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Abstract. In this paper we shall provide a unified treatment of Hilbert-type inequalities involving
the Hardy operator with a general homogeneous kernel. Furthermore, we establish some new
Hilbert-type inequalities involving the integral operator. We shall show that the constants in our
results are best possible.

1. Introduction

One of the earliest variants of the classical Hilbert’s inequality, that holds for all
non-negative functions 0 < [, f¥(x)dx <o and 0 < [p, g7(x)dx < e, is

e ([ o) (o) o

where p and ¢ are conjugate exponents, thatis, 1/p+1/g=1, p > 1. The constant
r/sin(m/p) is the best possible in the sense that it can not be replaced with a smaller
constant (see [8]).

The Hilbert inequality is classical but very important in mathematical analysis and
its applications and it is still a field of interest of numerous mathematicians. During
decades, it was generalized in many different directions, such as different choices of
kernels, sets of integration etc. The resulting inequalities are usually called the Hilbert-
type inequalities. For more details about the Hilbert inequality the reader is referred to
[5,7,8, 10, 13, 15, 16, 17, 18].

The starting point in this article is a recent result of Adiyasuren and Batbold [2],
who derived a pair of Hilbert-type inequalities with a homogeneous kernel, involv-
ing the operator 7 : LP(Ry) — LP(Ry), p > 1, defined by (S f)(x) =L [ f(r)dt.
Namely, they obtained inequalities

[ Kaley) " PN (A5 b)dxdy < pacs (5)fllnllsly @)

Mathematics subject classification (2010): Primary 26D10, 26D15; Secondary 33B15.
Keywords and phrases: Hilbert’s inequality, Hardy’s inequality, the best possible constant, homoge-
neous function.

© t1€I"€N' Zagreb 827

Paper MIA-18-60


http://dx.doi.org/10.7153/mia-18-60

828 TS. BATBOLD AND Y. SAWANO

and

[ RJPH (/IR+ Kz(x,y)x"é(%f)@)dx)pdy] " < e ()1 £l 3)

where }—;I—é =1,p>1,1s>0,A=r+s,0<|fllpllglg <, and K; : RZ2 — Ry
is a homogeneous function of degree —2 satisfying 0 < ¢ (s) = [5" K (1,1)r° " dr <
oo, Observe that the operator 7 is well defined due to the famous Hardy inequality
|7l ) < qllfller(r,) that holds for all measurable functions f satisfying 0 <
I¥dl rr(R,) < eo. In fact, this operator is known in the literature as the Hardy operator
(for more details see [11]).

Let p; be the real parameters satisfying

21
Y—=1, pi>1,i=12,....n 4)
i=1 Pi
The parameters g; are defined as associated conjugates, that is,
1 1 )
—+—=1, i=12,...,n 5)
pi  4qi

Recall that the function K : R, — R is said to be homogeneous of degree —24,
A >0,if K(rx) =t *K(x) forall > 0 and x = (x1,x2,...,%,) € R". Furthermore, if
a=(aj,ap,...,a,) € R", we define

ki(a) = /R

where ﬁi = (l/tl7 ey Ui, l7u,‘+1, . ,un) . cfiu = du1 .. .du,-,ldu,url .. .du,,, andprovided
that the above integral converges. Further, in the sequel du is an abbreviation for
duidu, . ..du,.

In 2012, Krni¢ [9] generalized inequalities (2) and (3) with homogeneous kernels
in multidimensional setting as follows:

Let K : R, — R be a non-negative measurable homogeneous function of degree
—A, A >0, such that forevery i =2,3,...,n

k@) T «fdu, i=12,..n, (6)
+ J=Lj#

K(17t2a'~~7ti—lati7ti+l7"'atn) g CKK(lat27'"ti—17707ti+la"'7tn)7 0 < ti < 17

where Ck is a positive constant. Denote by 1 all-1s vector; 1 = (1,1,...,1). Further,
let y; € (1/pi,1], i =1,2,...,n, and let the parameters s; > 0, i = 2,...,n satisfy
> si=A. Then

noosi—4 , s L .
L, K(X) [T “ (2 £)" (xi)dx <y, (p,s,m) [TIA I, 7
i i=1 i=1
nel 1 an 1/qn
[ / xn-"n%l< Kx) [~ “ ()" (x,-)ci"x> dxn] (8)
Ry Ry =1

n—1
<y (p,s,;m) [TIA I,
i=1
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- n i Hi o
where the constants m) (p,s,m) =k (s—1) [T\, (p,i,y—1> and m,_,(p,s,m) =k (s—

