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Abstract. For a Lebesgue integrable complex-valued function f defined on R , let f̂ be its
Fourier transform. The Riemann-Lebesgue lemma says that f̂ (t)→ 0 as |t|→∞ . But in general,
there is no definite rate at which the Fourier transform tends to zero. In fact, the Fourier transform
of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to
know for functions of which subclasses of L1(R) there is a definite rate at which the Fourier
transform tends to zero. In this paper, we determine this rate for functions of bounded variation
on R . We also determine such rate of Fourier transform for functions of bounded variation in
the sense of Vitali defined on RN (N ∈ N) .

1. Introduction

For a Lebesgue integrable complex-valued function f defined on R , let f̂ be its
Fourier transform. The Riemann-Lebesgue lemma says that f̂ (t) → 0 as |t| → ∞ . But
in general, there is no definite rate at which the Fourier transform tends to zero. In fact,
the Fourier transform of an integrable function can tend to zero as slowly as we wish
(see, e.g., [9, 32.47 (b)]). Therefore, it is interesting to know for functions of which
subclasses of L1(R) there is a definite rate at which the Fourier transform tends to
zero. Looking to the periodic case, that is, for functions on one-dimensional torus T :=
[0,2π) , the study of order of magnitude of Fourier coefficients is done extensively (see,
e.g., [11], [16], see also [3, Section 2.3, p. 30] and [17, Section 4, p. 45]). This study
in periodic case is done even for more general cases, that is, in the case of functions on
two-dimensional torus, or more generally, on the N -dimensional torus TN := [0,2π)N

(N ∈ N) (see, e.g., [12], [4], [5]). But it appears that such a study for the Fourier
transform has not yet been done. In this paper we carry out this study and determine
the rate of decay of Fourier transform for functions of bounded variation on R . We
also determine such rate of Fourier transform for functions of bounded variation in the
sense of Vitali defined on RN (N ∈ N) .
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2. One-dimensional case

We recall that a function f : R → C is said to be of bounded variation over R , in
symbol: f ∈ BV (R) , if

sup
S

n

∑
k=1

| f (xk)− f (xk−1)| < ∞, (1)

where the supremum is extended over all finite sequences

S : −∞ < x0 < x1 < x2 < .. . < xn < ∞ and n = 1,2, . . . .

The supremum in (1), denoted by V ( f ) , is called the total variation of f over R .
It is clear that the above definition of bounded variation over R can be reformu-

lated equivalently as follows. A function f is of bounded variation over R if and only
if f is of bounded variation over any finite interval [a,b] in the ordinary sense and the
set of the total variations V ( f , [a,b]) of f over all finite intervals [a,b] is bounded.
Furthermore, if this is the case, then the supremum of the total variations over all finite
intervals is equal to V ( f ) defined above (see, e.g., [14, p. 238]).

In a similar way, one can define the notion of bounded variation over the intervals
of the form (−∞,a] and [a,∞) , where a ∈ R is arbitrary.

Given f ∈ BV (R) , let V ( f ,x) := V ( f ,(−∞,x]) denote the total variation of f
over the interval (−∞,x] . Then it is evident that

lim
x→−∞

V ( f ,x) = 0 (2)

and
lim
x→∞

V ( f ,x) = V ( f ). (3)

We note that the variation of f over [x,∞) is given by V ( f , [x,∞)) = V ( f )−V ( f ,x)
(see (9) in Lemma 1) and hence from (3) it follows that

lim
x→∞

V ( f , [x,∞)) = 0. (4)

We recall that for a complex-valued Lebesgue integrable function f on R , in
symbol: f ∈ L1(R) , the Fourier transform of f is defined as

f̂ (t) :=
1
2π

∫
R

f (x)e−itxdx, t ∈ R. (5)

By the Riemann-Lebesgue lemma (see, e.g., [7, p. 7]), we know that f̂ (t) → 0 as
|t| → ∞ . But in general, there is no definite rate at which the Fourier transform tends to
zero. In fact, the Fourier transform of an integrable function can tend to zero as slowly
as we wish (see, e.g., [9, 32.47 (b)]). Therefore, it is interesting to know for functions of
which subclasses of L1(R) there is a definite rate at which the Fourier transform tends
to zero. In this section we carry out this study for functions of bounded variation on R .
Our main theorem of this section is as follows.
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THEOREM 1. If f ∈ L1(R)∩BV (R) then f̂ (t) = O(1/|t|) , t �= 0 .

