1, by the cancellation
condition of %;, we obtain that for any (y,7) € I'(x),

/[ y—2) =@y —ci)|hilz)dz

|z —cil®
< / hi(2)| dz
S Jomtstesicn @ |hi(2)]

£(0:)* /
<C- h; dz. 3.6
o Qim{ZZ‘Z*y‘gl} | (Z>| Z ( )

In addition, for any z € Q; and x € (QF)°, we have |z—¢;| < bl C" . Thus, for all
(y,t) € T'(x) and |z—y| <1 with z € Q;, we can see that

w(x)dx

—bo, | S (i) (x) w(x) dx) .

}h*(p, }_

|x —ci
R

t+t>x—yl+y—z=x—z = x—cl—|z—c| = (3.7)
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Hence, for any x € (Q})¢, by using the above inequalities (3.6) and (3.7), we obtain

2avar\
| Sl )| (//m) (wseu% (@ *hz)(y>|) e )
dydt  \'?
< C- f Qt </ ‘h |dZ) (/x C"/‘V x|<t t2 nJrOC +n+l>

dt 1/2
(%) (/ [hi(z |dz) (/rr,2n+a)+1>
2(0:)
<c. F_q\,ﬁa ( A |f<z>|dz).

Since QF = 2v/nQ; D 20;, then (Q;)° C (20Q;)°. This fact together with the above
pointwise estimate yields

Is < 92 (E(Q,-)a/Qi |f(z)|dz/(Q?)E }b(x) —bQi} . %d}é)
(z /Q 1@l /( o P B0 W) dx)

Z |x_cl.|n+oc
ZEQ /|f |d2/ g g
z l 2f+'QI\2fQ PRy — gyt

C \a _ w(x)
+E§, (E(Qz) /Q’_ \f(Z)\dZJE /2/+1Q,-\2-"Q,- |b21+1Qi b |x—c,-|”+°‘dx>

=1+11.

For the term /,

1

; ( / |f |dZ 2 W /2/+1Qi\2.fQi }b(x) - b2_/+1Qi|w(x) dx) .

Since w € A, we know that there exists a number » > 1 such that w € RH,.. It then
follows from Holder’s inequality, the John—Nirenberg’s inequality ([10]) and (2.2) that

1/v 1/r
. r/ r
,/2j+1Q’_ |b(x)— byj+1g, lw(x)dx < (/QJ‘HQ,- |b(X)—b2/+1Qi| dx) (/NHQ,-W(X) dx)

<Clb)l-w(277 1)
<l (27" w (). (3.8)

ala
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Hence

) (2j+1)nW(Qi)
;< o= 2 <2f—1>"+a|Qi|>

( (Q M zw)

Eessmfw / |f(2)|dz

i 2€0;

_/ (2)w(z dz<C/ @l w(z)dz

<C an) (@) -w(z)dz.

For the term 11, since b € BMO(RR"), then a simple calculation shows that

|byivig, —bo;| <C-(j+1)]1b]lx- (3.9)
This estimate (3.9) together with the inequality (2.2) implies that

_— ) - w(2/+1 :
%ZG(@) /Qi|f<Z>|dZZ(J+1)'%>

1

Cllbll* (/ 1z \dzE(f“) H%QU
1)

w(Qi) o (J+

0; j=1

2( ol ) Q,~|f(z)|dz> <C/Rncl)<%) -w(z)dz.

On the other hand, by using the weighted weak-type (1,1) estimate of intrinsic square
functions (see [29]), we have

ls < g/n2|b(x)_bQi
_ _z/Q_ |b(x) — b, | - [hi(x) | w(x) dx
< g; 1) =bo |7 wix)

C 1
+ g; o Jo, If(y)\dy/Qi |b(x) — bg, |w(x)dx

=1II+1V.

11 <

/

| hi (x) | w(x) dx
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By the generalized Holder’s inequality with weight (2.7), (2.8) and (2.6), we can deduce
that

ng /}b ~bg| - 1f(x)| w(x) dx

ZW Hb leHexpL Q,HfHLlogL (),0:

C- HbH*
<= zi'W(Qi) N Lrogzin 0

gc.\(\;bH*E 0)- mf{nJrW(an) Qiq)(ﬂ)m,(y)dy}

1

<c Rn@(@) W)y

Arguing as in the proof of (3.8), we find that

/i |b(x) — b, |w(x)dx < (/Q,. Ib(x) —bQ,-|r,dx>l/r, (/in(x)fdx>l/r

< CIb]]« - w(Qy).