Hi
-1 iHi 5
HITS, (#) are the best possible.
Recently, Moazzen and Lashkaripour [14] established the following two inequali-
ties involving the Riemann-Liouville integral operator of order «;

—o

(Haf) )= T | =0t 0> 0

(o)

and the Weyl integral operator of order o;
1 0o
A, =— / —x)* ' f(t)d 0.
(Hah) 0= gy /. =0 S0y >

Let f,g>0,p,q,A > 1,r>0 and %4— Ll] = 1. If k(x,y) is non-negative homoge-
neous function of degree —2A4, then

==

[, Ky iyh 8 ()0 () (i) )y ©

1 A— 1 A—
r(l"m17n+1) IK]"ﬂkfn+1) a1 a1
<G r 1 1 T 1 1 If quHg qu
(r+1 = So=n=1) (r+ 1= gz=n71)
and

R =
==

/R ) kG iR ()T () (A9)* P (v)dxdy (10)
2

A1 A—
M(—te) @[ T(em) 1 i
A—D)+1 Ay A1 P
<Ch<ff—£—————j> (F_ﬁ__T__S 1" 4llplle”™ 7 llg,

1
(r+ sy (r+ Zo—nm

==

1 1
where Cy = (572 ~'k(1,0)dt)? (5 t* " k(t, 1)dt) " .

They also proved three-dimensional cases of the above two inequalities. But
Moazzen and Lashkaripour did not prove that the constant factors in the new inequal-
ities are the best possible. We recall that the same inequalities with r =2 were also
studied in the paper [1]. For more details about the Hilbert-type inequalities involving
some operators, the reader is referred to [3, 4, 6, 12].

The main objective of this paper is a unified treatment of the above Hilbert-type in-
equalities involving the Hardy, the Riemann-Liouville and the Weyl integral operators.
Furthermore, we establish some new Hilbert-type inequalities involving the integral
operator similar to the Riemann-Liouville integral operator. We shall show that the
constants in our results are best possible.
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2. Preliminary Lemmas

In order to prove main results, we need the following lemmas.

LEMMA 1. Let pi,qi, i=1,...,n satisfy (4) and (5) with g; = p}, and let A and
5i>0,i=1,...,n be suchthat 3" si=A, A >0. If K: R} — R is a non-negative
measurable homogeneous function of degree — A, then

J

Proof. We freeze u;. Utilizing the change of variables uy = thuy,...,u, = tyuy,
which provides the Jacobian of the transformation

’3(142,...,14”)
d(ta,...\tn)

n
; si—1 ~ .
K JT ) du=k(s—1), i=1,...,n.
+ J=1j#

n—1
= ul y

we have

J

n
K(u)uy' Hu}jildqu
=2

n—1
+

o3 sientl L g A
— HK(l,tz,tg,...,t,,)u%“ L= 17 d't
R j=2
Zkl(S—l).
. " .
Next, we freeze i =2,3,...,n. If we set u; = %,...,ui_l =Tt u =1

U, = ’tl,, i=2,...,n whose Jacobian is equal to tf”“, we have
1

s; 1 si—1 ~
/R Ku' [] u/ du

n—1
+ J=1j#

n S,‘—l
u Uim1 | Uit Un\ 1-n u\""
= 1K<—,..., ) P S P = du
R Ui Ui uj uj o0 \ Wi

s T Sl
= RHK(t) [T ¢ dt=k(s—1).
+ j=1,j#i

A similar change of variables yields k;(s—1) = k;(s—1) and the proofis complete. [

We will need the following inequality for later considerations.

LEMMA 2. (Hardy etal. [8]) If p> 1, o« > 0, then

M=) 177 o 11
m R+f(x) X, (11)

/ (A )P (x)dx <

Ry



HILBERT-TYPE INEQUALITIES INVOLVING THE HARDY OPERATOR 831

and
p

e
&) [ s pr s, (12)
Ry

,/R+ (%ﬂéf)p(x)dx < m

unless f =0. In each case the constant is the best possible.

r
Inequalities (11) and (12) may be rewritten as |77 f], < (;T

(%) | g )
ot Ty [|x% f|| . respectively.