We need the following lemma.

LEMMA 1. If f ∈ BV (R) and if {an : n ∈ Z} is a doubly infinite increasing se-
quence of real numbers with

lim
n→∞

an = ∞ (6)

and
lim
n→∞

a−n = −∞, (7)

then the series ∑n∈ZV ( f , [an−1,an]) converges and

V ( f ) = ∑
n∈Z

V ( f , [an−1,an]). (8)

Proof. First, we show that for any a ∈ R , we have

V ( f ) = V ( f ,(−∞,a])+V ( f , [a,∞)). (9)

Note that if S1 : −∞ < x0 < x1 < x2 < .. . < xm = a and S2 : a = y0 < y1 < y2 <
.. . < yn < ∞ are two finite sequences in (−∞,a] and [a,∞) respectively, then clearly
S := S1 ∪S2 : −∞ < x0 < x1 < x2 < .. . < xm = a = y0 < y1 < y2 < .. . < yn < ∞ , is
a finite sequence in R , and hence

m

∑
j=1

| f (x j)− f (x j−1)|+
n

∑
k=1

| f (yk)− f (yk−1)| � V ( f ).

Taking supremum over all finite sequences S1 contained in (−∞,a] (keeping the se-
quence S2 fixed) we get

V ( f ,(−∞,a])+
n

∑
k=1

| f (yk)− f (yk−1)| � V ( f ).

Now, taking supremum over all finite sequences S2 contained in [a,∞) we get

V ( f ,(−∞,a])+V ( f , [a,∞)) � V ( f ). (10)

Next, we prove the reverse inequality to (10). Consider a finite sequence

S : −∞ < x0 < x1 < x2 < .. . < xn < ∞.

Since a∈R , there are three possibilities: (i) a < x0 , or (ii) a � xn , or (iii) xk−1 � a < xk

for some k ∈ {1,2, . . . ,n} . In case (i) the sequence a < x0 < x1 < x2 < .. . < xn < ∞ is
a finite sequence in [a,∞) and hence

n

∑
j=1

| f (x j)− f (x j−1)| � | f (x0)− f (a)|+
n

∑
j=1

| f (x j)− f (x j−1)|

� V ( f , [a,∞))
� V ( f ,(−∞,a])+V ( f , [a,∞)). (11)
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Similarly, in case (ii) the sequence −∞ < x0 < x1 < x2 < .. . < xn � a is clearly con-
tained in (−∞,a] and hence as above it follows that

n

∑
j=1

| f (x j)− f (x j−1)| � V ( f ,(−∞,a])+V ( f , [a,∞)). (12)

In case (iii) we have

n

∑
j=1

| f (x j)− f (x j−1)|

=
k−1

∑
j=1

| f (x j)− f (x j−1)|+ | f (xk)− f (xk−1)|+
n

∑
j=k+1

| f (x j)− f (x j−1)|

�
k−1

∑
j=1

| f (x j)− f (x j−1)|+ | f (a)− f (xk−1)|+ | f (xk)− f (a)|

+
n

∑
j=k+1

| f (x j)− f (x j−1)|

� V ( f ,(−∞,a])+V ( f , [a,∞)), (13)

because −∞ < x0 < x1 < x2 < .. . < xk−1 � a is a finite sequence contained in (−∞,a]
and a < xk < xk+1 < .. . < xn < ∞ is a finite sequence contained in [a,∞) . From (11)–
(13), it follows that in any case

n

∑
j=1

| f (x j)− f (x j−1)| � V ( f ,(−∞,a])+V ( f , [a,∞)).