Therefore

gz W|(Qle) /|f(y)\dy < gzessinfw(y) /Q,- |f()|dy

—/ y)w(y dy<C/ W(y)dy

<cf @ (%) w(y)dy.

Summing up all the above estimates, we get the desired result. [J

4. Proof of Theorem 1.3

In order to prove the main theorem of this section, we will need the following
estimates which were established by the author in [27].

PROPOSITION 4.1. Let w € Ay and 0 < oo < 1. Then for any j € Z.., we have

H‘Sﬂocaj(f)HL‘ZV <C'2jn/2||‘y0‘(f)HL‘%,'
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PROPOSITION 4.2. Let we A, 0<a <1 and?2 < q<eo. Thenforany jcZ,
we have

70,2 ()]

5 SCPZly)

Ll
PROPOSITION 4.3. Let we A, 0O<a <1l and 1 <q<?2. Then forany j € Z,,

we have

[ a2 (Dl <C- 27" Sl )] o

Moreover, from the definition of %’[ o (A > 3), we readily see that

900 = [ (ﬁ)l (Aatr)00) " 2
bl An
[ () (anen) S

oo An
° t 2dydt
+ / / (*) A N
j:zl 0 J2i-lrgv—yl<2ir \ I+ |[x =] < a(f)0 )> tl

<C| AP+ 3 2 (1) @)

j=1

Thus, by applying Propositions 4.1-4.3, the L, -boundedness of .7, (see [29]) and the
above inequality (4.1), we obtain that for 1 < g <eoand w € Ay,

195 o (f)

©
g S C(Hya(f)HL‘d, + 227% yavl"(f)HLi{r)
=

JjAn

<c(l7lls+ 2% pE 2l

<clls 1+ £ 2 ¥ 427))
=1

<y m

where the last inequality holds under the assumption A > 3 > max{1,2/g} when 1 <
q < *. In addition, for a given real-valued function b € BMO(R"), as before, we can
also prove that

4 i
|[6:95 o] ()] < % /0 %;ﬂ(e—e"”- f)(x)- e8P0 gg. (4.3)

Taking into account the inequalities (4.2) and (4.3), and following along the same argu-
ments used in [4], we can also show the following:

THEOREM 4.1. Let 0 < o < 1, | <g< oo and w € A;. Suppose that A >3, then
the commutator [b,¥; | is bounded from Ll,(R") into itself whenever b € BMO(R").
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In [24], we have established the weighted weak-type (1,1) estimate of ¢;  on
LL(R™). More specifically, we obtained

THEOREM 4.2. Let 0 < oo < 1, w € Ay and A > (3n+2a)/n. Then for any
given o > 0, there exists a constant C > 0 independent of f and ¢ such that

w({xe®": (% (W) > 0}) < g/R £ () [w(x) d.

Proof of Theorem 1.3. For any fixed ¢ > 0, as before, we again perform the
Calderén—Zygmund decomposition of f at the level ¢ to obtain a sequence of disjoint
non-overlapping dyadic cubes {Q;} such that the following property holds (see [22])

1 n
G<@/Qi|f(y)\dy<2 o. (4.4)

Setting E = |J; Q;. Now we decompose f(x) = g(x) + h(x), where g(x) = f(x) when
x€E and g(x) = @fQi |f(v)|dy when x € Q;. Then

h) = £() —g(x) = 3 i),

with h;(x) = h(x)xp,(x). Clearly, by the above decomposition, we get supp h; C O,
Jo, hi(x)dx =0 and A1 <2 [, |f(x)|dx. Note that

|[6.95 o] (N@] < [[6,95 o] (9) )|+ [[6,%7 o] (N ()]
then we have
w({x eR": |[b7%f7a](f)(x)} > G})
<w({xeR": 5,9 J(@X)| > 0/2}) +w({xeR": |[b,%; ,J(h)(x)| > 5/2})
=J1+ ).