/]l and

[EZTUIPRS

In order to define the integral operator similar to the Riemann-Liouville integral
operator, we first cite the following Minkowski’s integral inequality from [8]. If p > 1,

then
Pdx]r dx\ 7 dy
|:/R+ X } s /R+ ( Ry Fly)? ) y (9

for all positive measurable functions F : Ry x Ry — Ry

dy
F(x,y)—
Ry y

LEMMA 3. Let o and B be real numbers such that o« > 3 >0 and f be a non-
negative measurable function. If 0 < fR+ x~LfP(x)dx < oo, then

[/ ( /y"‘ B-1(xP — B f(y )dy) dxr (14)
< T ( [t x) g

where the constant ﬁ is the best possible.

Proof. Setting F(x,y) = X(1 ) )y *OP —1)f (’;‘) , inequality (13) reduces to

L))

<[ taow ot -0 ([ ret) e

_ % (/&xlf”(x)dx) : [y o= nay

1

B ([ )

1
P dy
y
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Thus,

1

[/R o (”/oxy“” s _yﬁ)f(}’)dy)pdx} '

< (o)

In order to prove that (14) includes the best possible constant, we suppose that there

exists a positive L, smaller than 0 fi B> such that the inequality

[/&XI (xa /oxyaiﬁil(xﬁ _yﬁ)f()’)dy>pdx} % <L (/&xlfp(x)dx) r

holds for all non-negative functions f: Ry — R, provided [p, x~LfP(x)dx < . Con-

sidering the function f(x) = xo,1)(x)x® where &€ > 0 is sufficiently small number, we

have
1 % x ~ P %
L( / xl’“dx) > / x! (x"‘ / y"‘ﬁl(xﬁ—yﬁ)f(y)dy> dx}
0 Ry 0

|
[/le_l (x_a /oxyo’_ﬁ_”’s()d3 —yﬁ>dy)pdx] %
_ Bla/B —[13+g/[3,2) (/leﬁeldx);’

= (a+s)(5—ﬁ Te) (folxpg_ldx) E

The above relation yields m < L, and for € — 0T, it follows that ﬁ <

L. This contradicts to L < ﬁ, which means that ﬁ is the best possible

constant in (14).
The failure of equality follows similary to the Hardy inequality. [

WV

Motivated by Lemma 3, we define a new integral operator similar to the Riemann-
Liouville integral operator, 77, g by

(Hag )0 = [P~ P fa)ar,

Inequality (14) may be rewritten as

P Al < Pl p 1

(—B)

We assume that all integrals exist on the respective domains of their definitions.
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3. Main results

In the next theorems it is to understood that .7 f (x) = 7 f(x) = f(x) and that a
is an abbreviation of (0,00, ...,04).

THEOREM 1. Suppose pi,qi, i=1,...,n areasin (4) and (5) with q; = p’, and
si>0,i=1,...,n, A >0 are real parameters satisfying Y, si = A. Further let L;,
i=1,...,n be real parameters such that W;p; > 1, that Y, o; > 0 and that o > 0,

i=1,...,n. If K:R} — R is a non-negative measurable homogeneous function of
degree —A, and f; : R, — R, i =1,...,n are non-negative measurable functions,
then
noogi—
[ KOOI i (Ao i) (xi)dx < Cy(a,p,s,m) HHf”’Hp” (15)
i i=1 i=1
and

et o1 4qn l/qn
[/ anns"_l < K(X) H)C;-I 4 (%iﬁ)ui (xi>JnX> dxn‘| (16)
Ry Ry i=1

n—1
< Cn—l(a7p7s7m) H “f;’ui“Pia
i=1

where the constant factors

n _ 1 Hi
Cn(a,p,s,m) = ki(s—1 H(U—“'p'))> )

Hipi

n—1 (1_ 1 ) M
Cn 1(3 p,sm S— H Tlip’_)

Hipi

are the best possible.

Proof. By Holder’s inequality and Lemma 1, we have

n

K(x) ijiiqi" (Ao fi)" (xi)dx

RY i=1
5 sj-1
SRS SIS I My
=/ Kkx)rn'n T T] x; (A fi)" (xi) ) dx
R i=1 J=1j#
f e 7
/K K TT 2 (o7 () dx
J=Lj#

1

—/q(s—l)H(/R Oy RETET) § (E

i=1
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Now, applying inequality (11) to the right-hand side of the above inequality yields,

n n
ki(s = 1) [T 11, fillip, < Calapos,m) [TILA -
i=1 i=1

Then, from the above inequalities, we obtain inequality (15).