Now, taking supremum over all finite sequences S , we get

V ( f ) � V ( f ,(−∞,a])+V ( f , [a,∞)). (14)

From (10) and (14), we get (9).
Second, we note that if −∞ < a < b < ∞ , then by appropriately modifying the

above proof we have

V ( f , [a,∞)) = V ( f , [a,b])+V( f , [b,∞))

so from (9) we have

V ( f ) = V ( f ,(−∞,a])+V ( f , [a,b])+V ( f , [b,∞)). (15)

Third, repeatedly using (15), or using, induction principle, we get

V ( f ) = V ( f ,(−∞,a−n])+
n

∑
k=−n+1

V ( f , [ak−1,ak])+V( f , [an,∞)). (16)
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for all n ∈ N . From (16) it follows that if sn := ∑n
k=−n+1V ( f , [ak−1,ak]) is the n th

symmetric partial sum of the series ∑k∈ZV ( f , [ak−1,ak]) , then {sn} is non-decreasing
and bounded above by V ( f ) , so converges. Thus the series on the right-hand side of
(8) converges. Further, in view of (2), (4), (6), and (7) it follows that

lim
n→∞

V ( f ,(−∞,a−n]) = 0 and lim
n→∞

V ( f , [an,∞)) = 0. (17)

So, taking the limit as n → ∞ in (16), in view of (17), we get (8) to be proved. �

Proof of Theorem 1. We present a proof using Taibleson [16] like technique de-
veloped for R . Fix 0 �= t ∈ R , and put ak := 2kπ/|t| for k ∈ Z . Since the function
e−itx is periodic with a period 2π/|t| , it follows that∫ ak

ak−1

e−itxdx = 0, k ∈ Z. (18)

Define a step function g on R by g(x) := f (ak−1) on [ak−1, ak) , k ∈ Z . Then in view
of (18) for each k ∈ Z we have∫ ak

ak−1

g(x)e−itxdx = f (ak−1)
∫ ak

ak−1

e−itxdx = 0. (19)

Therefore, by definition (5) and in view of (19), we have

2π | f̂ (t)| =
∣∣∣∣
∫

R

f (x)e−itxdx

∣∣∣∣
=

∣∣∣∣∣∑k∈Z

∫ ak

ak−1

f (x)e−itxdx

∣∣∣∣∣
=

∣∣∣∣∣∑k∈Z

∫ ak

ak−1

[ f (x)−g(x)]e−itxdx

∣∣∣∣∣
� ∑

k∈Z

∫ ak

ak−1

| f (x)−g(x)|dx

= ∑
k∈Z

∫ ak

ak−1

| f (x)− f (ak−1)|dx

= ∑
k∈Z

V ( f , [ak−1,ak])(ak −ak−1)

= ∑
k∈Z

V ( f , [ak−1,ak])
2π
|t|

=
2π
|t| V ( f ).

Note that we have used Lemma 1 in the last step. Therefore we have

| f̂ (t)| � V ( f )
|t| . (20)

This completes the proof of the Theorem 1. �
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PROBLEM 1. What can be said about the exactness of the constant in (20)?

3. Two-dimensional case

There is a number of definitions extending the concept of bounded variation for
functions of two variables defined on closed and bounded rectangle (see, e.g., [1], [2],
[8]). We recall one of them.

Let R := [a1,b1]× [a2,b2] be a closed and bounded rectangle on the real plane R2 .
We recall that (see, e.g., [6, p. 21]) a collection of points (x0,y0) , (x0,y1) , . . . , (xm,yn)
in R , where m,n ∈ N , satisfying

a1 = x0 � x1 � x2 � . . . � xm = b1 and a2 = y0 � y1 � y2 � . . . � yn = b2

is called a collection of grid points of R . If P is any such collection of grid points of R
and f : R → C is any function we put

S(P, f ) =
m

∑
j=1

n

∑
k=1

| f (x j,yk)− f (x j−1,yk)− f (x j,yk−1)+ f (x j−1,yk−1)|. (21)

Now, such a function f : R → C is said to be of bounded variation over the rect-
angle R in the sense of Vitali (-Lebesgue, -Fréchet, -de la Vallée Poussin, as indicated
in [2]), in symbol: f ∈ BVV (R) , if

V ( f ) = V ( f ,R) := supS(P, f ) < ∞, (22)

where the supremum is extended over all collections P of grid points of R , while V ( f )
defined in (22) is called the total variation of f over R .