Let us start with the term J;. By using Chebyshev’s inequality, Theorem 4.1 and the
inequality (3.4), we obtain

4 . 2 C
NS5 H[b,%,a] ©, <52 ||8Hia,

L2

C
<o [ Wl dx

ccf oY wpon

To estimate the other term J,, as before, we also let O} = 2./nQ; be the cube concentric
with Q; such that ¢(Q}) = (2y/n)¢(Q;). Then we can further split J, into two parts as
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follows.
b gw({x eJoi: ‘ 0.9 4] (h)(x)‘ > a/z})
+w({x2Ue | 0% ] )| > 0/2})

=J34+Jy.

The part of the argument involving J3 proceeds as in Theorem 1.1,
N _ S )]
B<Yw(o)<cYw@)<C | @ ~w(x) dx.
n - R2
l l

By the previous estimate (3.5), we thus obtain

|[6,95 o] () ()] < Z|b —bo,| - 95 o (hi)(x)

2ayar )"
(// | [ o) —ba]atr—2) Shie)de ,,flf)
= 3 [606) o | 93 (1)) + 5 | oo ) o).

i

Therefore

el g
({ ¢UQ %a(E[l’ th}h)(x)>G/4})

=J5+ Je.
It follows directly from the Chebyshev’s inequality that

: 3 160) o 43 ()0

J5<—
< — / b(x
Gg((Q,’-‘)" )

IRn\ Ul Q*
We also denote the center of Q; by c¢;. In the proof of Theorem 1.1, we have already

shown that
| S () ()] < C- ‘x ‘M (/ 1z |dz> 4.5)

Below we will give the pointwise estimates of |§’a 2 ( | for j=1,2,.... Notice

that for any z € Q; and x € (QF)°, we get |z —¢i| < [x 2"' . Thus, for all (y,z ) eTyi(x)
and |z —y| <t with z € Q;, we can deduce that

w(x)dx

—boy| F; o () () W(x) dx) .

— ¢l

> (4.6)

(2> =y +ly—z = x—z = —ci|—|z—ci| >
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Hence, for any x € (QF)¢, by the inequalities (3.6) and (4.6), we obtain that for j =
1,2,...,

2 gvar\
84
|7, il |—<// (sup |((Pt*hi)(y)|> tnT)
PECy
Ivd 1/2
yat
0(Qi) (/ |hi(z |d2) (/x c,\/v A|<2ir 120100 +n+1>

2J+2

J 1/2
. t
<C- 220 (/ |hi(z |dz> (/x ol t2(n+06)+1>

2/ +2

. 14¢e;
<C- 21(3+2a/2|x Cn+a</ £z |dz>

Therefore, by using the pointwise estimate we just derived above and the inequality
4.1),

20 (hi)(x)| < o (hi) (x y 2k o2 (hi) (x
.00 < |7 9] + 525 7 0000

() 5o

<C\x Ha(/~f da

where the last inequality is due to our assumption A > (3n+ 2ca)/n. Consequently,

Js < gi (E(Qi)“/gi \f(z)\dz/(g%)t [b() =g %W) :

i

Following along the same lines as in Theorem 1.1, we can also show

Js gc/Rnop(@) w(x) dx.

On the other hand, by using the weighted weak-type (1,1) estimate of &,  (see Theo-
rem 4.2), we have

<o L Zhe-to|

The rest of the proof is exactly the same as that of Theorem 1.1, and we finally obtain

J<C[ @ (@) w(x) dx.

Collecting all these estimates, we get the desired estimate. [

| (x) | w(x) dx.
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5. Proofs of Theorems 1.4, 1.5 and 1.6

Proofs of Theorems 1.4 and 1.5. We will only give the proof of Theorem 1.4
here, because the proof of Theorem 1.5 is essentially the same. Fix a ball B= B(xg, )
C R" and decompose f = fi + f>, where f| = f- x2p, X2 denotes the characteristic
function of 2B = B(xo,2rg). Forany 0 < k¥ < 1, w € A; and any given ¢ > 0, we then
write

w({xeB:|b, 7)) >0})

0(w(B))
1
S 0(w(B)) w({xeB:|b. 7] (f)(x)| > 0/2})
1
* 0(w(B)) w({xeB:|[b,Sa](f2)(x)] > 0/2})
=+ 1.

By using Theorem 1.1, we get

hisc O(WI(B)) /R ® ( |f1<(;x>|> wia)dx
=C O(WI(B)) /23q)<fg>|> wlx)dx
0(w(2B))

C-

). 1 )] -w(x)dx
0(w(B)) e(w(zB))/23®< - ) (x) dx.