We turn to the proof of the optimality of the constant: Suppose to the contrary that
there exists a positive constant C: 0 < C < C,(a,p,s,m) such that inequality

n sim g . ~ .
L KT T (A f) Gi)ax < CTTIA 1 (17)
+ i=1 i=1
holds for non-negative measurable functions f; : Ry — R, i=1,...,n. Let us set
. X2 X3 Xn
K — K — n— Ty T aeees T . 1
) = min . K 00) < 2t (22 2 13)

Considering this inequality with the function

e—1

f‘;(xl-) :xim%(071)(xi), i= 1,...,71,

where € is a positive sufficiently small number, its right-hand side becomes

1 ~
Pi C

n o 1
ST =TT (f )" =5,
i=1 i=1

On the other hand, since

~ X Xi oy~
0<x <l () ) = frgs [0 % R
— 0y .
Xi ' /x' o;—1 8;1
= xX;— 1) kR dt
F(ai) 0 ( )
e-1
X} e—1
= L B 1 (04
(o) ( - ipi’ l)
el T(14+50)
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the left-hand side of (17), can be estimated as

T+ (%ﬁ)”" (x)dx (19

I(1

.UzP:
I oc,+1+

1 noositE -1 4
X! K aHTTe 7 d'u|dx
P l"oc,+1+£ L ) o ! [ Oxl] m )g ’ :
n 1+£ l

> dx;

,=1<Fa,+1+81> l <R1' ll )

siH=—1
—/ xE ! 2/ KN(ﬁl)Hu/ T dba | dx |
0 i=27Di j=2

Let D; = {(ua, ... un) ¢ ui > xi“uj >0,j#i}. Then we have

(
(i

OTT8 " ()" ) (20)

i=1

(TSN [ nogEol
ZH “117;‘_1 - ) KN(ﬁl)Hui Pi dlu
=1 \ (o +145-2) € Jry! i=2
1 n noosaEl
—/ xt 2/ KN(ﬁl)Hu/ T dba | dx |
0 i=2/Di j=2

Without loss of generality, it suffices to find the appropriate estimate for the in-

tegral [p, KN(ﬁl)Hj QU
€ > 0 such that

Sjtpr—
S dlu: We plan to find a constant My independent of

A~

% A
/KN(ﬁ)Huj i d'u < My
Dy j:2

forall 0 < € < 1. Note that My depends on N.
By virtue of the Fubini theorem, we have

1
T d 21
/Oxl <D2 Hu ) X1 21)
% Pif*l 21
/ / / w ') d.
Rn 2 /Xl 172
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Observe u, 'logu < e~!' <1 (up € [1,0)). By enlarging the domain of integration,
we obtain

1 1 al n S_,'-Ff—l N
/0 x; . Ky (i )| Iuj Tod'a | dx (22)
2

j=2
n s,+— 1 n
S/ 1 H / xfldxl d'u
(1,00) xR 2 1/uy
n RTINS
R s+ & s,+,,, 1 B ~
= Ky (' )u, ”ZHu- 7 (uy 'ogua)d'u
n—2 J
(1700)XR+ j:3
e noogi+E—]
A1y 5275 I A
s /(1 oo)xRHKN(u ey Hui d'u
< /’2 17_17
<[, K e H d'u < oo,

where for the last inequality we have used the fact that Ky is given by (18). Hence, we
have

n el Hi noogie
H (r(l—i_—mpli)) l/é,;lK(ﬁl)Hujl+pi lcilll—O(l)
i=1 + =

) e-1
Tloi+1+ Hipi

Obviously, if € — 0T, then

C>C s T —g5) " N OTT
> Cy(N;a,p,s,m) = — Ky (' U ‘u
Wapsm =TT{ o ) Lo 8@ T o

i=1 T J=L#

forall N =1,2,..., which contradicts to our assumption 0 < C < Cy,(a,p,s,m). Hence,
C.(a,p,s,m) is the best possible.
By Holder’s inequality and Lemma 1, we have

L(xn)
S S Sifi
= IK(X)xnn "Tlx " (Ao f)t (x)d'x
R i=1
spon—1 s5i— n=l/ 5 n ﬂ X
= - IK xi" Hx bn H( i’l H lez (%ifi)ﬂl(xi)) d"x
i=1 =1,
ki(s—1)
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Hence again applying Holder’s inequality, Lemma 1 and inequality (11), we get

1
[ L (xn)dxn] "
Ry

€1

<[k(s—1)]m

RY i=1

n—1 ans; n gn(s;—1) qln
K(X) H (xi Pi | X; Pi (%lf)ﬂtqn( ))dx]

n—1

< la(s—1))7 []

i=1

/ : K(X)@ T 27 (o ))dx]p%

j=Lji

—kl s—1 H ”%,fl“ﬂ,p, < Cuoy P,S m H Hful”pl

Assume that there exists a positive constant c , smaller than C,_;(a, p,s,m), such
that inequality (16) holds when replacing C,_;(a,p,s,m) by C.