Next, we recall the concept of bounded variation for functions on R2 which is de-
fined as follows (see, e.g., [13, Section 2]). To do this, analogous to the grid points of a
rectangle as defined above, we say that a collection of points (x0,y0),(x0,y1), . . . ,(xm,yn)
in R2 , where m,n ∈ N , satisfying

−∞ < x0 � x1 � x2 � . . . � xm < ∞

and
−∞ < y0 � y1 � y2 � . . . � yn < ∞

is called a collection of grid points of R2 . If P is any such collection of grid points of
R2 and f : R2 → C is any function we define S(P, f ) as in (21).

Now, such a function f : R2 → C is said to be of bounded variation over the real
plane R2 in the sense of Vitali, in symbol: f ∈ BVV

(
R2

)
, if

V ( f ) = V
(
f ,R2) := supS(P, f ) < ∞, (23)

where the supremum is extended over all collections P of grid points of R2 , while
V ( f ) defined in (23) is called the total variation of f over R

2 .
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Similarly to the case of functions f ∈ BV (R) , the above definition can also be
equivalently reformulated as follows. A function f : R2 → C is of bounded variation
over R2 in the sense of Vitali if and only if f is of bounded variation over all finite
rectangles

[a1,b1]× [a2,b2] , −∞ < a1 < b1 < ∞ and −∞ < a2 < b2 < ∞;

in the sense of Vitali, and in addition, the set of the total variations of f over all fi-
nite rectangles [a1,b1]× [a2,b2] is bounded. Furthermore, if this is the case, then the
supremum of the set of these total variations over all closed and bounded rectangles
[a1,b1]× [a2,b2] is equal to V ( f ) defined in (23).

In a similar way, one can define the notion of bounded variation in the sense of
Vitali over the closed half planes of the form [a1,∞)×R , or (−∞,b1]×R , or R×
[a2,∞) , or R× (−∞,b2] ; the closed infinite strips of the form [a1,b1]×R or R×
[a2,b2] ; or closed infinite corners of the form [a1,∞)× [a2,∞) , or [a1,∞)× (−∞,b2] ,
(−∞,b1]× (−∞,b2] , or (−∞,b1]× [a2,∞) , where a1,b1,a2,b2 are any real numbers.

Next, we recall that for a complex-valued Lebesgue integrable function f on R2 ,
in symbol f ∈ L1(R2) , the Fourier transform of f is defined as

f̂ (ξ ,η) :=
1

4π2

∫∫
R2

f (x,y)e−i(ξx+ηy)dxdy, (ξ ,η) ∈ R
2. (24)

In view of the Riemann-Lebesgue lemma (see, e.g., [15, Theorem 1.2]), we know that
f̂ (ξ ,η)| → 0 as |(ξ ,η)| :=

√
ξ 2 + η2 → ∞ . But in general, there is no definite rate at

which the Fourier transform tends to zero. In fact, the Fourier transform of an integrable
function can tend to zero as slowly as we wish (see, e.g., [9, 32.47 (b)]). Therefore, as
in the one-dimensional case, it is interesting to know for functions of which subclasses
of L1(R2) there is a definite rate at which the Fourier transform tends to zero. In this
section, we carry out this study for functions of bounded variation on R

2 in the sense
of Vitali. Our main theorem of this section is as follows.

THEOREM 2. If f ∈ L1(R2)∩BVV (R2) and (ξ ,η)∈R2 is such that ξ η �= 0 then

f̂ (ξ ,η) = O

(
1

|ξ η |
)

.

We need the following lemma.

LEMMA 2. If f ∈ BVV (R2) and if {an : n ∈ Z} and {bn : n ∈ Z} are two doubly
infinite increasing sequences of real numbers with

lim
n→∞

an = ∞ = lim
n→∞

bn (25)

and
lim
n→∞

a−n = −∞ = lim
n→∞

b−n, (26)

then
V ( f ) = ∑

m∈Z

∑
n∈Z

V ( f , [am−1,am]× [bn−1,bn]), (27)

the series on right-hand side being convergent in the Pringsheim’s sense.