Moreover, since 0 < w(B) < w(2B) < +eo when w € A;, then by the 7, condition
(1.9) of 6 and the inequality (2.1), we have

w(2B)* 1 |f ()]
s B aweB) /23CI) (T) wlx)dx

<cosw gy 2 (Yo ).

For any x € B, we can easily check that

|[b,a) (£)(X)] < [b) = ba - Ll f2) )+ Fa [0 = sl f2) ().

So we have

w({x €B:|b(x)—bp|- Zu(f2)(x) > 5 /4})

+m.w({x63i |5ﬂoc([b—b3]f2>(x)| > 0/4})

=L+ 1.
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For the term I3, for all 0 < o < 1 and x € B, it was proved by the author [23] that
1
B <C)y ———— )| dz. 5.1
|[Za(f2)(¥)] < jluwmzmﬁ&ﬂz (5.1)

Since w € Ay, then there exists a number r > 1 such that w € RH,. Hence, by us-
ing the above pointwise estimate (5.1), Chebyshev’s inequality together with Holder’s
inequality and J ohn—Nirenberg’s inequality (see [10]), we conclude that

B g /|b bB|-ya(f2)(x)w(x)dx

Z\ZJHB\ 2J+IB o

¥. (/’b( bB’ dx)l/r/< )’dx)l/r

w(B)
Z\ZJ“B\ /sz c ZG(W(B))

It then follows from the A; condition that

- _ | |/ (2)] w(B)

oo g0 m)
! 762) S (') w(B)
<cn{am he () o) 2 55 e

Note that w € A| C A, by using the &\ condition (1.9) of 6 again, the inequality
(2.3) and the fact that 0 < k¥ < 1, we find that

& G(W(ZHIB)) w(B
2 0(w(B)) 21+1B

l K

w 2}+lB 1-x

|B| 5(1 K')
<|2f+13|)

5(1-x)
@m> < (5.2)

Substituting the above inequality (5.2) into the term I3, we thus obtain

sl gy ho (Vo) o)

Similar to the proof of (5.1), forall 0 < & < 1 and all x € B, we can show the following
pointwise estimate as well.

Mx

j=1

//\
HMS

8

N

C
j:

| (1o =il (x ’\c )—bg|-|f)]dz.  (5.3)
j=1

|2/+IB| 2/+IB
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Applying the above pointwise estimate (5.3) and Chebyshev’s inequality, we have

|4
b < ) = [ a1 bal ) ) i) ax
w(B) 1
< eww»'agm/wl ~ba]- | 0] d:
w(B)
) ( (B)) _E‘ZJ'HB‘ 2/+lB b2/“B| |f |dZ

wB) C& 1
+6(w(B)) '3§ [2/7+1B| Joivip

|byiig—bs|-|f(2)|dz

=I5+

For the term I5, observe that for any a,b > 0, ®(a-b) < ®(a)- ®(b) when ®(r) =
t(1+1log™t). We then use the generalized Holder’s inequality with weight (2.7), (2.8)
and (2.6) together with (5.2) to obtain

c

I < — |b(z)—b2,-+1B|-|f(z)|w(z)dz

(27+1B) Jaj+1p

Q

N

o o
2

[6— b2f“BHexpL )2/+1BHfHLlogL w),2/+1B

\/

c
c
C

N

”ﬁ”*-eziif”» 5 i s g () o)

B
Cloll._wB) $f 6wC'E) o £
o 6(w(B) 24 w(2/+1B) + w(27F1B) /2,HB®< - )w(z)dz}

< C|]].- [1 +sgp{ G(WI(B)) /Bd’ ( f((:)) W(ZWH i 9(&(5{:)?)) ' w(v;J(fl)B)

=1
<cosw gy o (Yo ) o) |

For the last term /g we proceed as follows. An application of the inequality (3.9) leads
to that

N

w(B) <« 1
Is<C O(W((lg))g(ﬁl)b* TTE s |fé>|
w(B) 5 1 £ ()]
<C O(W(B))Z,(J‘Fl)ub“* W/zjﬂg o w(z)dz
1

<csnd gy o (L5)) wea:f

0(w(2/*'B))  w(B)
T e(w(B)  w(tIB)