The left-hand side of inequality (15), denoted here by L, can be rewritten in the
following form:

N n—1 o
L= fo o " ( [ kT s (x»dx) (A o)™ (5.

R+ i=1

Now, applying the Holder inequality with conjugate exponents p, and g, to the above
expression yields inequality
L <L, fall pu: (23)

where L' denotes the left-hand side of (16).
Moreover, L' < CTT/Z}! || ]| 5;» while inequality (11) yields

[EZmAl m_—“l) ) 1l
OpJn ,unpn r( _'_l_“npn) nllpn-

Therefore relation (23) yields the inequality

_( Ta--L) \*
L<C<%) HHf’“"IIp, (24)

F(an + 1 HnPn

Finally, taking into account our assumption 0 < C<Cpi (a,p,s,m), we have

[ T- Hn
O<C< ( .unpn) )
r(an + 1- I*lnpn)

1—~(1 -z p ) Hn
< Cn—l(aapasam) % :Cn(a7p7s7m>'
r(an + 1- H)zpn)
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Hence, relation (24) contradicts with the fact that C,(a,p,s,m) is the best possible
constant in inequality (15). Thus, the assumption that C,_(a,p,s,m) is not the best
possible is false. The proof is now completed. [

REMARK 1. If we set oy =1, i = 1,...,n, the relations (15) and (16) become
inequalities (7) and (8) from the Introduction, with a weaker condition t;p; > 1, i =

1,...,n.
THEOREM 2. Under the assumptions of Theorem 1,
[ KT ()" i < Claps [Tt 29
and

1/qn

n—1 o an
[/R X, dnsn 1 ( R’HK(X)H)C; i (ff’f,)“’ (xi)d" X) dxn] (26)

i=1

n—1
<Cy(ap,s,m) [TIxE A

i=1

where the constant factors

n( (ﬁ) )Hz‘
Cy(a,p,sm) =k (s—1J] )

n— 1 Hi
Cr/z—l(a7p7s7m) =ki(s—1) ! | (%)

are the best possible.

Proof. The proof is similar to the proof of the previous theorem, except that we
use inequality (11) instead of inequality (12) and functions

—e—1_

ﬁ(xi) _ xiHiPi

i

Xe)(xi), i=1,...,n. O

THEOREM 3. Suppose pi,qi, i=1,...,n are as in (4) and (5), and s; > 0, i =
1,...,n, A >0 are real parameters satisfying ¥ | si = A. Furtherlet l;, i=1,...,n
be real parameters such that pip; > 1 and oG > B; >0, i=1,....n. If K: R} — R
is a non-negative measurable homogeneous function of degree —A, and f; : R, — R,
i=1,...,n are non-negative measurable functions, then

) [T (A 5 1) ()dx < Taa,bs,m) [T I P2 e @)
=1

i=1
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and

1/gn

qn
[/R ) (Rnl T (Ha ) () ) dxn] 28)

i=1

n—1
= —1/pi pli
gcn—l(a7basam)HH'xi /pfi“ Hpia

i=1

where the constant factors

Co(a,b,s,m) = ki (s—1)] (ﬁy

_ B: Hi
Cu-1(a,b,s,m) = ki(s—1) 7[3))
are the best possible.