852 B. L. GHODADRA AND V. FÜLÖP

Proof. First, we show that for any (a,b) ∈ R2 , we have

V ( f ) =V ( f ,(−∞,a]× (−∞,b])+V( f ,(−∞,a]× [b,∞))
+V( f , [a,∞)× (−∞,b])+V( f , [a,∞)× [b,∞)). (28)

We shall prove (28) in the lines of the proof given by Ghorpade and Limaye [6, Lemma
1.16]. We note that if P1 , P2 , P3 , and P4 are (finite) collections of grid points of
the infinite corners (−∞,a]× (−∞,b] , (−∞,a]× [b,∞) , [a,∞)× (−∞,b] , and [a,∞)×
[b,∞) , respectively, then by collating the grid points of P1 , P2 , P3 , and P4 , we obtain
a set P of grid points of R2 with S(P, f ) = ∑4

i=1 S(Pi, f ) . In particular, 0 � S(Pi, f ) �
S(P, f ) � V ( f ,R2) for i = 1,2,3,4. This shows that f is of bounded variation in the
sense of Vitali over the infinite corners (−∞,a]× (−∞,b] , (−∞,a]× [b,∞) , [a,∞)×
(−∞,b] , and [a,∞)× [b,∞) . Moreover,

S(P, f ) �V ( f ,(−∞,a]× (−∞,b])+V( f ,(−∞,a]× [b,∞))
+V( f , [a,∞)× (−∞,b])+V( f , [a,∞)× [b,∞)).

Now, let Q be any (finite) collection of grid points of R
2 . Let P be obtained by

adjoining (a,b) to Q . Then clearly, S(Q, f ) � S(P, f ) . Further, P can be regarded as a
collection of grid points of R2 obtained by collating certain grid points of the corners
(−∞,a]× (−∞,b] , (−∞,a]× [b,∞) , [a,∞)× (−∞,b] , and [a,∞)× [b,∞) , and hence

S(Q, f ) � S(P, f ) �V ( f ,(−∞,a]× (−∞,b])+V( f ,(−∞,a]× [b,∞))
+V( f , [a,∞)× (−∞,b])+V( f , [a,∞)× [b,∞)).

Since Q is any arbitrary collection of grid points of R2 , it follows that

V ( f ,R2) �V ( f ,(−∞,a]× (−∞,b])+V( f ,(−∞,a]× [b,∞))
+V( f , [a,∞)× (−∞,b])+V( f , [a,∞)× [b,∞)). (29)

To prove the reverse inequality to (29), let ε > 0 be given. Then, by the definition
of total variation, there exist collections P1 , P2 , P3 , and P4 of grid points of the corners
(−∞,a]× (−∞,b] , (−∞,a]× [b,∞) , [a,∞)× (−∞,b] , and [a,∞)× [b,∞) respectively,
such that

V ( f ,(−∞,a]× (−∞,b])− ε
4

< S(P1, f );

V ( f ,(−∞,a]× [b,∞))− ε
4

< S(P2, f );

V ( f , [a,∞)× (−∞,b])− ε
4

< S(P3, f );

V ( f , [a,∞)× [b,∞))− ε
4

< S(P4, f ).

Let P denote the collection of grid points of R2 obtained by collating the grid points
of P1 , P2 , P3 , and P4 . Then by above inequalities we have

V ( f ,(−∞,a]× (−∞,b])+V( f ,(−∞,a]× [b,∞))
+V( f , [a,∞)× (−∞,b])+V( f , [a,∞)× [b,∞))− ε

< S(P1, f )+S(P2, f )+S(P3, f )+S(P4, f ) = S(P, f ) � V ( f ,R2).
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Since ε > 0 is arbitrary, we get

V ( f ,(−∞,a]× (−∞,b])+V( f ,(−∞,a]× [b,∞))

+V( f , [a,∞)× (−∞,b])+V( f , [a,∞)× [b,∞)) � V ( f ,R2). (30)

In view of (29) and (30) we get (28).
Second, if (a,b) and (c,d) are points in R2 with a � c and b � d , then modifying

above appropriately, we can show that

V ( f , [a,∞)× [b,∞)) = V ( f , [a,c]× [d,∞))
+V ( f , [c,∞)× [d,∞))+V( f , [c,∞)× [b,d])+V( f , [a,c]× [b,d]),

so from (28) we get

V ( f ) =V ( f ,(−∞,a]× (−∞,b])+V( f ,(−∞,a]× [b,∞))
+V( f , [a,∞)× (−∞,b])+V( f , [a,c]× [d,∞))
+V( f , [c,∞)× [d,∞))+V ( f , [c,∞)× [b,d])+V( f , [a,c]× [b,d]). (31)