—~

X
M
<
_l’_
N~—
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Notice that w € A| C A, by using the Z condition (1.9) of 0 and the inequality (2.3)
again together with the fact that 0 < k¥ < 1, we thus have

- 0(w(2/"1B))  w(B) &, w(B)!"*
20 Tonm) wes <O EU Y SrE

= ‘B‘ o(1—x)
<cgue ) (ga)

o 1 5(1—x)
<Cj=21(1+1)-<m> <C, (54

which in turn gives that

<l gy o (Vo) o)

Summarizing the above discussions, we obtain the conclusion of the main theorem. [

Proof of Theorem 1.6. For any ball B = B(xp,rg) C R" with xo € R” and rg >0,
we set f = f1 + f», where fi = f- yop. Then forany 0 < k < 1, w € A and for each
fixed o > 0, we have

1 *
sy " (1F€B: [B.F(N] > o))
1 *
S 6(w(B)) w({x€B:|[b,%; ,J(f1)(x)| > 0/2})
1
sy (e B b (W] > 0/2})
=J1+ /5.

We consider the term J; first. Applying Theorem 1.3, the & condition (1.9) of 6 and
the inequality (2.1), we conclude that

J1<C- O(WI(B))/nq)<|fl( )|> w(x)dx

:C'ewlm ( >(
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We now turn our attention to the estimate of J,. For any x € B, we are able to verify
that

11697 ] ()W) < [b(0) — bs| -5 o (2)(5) + G5, (1~ sl o) ().

So we have

! *
J2\ ( (B)) ({XEB |b bB|g7L7a(f2)(x)>G/4})
1
( (B) ({XEB |gla<b bB}fZ)( )}>0-/4})
=J3+Js.

For the term J3, forall 0 < ¢ < 1, x € B and j € Z. , it was also shown by the author
[23] that

|20 (o) ()] < €232 2

Hence, it follows from the inequalities (5.5), (5.1) and (4.1) that

9 o)) < c[;ya<fz><x>| + 32 S ()09 |

|2J+IB| o, M@z (5.5)

3 M\ ot (1 S )

J=1

g ‘W B] oy T @4 (56)

where the last inequality is due to our assumption A > (3n+2a)/n > 3. Hence, we
can continue the estimate of J3 in the same way as in Theorem 1.4, and obtain

5 < / |b(x) — bs| -sf;am)(x)w(x) dx
@I,
) Cjzzl |2f“B| /2/+IB c / o) = b ()
< 1 £ (2)] w(B)
) Cjzzl w(2/+1B) /2/+IB s " dZG(W(B))

<o {G(WI(B)) /B(D<f§>> }i 2/+13>>.w(v;§f1>3)

<l gy 2 (Ta) vo)-

For the last term J4, similar to the proof of (5.6), for all 0 < ¢ < 1, all x € B and
A > 3, we can show the following pointwise estimate as well.

;o (10— 0012 ) )] < C2|2J+IB|/2/+13 —bg||f(@)]dz. 5.T)
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Following the same arguments as in the proof of Theorem 1.4 and using the pointwise
estimate (5.7) and Chebyshev’s inequality, we have eventually obtained

Ji< O(WI(B» 2 %o -bil2) @ wiyas

wB) C& 1
<o) o =B /WB |b(z) = bs| | £(2)| dz

J=1

<cosw a2 (Ve v

Summing up all the above estimates, we therefore conclude the proof of the main the-
orem. [l

6. Corollaries

In particular, if we take 6(x) = x* with 0 < kK < 1, then we immediately get the
following endpoint estimates of commutators in the weighted Morrey spaces L% (w)
foral 0 <k <1land weA;.

COROLLARY 6.1. Let 0 < <1, 0<x <1, we Ay and b € BMO(R"). Then
for any given ¢ > 0 and any ball B, there exists a constant C > 0 independent of f,
B and o such that

1
w(B)¥

_ 1 Sl
w({xeB:|b,Z)(f)x)] > 0}) <C~Sl;pw(B)K/Bd)< p ) -w(x)dx,
where ®(t) =1t(1+log"¢).

COROLLARY 6.2. Let 0 < <1, 0< k<1, we A, and b € BMO(R"). Then
for any given ¢ > 0 and any ball B, there exists a constant C > 0 independent of f,
B and © such that

1
w(B)*

, 1 )
w({xeB:|[b,%|(f)x)|>0}) < C.Sgpw(B)K /B(D (T) -w(x)dx,
where ®(t) =1t(1+1log"t).