Proof. We follow the same procedure as in the proof of Theorem 1, except that
we use inequality (11) instead of inequality (14). So, we prove the first inequality; the
second is left to the reader. We have

) [T (Ao g i) (xi)dx
i=1

n I
= . K(X)H (xi " H le’i (%nﬁiﬁ)ﬂi (x,'))dX
RY i=1 J=Lj#

1
n -

n Pi
Si— sj—1 iDi(y.
<H<Rn Kt I (%,,ﬁ,.ﬁwml)dx)
J=1j#i

i=1
~ k(s 1>lf[1 ([ 5 gt sy )"

1 1H1 1 1 1
(s—1 Hux 10 sy £ < Colan by s,m) [T 7 £

i=1 i=1

We suppose that the inequality
n —1 i =N —1/p; .
) [ (A5 fi)™ Gi)ax <CT Tk 7 1 s (29)
=1 i=1

holds with a positive constant a smaller than C,,(a,b,s,m). Considering this inequal-
ity with the functions

_E

fz(xz) = lulp')((o.’l)(xi), i=1,...,n,
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where € is sufficiently small number, its right-hand side reduces to

= n —1 i U %
CIT s "7l = - (30)
i=1
Moreover, since
706' Xi . 1 ﬁ N
x> 1, ( ﬁf,> (xi) = x; 1/0 ¢oi—Bi— (xi’—tﬁ’)fi(t)dt
1
= xl-_ai/ tai_ﬁi_ Hlpt ( ﬁ tﬁ')dt > 0
0
and
~ . Xi . . o~
0<x <1, (Hyphi) (w) =" /0 1Bt (B B F(rar
Xi e X
:xi_a’/ [a’ Bi- H_#zl’z( lﬁ’ _tﬁi)dt
0
_ xl"’T’B (a, € _q 2)
Bi Bi Hipiﬂi ’
ﬁi ”if’i
(e
<a’+#ipi>< —Bi+ #P:)
the left-hand side of (29), denoted here by L, reads
noo ~\ Mi
O[] (Hap i) (i)
i=1
Hi
— ﬁ ﬂi / ﬁxst"",f
=\ (ot 5 (o= Bt 57
Then, utilizing (19), (22) and (30), we conclude
n ’Ji n
i itE-1 =
I b / 71K(ﬁ1)Huj " da—O(1) < C.
i=1 <06i+ Tipi ) ( —Bi+ u:m) R} =2

Hence, we have that C,(a,b,s,m) < C when € — 0T, which is an obvious contradic-
tion. This means that the constant C,(a,b,s,m) is the best possible in (27). [

REMARK 2. In these theorems, if a = 0, the proof above shows that one still
obtained inequality by replacing the strict inequality < in (15), (16), (25) and (26) all
with <. The constants of these inequalities are best possible.
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4. Some examples and applications

4.1. First example

A typical example of a homogeneous kernel with the negative degree of homo-
geneity is the function K; : R". — R, defined by

Ki(x) = _ A>0.

A‘ b
(Zi1xi)
Clearly, K is a homogeneous function of degree —A , and the constant factor k1 (s—1),
can be expressed in terms of the usual Gamma function I'. Namely,

si—1
nysi . nT(s;
kl(s_l):/71 Hli2ul ldlu: = (S)a
R (L35 uy) (1)
which holds for s; >0, i=1,2,...n.

4.2. Second example

Another example of a homogeneous kernel with degree —A , is the function
1

Kx)=————  A1>0.
(x) max{x},...,x}}’
Hence,
i—1
H?:zuf A A

ki(s—1 :/ d'u= .
1( ) R max{1,uf, ... ,uk} S1ecSp

4.3. Application

Let n > 2. Suppose that F; : R" — R is a radial function and that " : R" — R
satisfies
AF (x) = Fi(x).
Let us write f;(r) = F{'(r,0,...,0) and fi(r) = F1(r,0,...,0). Then we have

-1
(Y () + () (1) = (7).
Notice that L4 dr
— - -1%J1
filr)= m=ldr (rﬂ dr ) '

This implies

1 (r) = /Or s,,l,l (/Ost”‘lfl (t)dt> ds

1 rt(rn—2_tn—2)
-— /0 ) Si(t)de

r2

= n_z(%z,n—2fl)(r)'
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If we define F;,i =2,...,n and so on likewise, then we obtain

and

L si—2Ui—17 qx i —yn in —1/pi pli
KOO T2 [ )] < k(s = 1)2n) " Z A o P gt
i=1

R i=1

n— qn 1/qn

1
[ w0 (KOOI ' | d,
Ry Ry i=1

gkl( 1)(271 1 I#IHH'X l/plfuall

In particular, by letting y; =1, i=1...,n, we obtain

s SiT9 % a1 1P i
O[T ()dx < ka(s— 1) @n) " TT b 7 2
i=1 i=1

S e | (AT ’

i=1

n
+

similarly
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