Third, repeatedly using (31), or using, induction principle, we get

V ( f ) =
{
V ( f ,(−∞,a−m]× (−∞,b−n])+V( f ,(−∞,a−m]× [b−n,∞))

+V( f , [a−m,∞)× (−∞,b−n])
}

+
{
V ( f , [a−m,am]× [bn,∞))

+V( f , [am,∞)× [bn,∞))+V ( f , [am,∞)× [b−n,bn])
}

+
m

∑
j=−m+1

n

∑
k=−n+1

V ( f , [a j−1,a j]× [bk−1,bk]) (32)

We claim that the sum of the terms in the braces in the right-hand side in above equality
tend to zero as m,n → ∞ . Since

V ( f , [a−m,am]× [bn,∞))+V ( f , [am,∞)× [bn,∞))+V( f , [am,∞)× [b−n,bn])
� V ( f ,(−∞,am]× [bn,∞))+V( f , [am,∞)× [bn,∞))+V ( f , [am,∞)× (−∞,bn]),

in view of (25) and (26), it is enough to prove the following identities:

lim
x,y→−∞

{
V ( f ,(−∞,x]× (−∞,y])+V ( f ,(−∞,x]× [y,∞))

+V ( f , [x,∞)× (−∞,y])
}

= 0 (33)

and

lim
x,y→∞

{
V ( f ,(−∞,x]× [y,∞))+V( f , [x,∞)× [y,∞))

+V( f , [x,∞)× [−∞,y)
}

= 0. (34)

To prove (33), let ε > 0 be given. Then there exists a set P of grid points (x0,y0), . . . ,
(xm,yn) (m,n ∈ N) of R2 such that V ( f )− ε < S(P, f ) . Let x < x0 and y < y0 . Then

V ( f )− ε < S(P, f ) � S(P, f )+ | f (x0,y0)− f (x0,y)− f (x,y0)+ f (x,y)|
� V ( f , [x,∞)× [y,∞)).
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Therefore,

V ( f )−V ( f , [x,∞)× [y,∞)) < ε,

that is,
{
V ( f ,(−∞,x]× (−∞,y])+V( f ,(−∞,x]× [y,∞))

+V( f , [x,∞)× (−∞,y])
}

< ε.

This proves (33). Proof of (34) is similar and left to the reader.
Note that if sm,n := ∑m

j=−m+1 ∑n
k=−n+1V ( f , [a j−1,a j]× [bk−1,bk]) is the (m,n) th

symmetric partial sum of the series ∑ j,k∈ZV ( f , [a j−1,a j]× [bk−1,bk]) , then {sm,n} is
a non-decreasing function of both m and n and the double sequence {sm,n : m,n ∈ N}
is bounded above by V ( f ) , so converges in Pringsheim’s sense. Thus the series the
right-hand side of (27) converges in Pringsheim’s sense.

Now, taking limit as m,n→ ∞ in (32), in view of (25), (26), (33), and (34), we get
(27) to be proved. �

Proof of Theorem 2. As in the proof of Theorem 1, here we present a proof using
Taibleson [16] like technique developed in [5] for R2 . Let (ξ ,η) ∈ R2 be such that
ξ �= 0, η �= 0. Then the functions e−iξx and e−iηy are periodic functions of periods
2π
|ξ | and 2π

|η| respectively. Thus by putting

ar = r · 2π
|ξ | , bs = s · 2π

|η | (r,s ∈ Z)

we get ∫ ar

ar−1

e−iξxdx = 0,

∫ bs

bs−1

e−iηydy = 0 (r,s ∈ Z). (35)

Define three functions f1 , f2 , f3 on R2 by setting

f1(x,y) = f (x,bs−1) (x ∈ R; bs−1 � y < bs) for s ∈ Z ;

f2(x,y) = f (ar−1,y) (ar−1 � x < ar; y ∈ R) for r ∈ Z ;

and

f3(x,y) = f (ar−1,bs−1) (ar−1 � x < ar; bs−1 � y < bs) for r,s ∈ Z .