COROLLARY 6.3. Let 0 < a <1, 0<x <1, we A, and b € BMOR"). If
A > (3n+2a)/n, then for any given ¢ > 0 and any ball B, there exists a constant
C > 0 independent of f, B and ¢ such that

! Nip.g 1 ()]
W 'W({XGB' Hbvgl,a}(f)(x” > G}) <C'SI;P w(B)< /Bq) (T) -w(x)dx,

where ®(t) =1t(1+log"t).




824 H. WANG

We can also take w to be a constant function, then we immediately get the follow-
ing unweighted results.

COROLLARY 6.4. Let 0 < ot < 1 and b € BMO(R"). Assume that 0 satisfies the
Dy condition (1.9) with 0 < K < 1, then for any given 6 > 0 and any ball B, there
exists a constant C > 0 independent of f, B and o such that

1 L[ ()
gy ez bW > o) <o g [@ (L)},

t)=t(1+log*t).

/-\\./

where ®

COROLLARY 6.5. Let 0 < ot < 1 and b € BMO(R"). Assume that 0 satisfies the
Dy condition (1.9) with 0 < K < 1, then for any given 6 > 0 and any ball B, there
exists a constant C > 0 independent of f, B and ¢ such that

1 1 |f(x)]
(B H{x€B:|[b,%])(f)(x)] > 0}] < Csup{ (B)/d>< 5 )dx},
where ®(t) =1t(1+log"¢).

COROLLARY 6.6. Ler 0 < o0 < 1 and b € BMO(R"). Assume that 0 satisfies the
Dy condition (1.9) with 0 < k < 1 and A > (3n+2a)/n, then for any given ¢ >0
and any ball B, there exists a constant C > 0 independent of f, B and & such that

1 Sl
s e B b dow) > o <cswf oo [o (L) ad.
where ®(t) =1t(1+log"¢).

Let © = O(r), r > 0, be a growth function with doubling constant D(©) : 1 <
D(©) < 2", If for any fixed xo € R", we set 0(|B(xo,7)|) = ©O(r), then

6(2"[B(x0,r)[) = 0(|B(x0,2r)|) = ©(2r).

For the doubling constant D(0) satisfying 1 < D(©) < 2", which means that D(©) =
257" for some 0 < k¥ < 1, then we are able to verify that 0 is an increasing function and
satisfies the Z condition (1.9) with some 0 < Kk < 1. Thus, by the above unweighted
results (corollaries 6.4-6.6), we can also obtain endpoint estimates of commutators in
the generalized Morrey spaces L'® when © satisfies the doubling condition (2.4).

COROLLARY 6.7. Let 0 < ov < 1 and b € BMO(R"). Suppose that © satisfies
(2.4) and 1 < D(©) < 2", then for any given ¢ > 0 and any ball B(xo,r), there exists
a constant C > 0 independent of f, B(xo,r) and ¢ such that

1 . |f ()]
W. erB(XOJ) ' |[b»<5ﬂa](f)(x)} g GH s¢ igg 9( >/(xo,r)q)< o )dx’

where ®(t) =1t(1+1log"t).
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COROLLARY 6.8. Let 0 < a0 < 1 and b € BMO(R"). Suppose that © satisfies
(2.4) and 1 < D(©) < 2", then for any given ¢ > 0 and any ball B(xo,r), there exists
a constant C > 0 independent of f, B(xo,r) and ¢ such that

1 1 |f(x)|>
—— - |{x € B(xo,r) : |[b,%, x)| >0 <C-su / (I)<— dx,
@(r) |{ ( 0 ) |[ a}(f)( )| }| r>g 9(7’) Blxor) o

where ®(t) =1t(1+log"¢).
COROLLARY 6.9. Let 0 < ot < 1 and b € BMO(R"). Suppose that © satisfies

(2.4), 1 <D(O©) <2" and A > (3n+20)/n, then for any given ¢ > 0 and any ball
B(xo,r), there exists a constant C > 0 independent of f, B(xo,r) and & such that

1 , . 1 lf(x)]
oy x93 din]| > ol <Csmgrs [ oV Jax

where ®(t) =1t(1+1log"t).
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