Then in view of Fubini’s theorem and relations (35), for each r,s ∈ Z , we have

∫ ar

ar−1

∫ bs

bs−1

f1(x,y)e−iξxe−iηydxdy =
∫ ar

ar−1

[
f (x,bs−1)

∫ bs

bs−1

e−iηydy

]
e−iξxdx = 0,

∫ ar

ar−1

∫ bs

bs−1

f2(x,y)e−iξxe−iηydxdy =
∫ bs

bs−1

[
f (ar−1,y)

∫ ar

ar−1

e−iξxdx

]
e−iηydy = 0
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and
∫ ar

ar−1

∫ bs

bs−1

f3(x,y)e−iξxe−iηydxdy = f (ar−1,bs−1)
[∫ ar

ar−1

e−iξxdx

][∫ bs

bs−1

e−iηydy

]
= 0.

Using these equations in the definition (24) of f̂ (ξ ,η) we get

(2π)2| f̂ (ξ ,η))| =
∣∣∣∣
∫∫

R2
f (x,y)e−iξxe−iηydxdy

∣∣∣∣
=

∣∣∣∣∣∑r∈Z

∑
s∈Z

∫ ar

ar−1

∫ bs

bs−1

f (x,y)e−iξxe−iηydxdy

∣∣∣∣∣
=

∣∣∣∣∣∑r∈Z

∑
s∈Z

∫ ar

ar−1

∫ bs

bs−1

[ f (x,y)− f1(x,y)− f2(x,y)+ f3(x,y)]e−iξxe−iηydxdy

∣∣∣∣∣
� ∑

r∈Z

∑
s∈Z

∫ ar

ar−1

∫ bs

bs−1

| f (x,y)− f1(x,y)− f2(x,y)+ f3(x,y)|dxdy

= ∑
r∈Z

∑
s∈Z

∫ ar

ar−1

∫ bs

bs−1

| f (x,y)− f (x,bs−1)− f (ar−1,y)+ f (ar−1,bs−1)|dxdy

� ∑
r∈Z

∑
s∈Z

V ( f , [ar−1,ar]× [bs−1,bs])(ar −ar−1)(bs−bs−1)

=
(2π)2

|ξ η | V ( f ,R2),

in view of Lemma 2. Thus we get

| f̂ (ξ ,η)| � V ( f ,R2)
|ξ η | . (36)

The proof of Theorem 2 is complete. �

PROBLEM 2. How to estimate f̂ (ξ ,0) , ξ �= 0 (respectively, f̂ (0,η) , η �= 0 ) in
terms of |ξ | (respectively, |η |), even assuming that f is of bounded variation over R2

in the sense of Hardy (see, [13] for definition)?

PROBLEM 3. What can be said about the exactness of the constant in (36)?

4. Extension of the result to RN , N ∈ N

We start by defining the concept of bounded variation for functions on RN (N ∈N)
in the sense of Vitali.

For a function f : RN → C and for any rectangle R = [α1,β1]× . . .× [αN ,βN ] in
RN with −∞ < αi < βi < ∞ for all i = 1,2, . . . ,N , we define Δ f (R) as follows: When
N = 2 we put

Δ f (R) := Δ f ([α1,β1]× [α2,β2]) = f (β1,β2)− f (β1,α2)− f (α1,β2)+ f (α1,α2);
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for N = 3

Δ f (R) : = Δ f ([α1,β1]× [α2,β2]× [α3,β3])
= [ f (β1,β2,β3)− f (β1,α2,β3)− f (α1,β2,β3)+ f (α1,α2,β3)]

− [ f (β1,β2,α3)− f (β1,α2,α3)− f (α1,β2,α3)+ f (α1,α2,α3)]
= Δ[α3,β3]Δ f ([α1,β1]× [α2,β2]),say;

and successively for any N � 3

Δ f (R) := Δ f ([α1,β1]× . . .× [αN ,βN ]) = Δ[αN ,βN ]Δ f ([α1,β1]× . . .× [αN−1,βN−1]).

A collection of points (x0
1, . . . ,x

0
N) , (x0

1, . . . ,x
0
N−1,x

1
N) , . . . , (xs1

1 , . . . ,xsN
N ) of RN

satisfying
−∞ < x0

j � x1
j � . . . � x

s j
j � ∞, s j ∈ N; j = 1,2, . . . ,N,

is called a collection of grid points of R
N . If P is any such collection of grid points of

RN and f : RN → C is any function we put

S(P, f ) =
s1

∑
i1=1

. . .
sN

∑
iN=1

∣∣∣Δ f
(
[xi1−1

1 ,xi1
1 ]× . . .× [xiN−1

N ,xiN
N ]

)∣∣∣ .

Now, a function f : R
N → C is said to be of bounded variation over the Euclidean

space RN in the sense of Vitali, in symbol: f ∈ BVV
(
RN

)
, if

V ( f ) = V
(
f ,RN)

:= supS(P, f ) < ∞, (37)

where the supremum is extended over all collections P of grid points of RN , while
V ( f ) defined in (37) is called the total variation of f over RN .

Similarly to the case of functions f ∈ BV (R) and f ∈ BVV (R2) , the above defi-
nition can also be equivalently reformulated as follows. A function f : RN → C is of
bounded variation over RN in the sense of Vitali if and only if f is of bounded variation
over all closed and bounded N -rectangles

[a1,b1]× . . .× [aN ,bN ] , −∞ < ai < bi < ∞, i = 1,2, . . . ,N;

in the sense of Vitali (see, e.g., [10] or [4] for definition), and in addition, the set of the
total variations of f over all closed and bounded N -rectangles [a1,b1]× . . .× [aN ,bN ]
is bounded. Furthermore, if this is the case, then the supremum of the set of these total
variations over all closed and bounded N -rectangles [a1,b1]× . . .× [aN ,bN ] is equal to
V ( f ) defined in (37).

In a similar way, one can define the notion of bounded variation in the sense of
Vitali over the closed half space [a1,∞)×RN−1 or a closed N -dimensional infinite
corner [a1,∞)× . . .× [aN ,∞) , etc.

Next, we recall that for a complex-valued Lebesgue integrable function f on RN ,
in symbol: f ∈ L1(RN) , the Fourier transform of f is defined as

f̂ (ξ1, . . . ,ξN) :=
1

(2π)N

∫
RN

f (x1, . . . ,xN)e−i(ξ1x1+...+ξNxN )dx1 . . .dxN ,
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where (ξ1, . . . ,ξN) ∈ RN .
In this case also by the Riemann-Lebesgue lemma (see, e.g., [15, Theorem 1.2]),

we know that | f̂ (ξ1, . . . ,ξN)| → 0 as |(ξ1, . . . ,ξN)| :=
√

ξ 2
1 + . . .+ ξ 2

N → ∞ . But in
general, there is no definite rate at which the Fourier transform tends to zero. In fact, the
Fourier transform of an integrable function can tend to zero as slowly as we wish (see,
e.g., [9, 32.47 (b)]). Therefore, as in one and two dimensional cases, it is interesting
to know for functions of which subclasses of L1(RN) there is a definite rate at which
the Fourier transform tends to zero. In this section, we state the result for functions of
bounded variation on RN in the sense of Vitali, which is an extension of our theorems in
Sections 2 and 3, as follows. The proof of this theorem is similar to that of Theorem 2.

THEOREM 3. If f ∈ L1(RN) ∩ BVV (RN) and (ξ1, . . . ,ξN) ∈ RN is such that
∏N

i=1 ξi �= 0 then

f̂ (ξ1, . . . ,ξN) = O

(
1

|∏N
i=1 ξi|

)
. (38)

PROBLEM 4. How to estimate f̂ (ξ1, . . . ,ξN) , if (ξ1, . . . ,ξN) �= (0, . . . ,0) , but at
least one ξ j = 0 for some j ∈ {1, . . . ,N} , even assuming that f is of bounded variation
over RN in the sense of Hardy (which can be defined similarly as in the case of R2 )?

PROBLEM 5. What can be said about the exactness of the constant in (38)?
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